Anchoring Assessment in Intellectual Curiosity about Graduate, Professional, and Doctoral Students’ Chronological Learning

Peggy Maki
Education Consultant
Assessment Editor and Writer, Stylus Publishing, LLC
October, 2009
URI
Assessment:

A systematic means of ascertaining the fit between our expectations (what we intend) and students’ actual achievement of those expectations.

The assessment process is guided by and anchored in intellectual curiosity about the collective efficacy of our educational practices.
Positions of Inquiry into Student Learning

- Students
- Educators
- Graduate, Professional, Doctoral Program
Educators’ Positions of Inquiry

– Pedagogy
– Curricular design
– Instructional design
– Educational tools, such as use of technology or technology-based instruction
How do students become acculturated to the ways of thinking, knowing, and problem solving that your advanced degree values?

– What evidence along the continuum of students’ studies demonstrates that they are becoming acculturated to their profession or field of study?

– How do students track their learning and when do they critically reflect on that emerging learning?
What pedagogies or educational experiences develop the knowledge, understanding, habits of mind, ways of knowing and problem solving that your graduate, professional, or doctoral program values?

How do you educate students to become “experts”—what are the pedagogies that foster expertise in your field?
How do faculty and staff intentionally build upon each other’s courses and educational experiences to achieve your expectations for student learning?

Which teaching strategies, educational processes, or educational experiences promote graduate, professional, and doctoral student learning outcomes? How do you vary these strategies, processes or experiences for different ways of learning?
Students’ Positions of Inquiry

• Position students when they matriculate

 • Map the chronology of learning (student orientation); in turn, students map

 • Involve students in recognizing how they learn (learning inventories) so they stretch over time

• Distribute learning outcome statements upon matriculation
• Hold students responsible for “thinking about their thinking and learning” through—

 – Critical self-reflection on their learning (how have they repositioned their understand or perspectives, for example?)

 – Self-reflection on others’ assessment of their work
– Analysis of their work over time—progress toward desired outcomes

– Analysis of strengths and weaknesses (scoring rubrics)
• Provide representative examples of texts graduate students produce

• Integrate assessment “along the continuum of learning,” not only at the end, to provide feedback towards high achievement of outcomes—

• Example: performing and visual arts
Program’s Position of Inquiry

- Research on Learning
- Scholarship of Teaching and Learning
- Disciplinary and Professional Developments
- Learning-Centeredness
- Learning Organization
Gather Evidence

Interpret Results

Mission/Purposes

Learning Outcomes

Enhance teaching/ learning; inform decision-making, planning, budgeting

How well do Grad students achieve our outcomes?
Examples of Learning Outcome Statements

• Applies disciplinary techniques, technologies, and strategies that promote required or desired change

• Considers how and why organizations engage in change from simple adaptive changes with responses that are well within traditional boundary decisions to more radical alterations when the survival of the organization is at stake

(ISU)
• Demonstrates a commitment to the profession, engaging in professional service, both within the graduate’s immediate community and within the broader community of mathematical scholars

• Communicates the power of mathematical ideas to audiences as diverse as the general public and experts in the graduate’s area (University of Nebraska-Lincoln)
Other Attributes as the Basis of Your Program’s Outcomes?

- Observation that leads to identification of patterns (exceptions to patterns), relationships, linkages, structures, forms, nested issues in or components of larger issues or structures

- Interpretation

- Discovery
• Creativity and innovation (new approaches to routine ways of thinking or doing)

• Adaptability to a changing situation or problem

• Self-discipline (see a project through to completion)

• Collaboration
• Transfer or application of knowledge, abilities, habits of mind, ways of knowing to new problems

• Creative problem posing

• Critical analysis

• Critical self-reflection
• Multiple perspective taking

• Communication across multiple media for different audiences and purposes

• Ability to shift from writing, to speaking, to visual representation, to use of potentials of multi-media
- Ability to represent through different visual means
- Critical Self-reflection (solo and group or community)
- Pursuit of new avenues of exploration
- Open-mindedness
• Engagement in the issue, problem, project demonstrated through perspective taking, language, use of discourse strategies

• Psychomotor skill performance

• Ethical perspective taking/awareness/conduct

• Mathematical reasoning
• Versatility in the use of forms of evidence

• Ability to project consequences, results, resulting conditions, challenges, actions, responses and evaluate them

• Ability to approach/solve/address muddy, complex problems for which there may not be a clear, easy, or “right” solution
Works Cited

