Natural resources science professor says invasive plants change ecosystems from the bottom up

URI Professor Laura Meyerson investigates Phragmites at a marsh on Block Island as part of her research. (Photo courtesy of Laura Meyerson)
URI Professor Laura Meyerson investigates Phragmites at a marsh on Block Island as part of her research. (Photo courtesy of Laura Meyerson)

In a common garden at the University of Rhode Island, Laura Meyerson has been growing specimens of Phragmites – also known as the common reed – that she has collected from around the world. And while they are all the same species, each plant lineage exhibits unique traits.

Now Meyerson, a professor of natural resources sciences, and Northeastern University Professor Jennifer Bowen have revealed that even when two different lineages grow side-by-side in the same ecosystem, the bacterial communities in the soil differ dramatically. It’s a discovery that will aid in understanding how plant invasions succeed and the conditions necessary for their success.

“It’s almost like the different lineages are farming their own microbial communities,” said Meyerson. “What’s amazing is that an invasive Phragmites population in Rhode Island and California will have microbial communities more similar than a native and invasive population living right next to each other in Rhode Island.”

The Phragmites lineage native to North America has inhabited local wetlands for thousands of years, but a lineage introduced from Europe has begun to take over many North American marshes.

“I’m interested in bacteria within salt marshes, but I’ve never thought about these particular plant-microbe interactions and how microbes in the soil work to both facilitate plant success and inhibit growth,” said Bowen. “But it turns out that the evolutionary signatures of the different plant lineages are so strong that it results in similar microbial communities in related plants that are found across the country. And that’s incredible.”…[Read more]