Food Safety and the Home Garden: From Garden to Table

Lori Pivarnik, PhD,
Coordinator, Food Safety Outreach/Research
April 14, 2015
Master Gardener Volunteer Training

Project Funded by CSREES/USDA. Project 2003-5111001713
Since: Microbiological safety hazards commercial vegetables is documented.

Educational programs for commercial producers – none for home gardeners.

Goal:
Help home gardeners apply “Good Agricultural Practices” or GAP to minimize microbial food safety hazards from “Garden To Table”.
What Are Good Agricultural Practices? Why Are They Important?
Good Agricultural Practices (GAP) Program for Commercial Growers

• Water and Water Quality
• Manure and Biosolids
• Field Sanitation
• Worker Health and Hygiene
• Sanitary Facilities
• Packing Facility Sanitation
• Transportation
• Traceback
Produce Safety Concerns: Why now?

- Consumption of fresh produce steadily increasing.
- Increases in the number of produce associated with foodborne disease outbreaks in the U.S.
- A variety of fruits and vegetables implicated--domestic and imported
FIGURE 3. AVERAGE CASES PER OUTBREAK BY FOOD CATEGORY 1990-2005

Caroline Smith Dewaal and Farida Bhuiya. 2007. Presented at IAFP. Center for Science in the Public Interest
Produce Concerns

2006: Food commodities associated with largest illness numbers:

- Poultry (21%), Leafy vegetables (17%), fruits or nuts (16%)
Produce Concerns: 1998-2008

<table>
<thead>
<tr>
<th>Rank</th>
<th>Leafy Greens</th>
<th>Dairy</th>
<th>Poultry</th>
<th>Beef</th>
<th>Eggs</th>
<th>Pork</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Outbreaks</td>
<td>22.3</td>
<td>13.8</td>
<td>9.8</td>
<td>6.6</td>
<td>6.0</td>
<td>5.4</td>
</tr>
</tbody>
</table>

#3 (fruits, nuts); #5 (vine related); #12 (fish)- out of 17 commodities

All produce commodities accounted for 46% of illnesses; meat-poultry accounted for most deaths 29% (with poultry at 19%) and produce 23%.

Produce Concerns

So What Does This Have To Do with Home Gardening?
Good Agricultural Practices and the Home Gardener

• **Adapt** to Home Gardeners - many issues same
 - Water safety
 - Domestic/Wild animals
 - Use of compost
 - Use of manure
 - Personal hygiene/sanitation
 - Post-harvest handling and temperature control

• **Goal:** reduce microbial *risks* in fresh fruits and vegetables — making produce safer.
• **Prevent** foodborne illness
• **Integrate** food safety into gardening practices
Foodborne Illness and the Consumer

- 2008: 31% US households (est. 36 million) participated in food gardening. Vegetables, fruit, berries, herbs
 - 2.8 Billion dollars
- 2009: 19% increase over 2008
- Why grow?
 - Taste, Quality, Food bills
 - They know it is safe
- Underreporting of foodborne outbreaks with estimated 50% of all foodborne illnesses from exposure pathogens at home
- Consumers not likely to consider food from own homes as the source of illness

What do we need know?

Is there a lack of food safety knowledge related to produce grown by home gardeners?
What Did We Do First?
The Survey

✓ 5,000 surveys mailed to households of fruit and vegetable gardeners in NE. Over 800 answered and returned.
✓ Assessed food safety knowledge of and attitudes regarding growing and handling of produce by home gardeners.
✓ 66 questions on food safety topics for all aspects of gardening and post-harvest handling
Survey results showed key food safety areas that gardeners need more information about to minimize the risk of foodborne illness:

- proper composting and manure application, maintaining water safety, and post-harvest handling.

Results indicated lack of food safety knowledge among home gardeners regardless of location, age, education and income.
Potential Sources of Contamination for Home-grown Produce

- Soil
- Water
- Manure/Compost
- Wild and Domestic Animals
- Personal Hygiene/Sanitation
- Containers
- Wash and Rinse Water/Inadequate drying
- Post-harvest handling and temperature control
Structured Interviews: Some Results

Purpose:
- A “follow-up” to the regional survey.
- To probe key food safety topics to better understand why there is a lack of knowledge.
- On-site interviews with gardeners
 - 94 interviews done
 - 5 NE states (18-20/state)
Many home gardeners did not understand that contamination from harmful bacteria could come from a variety of sources in their garden.

Chemicals viewed as the bigger problem.
Structured Interviews Results:
Overall Food Safety

- “Disconnect” between the realization that bacteria could be on produce and the source (e.g. soil). Indications that concerns about food safety less since produce from their gardens.

- Produce safety with chemical contamination a prevailing theme – must shift priority.
Structured Interview Results:

Soil Preparation and Compost/Manure Application

- Many composted but did not use temperature to determine completion

- Of those that used fresh manure, only a minority knew proper application/harvesting timeframe.
Structured Interview Results: Planting/Growing

Organic gardening

- Many respondents considered themselves organic gardeners.

- Why?
 - Safer, no chemical
 - Tastier, healthier.

- Did not connect microbial issues with organically grown produce.
Structured Interview Results: Planting/Growing

Water Safety

• Many respondents considered well water safer than municipal.

• Majority do not view water a source of disease-causing bacteria.

• Most did not know about back-flow protectors
Structured Interview Results:

Other Issues

- Room temperature vs. refrigerator storage
- Soil is dirt – does not contain bacteria
- Eating unwashed produce
- Safe preservation techniques
Food Safety Review
You won’t spot unsafe food by using your senses

From: http://lancaster.unl.edu/food/pizza.shtml
Foodborne illness: How you get sick from food
5 Steps

1. Food
2. Contamination
3. Mishandling
4. Ingestion
5. Illness
Foodborne Illness Symptoms

- Nausea
- Vomiting
- Diarrhea
- Headache
- Fever

A “tiny taste” will not protect you …

… as few as 10–100 bacteria could make you sick!
Foodborne Illness: People at Greatest Risk

- Infants & Children
- Pregnant women
- Elderly
- People with weakened immune systems
Foodborne Illness: Dangers

- Cases: 48 million per year
- Hospital: 128,000 per year
- Deaths: 3,000 per year
- Cost: $Billions
Why is this so hard to find? Why don’t you know?

- The Food that Made You Ill Is Probably Not the Last Food that You Ate

Incubation Period

- Norovirus: 12-48 hours
- Salmonella: 6 to 72 hours
- E. coli O157:H7: 1 to 10 days
- Listeria: 3 to 70 days

- You might not get ill – or enough to notice

From E. Julian talk, 2012, Food Safety conference
Foodborne Illness:
Most likely sources

- Potentially Hazardous Foods
- Ready to Eat Foods
Food Safety Hazards: 3 Types of Contamination

Physical
- Plastic
- Glass
- Metal
- Wood
- Bandages
- Jewelry and other personal items

Chemical
- Allergens
- Pesticides
- Sanitizers
- Lubricants

Biological
- Parasites
- Viruses
- Bacteria
Chemical Food Safety Hazards

- Use pesticides according to manufacturer’s directions
- Keep chemicals in original labeled containers
- Check well water for chemical hazards
- Toxins from mold
 - e.g. patulin in apples
Biological Food Safety Hazards

What are the differences?

- Parasites
- Viruses
- Bacteria

- Cryptosporidium parvum
- Norwalk virus
- Salmonella spp.
Sources of Biological Contamination

- Animals (wild and domestic, and manure)
- People
- Environment
Source of harmful bacteria/viruses in fruits/vegetables

Animal/human intestinal tract
- *Salmonella*
- *E.coli O157:H7*

Human
- *Shigella*
- *Hepatitis A virus*
- *Norovirus*
- *Staphylococcus*

Environment
- *Listeria*
- *Clostridium*
- *E.coli O157:H7*

Water
- Most of the above
What do bacteria need to grow?

- **Food** (high in protein or carbohydrates)
- **Acid** (pH of 4.5 is optimal)
- **Temperature** (41.6°F to 135°F)
- **Time** (four hours)
- **Oxygen** (varies depending on the type of bacteria; some can grow without it)
- **Moisture** (some bacteria require specific levels of moisture)
To Grow, Bacteria Need:

- Food
 - High in protein or carbohydrates
 - High in moisture
 - Low in acidity
To Grow, Bacteria Need: Certain pH (Acidity)

<table>
<thead>
<tr>
<th>Acid</th>
<th>0</th>
<th>1.0</th>
<th>2.0</th>
<th>3.0</th>
<th>4.0</th>
<th>4.6</th>
<th>5.0</th>
<th>6.0</th>
<th>6.4</th>
<th>7.0</th>
<th>8.0</th>
<th>8.5</th>
<th>9.0</th>
<th>10.0</th>
<th>11.0</th>
<th>12.0</th>
<th>13.0</th>
<th>14.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limes</td>
<td></td>
</tr>
<tr>
<td>Pickles</td>
<td></td>
</tr>
<tr>
<td>Vinegar</td>
<td></td>
</tr>
<tr>
<td>Commercial Mayonnaise</td>
<td></td>
</tr>
<tr>
<td>Apples</td>
<td></td>
</tr>
<tr>
<td>Beef, Veal</td>
<td></td>
</tr>
<tr>
<td>Pork</td>
<td></td>
</tr>
<tr>
<td>Carrots</td>
<td></td>
</tr>
<tr>
<td>Pumpkins</td>
<td></td>
</tr>
<tr>
<td>Sweet Potatoes</td>
<td></td>
</tr>
<tr>
<td>Chicken</td>
<td></td>
</tr>
<tr>
<td>Milk</td>
<td></td>
</tr>
<tr>
<td>Corn</td>
<td></td>
</tr>
<tr>
<td>Distilled Water</td>
<td></td>
</tr>
<tr>
<td>Egg White</td>
<td></td>
</tr>
<tr>
<td>Soda</td>
<td></td>
</tr>
<tr>
<td>Crackers</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alkaline</th>
<th>8.0</th>
<th>8.5</th>
<th>9.0</th>
<th>10.0</th>
<th>11.0</th>
<th>12.0</th>
<th>13.0</th>
<th>14.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distilled Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egg White</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crackers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
To Grow, Bacteria Need: Moisture

Minimum needed for bacteria to grow

Fruits and vegetables

Potentially Hazardous Foods

Water Activity

Dry Egg
Noodles
Crackers
Flours
Candy
Jams & Jellies
Meats
Poultry
Distilled Water
To Grow, Bacteria Need: The Right Temperature

“Danger Zone”

140 °F

40 °F
The effects of time and temperature on bacterial growth:

Number of Salmonella per gram

Days

0 1 2 3 4 5

95°F

50°F

44°F

42°F
Potential Sources of Contamination for Home-grown Produce

- Soil
- Water
- Manure/Compost
- Wild and Domestic Animals
- Personal Hygiene/Sanitation
- Containers
- Wash and Rinse Water/Inadequate drying
- Post-harvest handling and temperature control
Key Food Safety Principles for Home-grown Fruits and Vegetables

• Practice safe soil preparation prior to planting
• Practice safe garden maintenance during planting and growing of fruits/vegetables
• Practice safe harvest and post-harvest handling including:
 ✓ Good personal hygiene
 ✓ Time and temperature control
 ✓ Cross-contamination prevention
Five Steps to Food Safe Home Gardening

• Step 1 - Preparing the garden for planting
• Step 2 - Maintaining the garden (planting/growing)
• Step 3 - Harvesting garden produce
• Step 4 - Storing garden produce
• Step 5 – Preparing and serving garden produce
Personal hygiene

Important at all steps

• Proper handwashing - after working in the garden, using the bathroom, *before* preparing fruits and vegetables

• Awareness of illness symptoms. If ill, especially diarrhea, have someone else do the gardening.

• Covering of open cuts and sores - bandages, gloves
Preparing garden for planting: Use of Manure

Not recommended

Why not?

While animal manure can provide nutrients, it can also be a source of human pathogens (Listeria, Salmonella, E. coli 0157:H7)
Preparing Garden for Planting: Manure

If used, be aware:

• **Best if thoroughly composted**
• Apply fresh manure in the late fall, after harvest
• If using fresh manure prior to growing season
 ✓ Spread **two weeks** before planting
 ✓ **NO** harvesting **120 days** after application
• Thoroughly incorporate into soil – **NO** side dressing
• Do not touch edible crop – survival!
• Keep animals out!
2013 Study Concludes: Need to be aware of hazards associated with using raw manure to fertilize home gardens.

- Salmonella isolated from manure – horses, wild turkeys.
- Salmonella isolated from garden soil – horse manure source?
- Viable Salmonella persisted for 210 days
- Education of public of potential safety hazards using raw manure

Preparing Garden for Planting: Compost

- Properly managed compost can produce a safe product.
- Materials used for a compost should contain pathogens.
- Animal waste or meat/dairy scraps should not be added - higher pathogens and odor.
 - Certain animal waste (poultry, horse, goat) used with caution.
 - No manure from carnivorous animals (dog, cat).
Preparing Garden for Planting: Compost

• Pathogens can be destroyed if the compost reaches a temperature of at least 131°F for 15 days, turning at least 5X – takes a long time.

• All contents of pile to middle – heat generated, proper temperature maintained
 • Turning regularly aerates
 • Selects “breakdown” microorganisms
 • Generates heat to destroy pathogens
 • Produces fertile soil amendment.

• Unsure time/temperature, apply in fall after harvest for next planting season.
Temperature of Compost
Maintaining the Garden: Water Safety

- Water can be the source of a variety of pathogens.
- Produce related outbreaks (*Salmonella, Giardia, E. coli 0157:H7, Cyclospora*) have been attributed to the use of contaminated water for irrigation or produce washing.
- Be familiar with water sources used for the garden.
Maintaining the Garden: Water Safety

• **Municipal or public water systems**
 - Lowest risk.
 - Meets EPA water standards.

• **Private wells** from ground water
 - Tested annually for safety, less likely to contaminate produce then surface.
 - No regulation.

• **Surface water** (lakes, ponds or streams)
 - Most risk - more possible microbial contaminants.
 - Runoff: fertilizers, chemical sewage/animal waste.
Maintaining the Garden: Water Safety

Only potable/clean water should have contact with the edible portion of the crop close to or at harvest and post-harvest handling.

This water is clean and safe to drink.
Maintaining the Garden: Water Safety by Testing

Where can you go to get water tested?

- RIDOH water testing
- Private, certified testing labs
- http://www.uri.edu/ce/wq/has/PDFs/Standards.pdf
- www.health.ri.gov/labs - certified labs
 - private well testing
 - analytical
Maintaining the Garden: Water Safety - Protecting well water

- **Location, location!!** – Local/state regulations, away from pollution sources
- Well clear of debris
- Well casing - are there cracks or holes?
- Well cap – pest proof, screened vents, tamper proof
- Well age - older wells may have problems, examined by expert
- Well type - drilled wells vs. dug (shallow) wells
- Well depth - deeper wells are more protected
- **Test, test, test !!!** 1-2 times/year. Coliforms or generic E.coli indicates contamination.
Backflow Prevention

Occurs when contaminated water (non-potable) gets drawn into or flows back into clean water (potable) supply resulting in:

- **Back-siphonage** - a loss of water pressure (negative water pressure) anywhere in the water supply system.
- **Back-pressure** water source pressure greater than the supply source
Maintaining the Garden:
Water Safety - Backflow prevention

- Look where potable and non-potable water are connected (cross-connections)
 - Disconnect sprayers or chemical containers from a hose attached to an outside faucet
- Purchase backflow prevention devices
 - Hardware store, plumbing supply
 - Hose bib for end of hose
 - Consult plumber, check building codes.
Examples of Hose Bibs
Animals are a source of pathogens

- Keep pets out of garden
- Wild animals - how?
 - Minimize vegetation around gardens - nesting places for animals
 - Fencing, noise for deterrents
 - Contact garden shop - new ideas
 - Contact University Extension
Maintaining the Garden: Organic Gardening

- Microbial food safety is an issue whether a gardener uses organic or conventional gardening methods.

- Microorganisms are in the environment - air, soil or water.

- Steps to a food safe home garden must still be followed.
Harvesting Garden Produce

Humans are major source of disease transmission in food.

- Always practice personal hygiene - wash hands before and after harvest.
- Avoid picking or use single-use gloves when ill or when there is a wound.
- Harvest using clean, food-grade containers. Don’t leave damaged produce in them.
Harvesting Garden Produce

- Change/wash dirty clothes/shoes after working in the garden
- Though tempting to eat what has just been harvested, properly wash all fruits and vegetables prior to eating
Keys to storage and safety/quality:

- Different fruits/vegetables need different storage conditions
- Temperature and humidity key to long term storage
 - Cool/dry - 50-70 °F and 60% RH
 - Cold/dry - 32-40 °F and 65% RH
 - Cold/moist - 32-40 °F and 95% RH
- Home refrigerators generally cold and dry (40 °F 50-60% RH)
- Some conditions hard to maintain in typical home
- 25% decrease in shelf-life with every 10 F increase above optimum.

http://www.extension.umn.edu/distribution/horticulture/DG1424.html http://www.fruitandvegetablesafety.tamu.edu
Post-harvest Handling: Storage/Washing

Keys to storage and safety/quality:

- **Ripen** some produce before refrigeration e.g. apples, tomatoes, melons.

- **Store** certain produce in cool, dry, well ventilated, clean places e.g. onions, potatoes.

- **Store** produce **above** meat, poultry, fish - avoid cross-contamination by separation.
 - Contamination of food by **harmful bacteria** from other food, “food-contact” surfaces, or people.
 - Important for produce – ready-to-eat
Post-harvest Handling: Storage/Washing

Keys to storage and safety/quality (con’t):

• **Look** for signs of spoilage - throw out
• **Refrigerate** raw pre-cut or cooked produce in covered containers
• **See chart**
Post-harvest Handling: Storage/Washing

To Wash or Not to Wash: That is the Question?

Should home gardeners wash produce after harvest and before storage?
Post-harvest Handling: Storage/Washing

- If wash before storage you must **thoroughly** dry to prevent spoilage and mold growth.

- If do not wash before storage, shake, rub, brush dirt off. Refrigerate in clean, plastic bags to prevent contamination other foods. Perforated bags may be better.

- Some produce should not be washed before refrigerated storage (e.g. berries)

- See chart

- **Always** wash just prior to eating
Post-harvest Handling: Storage/Washing

- Temperature of wash water can impact safety of some fruits and vegetables
- Water much colder than the produce may cause pathogens to be absorbed through the stem or blossom end
- Wash water should not be more then 10°C degrees colder then the produce.

- tomatoes
- peppers
- potatoes
- apples
Practice good personal hygiene and wash hands before preparation.

Always wash produce in cool, clean running water just before eating or preparing.
- Removes remaining filth and bacteria
- Pesticides are not the target - follow directions for application and harvest time.
Post-harvest Handling: Preparing/Serving/Preserving

- **Do not** use soap or detergent
- **Bleach** not recommended for home use - household bleach not approved for food
- Wash/scrub the skin/rind with brush - bacteria on the outside can be transferred to the inside, edible portion when produce is cut or peeled
Post-harvest Handling: Preparing/Serving/Preserving

- Cut away bruised or damaged areas - higher probability of bacteria or mold contamination
- Avoid cross-contamination when preparing - clean work area and utensils.
 - Raw and to be cooked
- If cooked, store leftovers in refrigerator in covered container
Preservation

National Center for Home Preservation:
http://www.uga.edu/nchfp/index.html

Home Food Preservation:
USDA Complete Guide to Home Canning

Home Canning (Ball/Kerr)
http://www.freshperserving.com/home.aspx

URI Food Safety Website
http://web.uri.edu/foodsafety/foodPreservation/
http://web.uri.edu/foodsafety
Questions