Massachusetts Science and Technology/Engineering Curriculum Framework

The University of Rhode Island W. Alton Jones Campus School Field Trip lessons and activities aim to meet the following Massachusetts Science and Technology/Engineering Curriculum Frameworks:

Natural Science

Forest Ecology

3-LS1-1. Use simple graphical representations to show that different types of organisms have unique and diverse life cycles. Describe that all organisms have birth, growth, reproduction, and death in common but there are a variety of ways in which these happen.

3-LS3-1. Provide evidence, including through the analysis of data, that plants and animals have traits inherited from parents and that variation of these traits exist in a group of similar organisms.

3-LS3-2. Distinguish between inherited characteristics and those characteristics that result from a direct interaction with the environment. Give examples of characteristics of living organisms that are influenced by both inheritance and the environment.

3-LS4-3. Construct an argument with evidence that in a particular environment some organisms can survive well, some survive less well, and some cannot survive.

3-LS4-4. Analyze and interpret given data about changes in a habitat and describe how the changes may affect the ability of organisms that live in that habitat to survive and reproduce.

3-LS4-5(MA). Provide evidence to support a claim that the survival of a population is dependent upon reproduction.

4-LS1-1. Construct an argument that animals and plants have internal and external structures that support their survival, growth, behavior, and reproduction.

5-ESS3-1. Obtain and combine information about ways communities reduce human impact on the Earth’s resources and environment by changing an agricultural, industrial, or community practice or process.

5-LS1-1. Ask testable questions about the process by which plants use air, water, and energy from sunlight to produce sugars and plant materials needed for growth and reproduction.

5-LS2-1. Develop a model to describe the movement of matter among producers, consumers, decomposers, and the air, water, and soil in the environment to (a) show that plants produce sugars and plant materials, (b) show that animals can eat plants and/or other animals for food, and (c) show that some organisms, including fungi and bacteria, break down dead organisms and recycle some materials back to the air and soil.

5-LS2-2(MA). Compare at least two designs for a composter to determine which is most likely to encourage decomposition of materials.*
5-PS3-1. Use a model to describe that the food animals digest (a) contains energy that was once energy from the Sun, and (b) provides energy and nutrients for life processes, including body repair, growth, motion, body warmth, and reproduction.

Wetland Ecology

3-ESS3-1. Evaluate the merit of a design solution that reduces the damage caused by weather.*

3-LS1-1. Use simple graphical representations to show that different types of organisms have unique and diverse life cycles. Describe that all organisms have birth, growth, reproduction, and death in common but there are a variety of ways in which these happen.

3-LS3-1. Provide evidence, including through the analysis of data, that plants and animals have traits inherited from parents and that variation of these traits exist in a group of similar organisms.

3-LS4-2. Use evidence to construct an explanation for how the variations in characteristics among individuals within the same species may provide advantages to these individuals in their survival and reproduction.

3-LS4-3. Construct an argument with evidence that in a particular environment some organisms can survive well, some survive less well, and some cannot survive.

3-LS4-4. Analyze and interpret given data about changes in a habitat and describe how the changes may affect the ability of organisms that live in that habitat to survive and reproduce.

3-LS4-5(MA). Provide evidence to support a claim that the survival of a population is dependent upon reproduction.

4-LS1-1. Construct an argument that animals and plants have internal and external structures that support their survival, growth, behavior, and reproduction.

5-ESS2-1. Use a model to describe the cycling of water through a watershed through evaporation, precipitation, absorption, surface runoff, and condensation.

5-ESS2-2. Describe and graph the relative amounts of salt water in the ocean; fresh water in lakes, rivers, and groundwater; and fresh water frozen in glaciers and polar ice caps to provide evidence about the availability of fresh water in Earth’s biosphere.

5-ESS3-2(MA). Test a simple system designed to filter particulates out of water and propose one change to the design to improve it.*

5-LS2-1. Develop a model to describe the movement of matter among producers, consumers, decomposers, and the air, water, and soil in the environment to (a) show that plants produce sugars and plant materials, (b) show that animals can eat plants and/or other animals for food, and (c) show that some organisms, including fungi and bacteria, break down dead organisms and recycle some materials back to the air and soil.
Wildlife Ecology

3-LS1-1. Use simple graphical representations to show that different types of organisms have unique and diverse life cycles. Describe that all organisms have birth, growth, reproduction, and death in common but there are a variety of ways in which these happen.

3-LS3-1. Provide evidence, including through the analysis of data, that plants and animals have traits inherited from parents and that variation of these traits exist in a group of similar organisms.

3-LS3-2. Distinguish between inherited characteristics and those characteristics that result from a direct interaction with the environment. Give examples of characteristics of living organisms that are influenced by both inheritance and the environment.

3-LS4-2. Use evidence to construct an explanation for how the variations in characteristics among individuals within the same species may provide advantages to these individuals in their survival and reproduction.

3-LS4-3. Construct an argument with evidence that in a particular environment some organisms can survive well, some survive less well, and some cannot survive.

3-LS4-4. Analyze and interpret given data about changes in a habitat and describe how the changes may affect the ability of organisms that live in that habitat to survive and reproduce.

3-LS4-5(MA). Provide evidence to support a claim that the survival of a population is dependent upon reproduction.

4-LS1-1. Construct an argument that animals and plants have internal and external structures that support their survival, growth, behavior, and reproduction.

5-LS2-1. Develop a model to describe the movement of matter among producers, consumers, decomposers, and the air, water, and soil in the environment to (a) show that plants produce sugars and plant materials, (b) show that animals can eat plants and/or other animals for food, and (c) show that some organisms, including fungi and bacteria, break down dead organisms and recycle some materials back to the air and soil.

Geology

3-LS4-1. Use fossils to describe types of organisms and their environments that existed long ago and compare those to living organisms and their environments. Recognize that most kinds of plants and animals that once lived on Earth are no longer found anywhere.

4-ESS1-1. Use evidence from a given landscape that includes simple landforms and rock layers to support a claim about the role of erosion or deposition in the formation of the landscape over long periods of time.

4-ESS2-1. Make observations and collect data to provide evidence that rocks, soils, and sediments are broken into smaller pieces through mechanical weathering and moved around through erosion.
4-ESS2-2. Analyze and interpret maps of Earth’s mountain ranges, deep ocean trenches, volcanoes, and earthquake epicenters to describe patterns of these features and their locations relative to boundaries between continents and oceans.

Winter Ecology

3-LS4-2. Use evidence to construct an explanation for how the variations in characteristics among individuals within the same species may provide advantages to these individuals in their survival and reproduction.

3-LS4-3. Construct an argument with evidence that in a particular environment some organisms can survive well, some survive less well, and some cannot survive.

3-LS4-4. Analyze and interpret given data about changes in a habitat and describe how the changes may affect the ability of organisms that live in that habitat to survive and reproduce.

3-LS4-5(MA). Provide evidence to support a claim that the survival of a population is dependent upon reproduction.

4-LS1-1. Construct an argument that animals and plants have internal and external structures that support their survival, growth, behavior, and reproduction.

Predator/Prey

3-LS1-1. Use simple graphical representations to show that different types of organisms have unique and diverse life cycles. Describe that all organisms have birth, growth, reproduction, and death in common but there are a variety of ways in which these happen.

3-LS4-2. Use evidence to construct an explanation for how the variations in characteristics among individuals within the same species may provide advantages to these individuals in their survival and reproduction.

3-LS4-3. Construct an argument with evidence that in a particular environment some organisms can survive well, some survive less well, and some cannot survive.

3-LS4-4. Analyze and interpret given data about changes in a habitat and describe how the changes may affect the ability of organisms that live in that habitat to survive and reproduce.

3-LS4-5(MA). Provide evidence to support a claim that the survival of a population is dependent upon reproduction.

4-LS1-1. Construct an argument that animals and plants have internal and external structures that support their survival, growth, behavior, and reproduction.

5-ESS3-1. Obtain and combine information about ways communities reduce human impact on the Earth’s resources and environment by changing an agricultural, industrial, or community practice or process.
5-LS2-1. Develop a model to describe the movement of matter among producers, consumers, decomposers, and the air, water, and soil in the environment to (a) show that plants produce sugars and plant materials, (b) show that animals can eat plants and/or other animals for food, and (c) show that some organisms, including fungi and bacteria, break down dead organisms and recycle some materials back to the air and soil.

5-PS3-1. Use a model to describe that the food animals digest (a) contains energy that was once energy from the Sun, and (b) provides energy and nutrients for life processes, including body repair, growth, motion, body warmth, and reproduction.

Evening Programs

Egg Drop

4-PS3-1. Use evidence to construct an explanation relating the speed of an object to the energy of that object.

Night Hike

3-LS4-3. Construct an argument with evidence that in a particular environment some organisms can survive well, some survive less well, and some cannot survive.

3-PS2-1. Provide evidence to explain the effect of multiple forces, including friction, on an object. Include balanced forces that do not change the motion of the object and unbalanced forces that do change the motion of the object.

4-LS1-1. Construct an argument that animals and plants have internal and external structures that support their survival, growth, behavior, and reproduction.

4-PS3-2. Make observations to show that energy can be transferred from place to place by sound, light, heat, and electric currents.

4-PS4-2. Develop a model to describe that light must reflect off an object and enter the eye for the object to be seen.

5-ESS1-1. Use observations, first-hand and from various media, to argue that the Sun is a star that appears larger and brighter than other stars because it is closer to Earth.

Night Sky

5-ESS1-1. Use observations, first-hand and from various media, to argue that the Sun is a star that appears larger and brighter than other stars because it is closer to Earth.

5-ESS1-2. Use a model to communicate Earth’s relationship to the Sun, Moon, and other stars that explain (a) why people on Earth experience day and night, (b) patterns in daily changes in length and
direction of shadows over a day, and (c) changes in the apparent position of the Sun, Moon, and stars at different times during a day, over a month, and over a year.

5-PS2-1. Support an argument with evidence that the gravitational force exerted by Earth on objects is directed toward Earth’s center.

Science Lab

4-PS3-1. Use evidence to construct an explanation relating the speed of an object to the energy of that object.

4-PS3-2. Make observations to show that energy can be transferred from place to place by sound, light, heat, and electric currents.

4-PS3-3. Ask questions and predict outcomes about the changes in energy that occur when objects collide.

4-PS3-4. Apply scientific principles of energy and motion to test and refine a device that converts kinetic energy to electrical energy or uses stored energy to cause motion or produce light or sound.*

4-PS4-2. Develop a model to describe that light must reflect off an object and enter the eye for the object to be seen.

4.3-5-ETS1-3. Plan and carry out tests of one or more design features of a given model or prototype in which variables are controlled and failure points are considered to identify which features need to be improved. Apply the results of tests to redesign a model or prototype.*

4.3-5-ETS1-5(MA). Evaluate relevant design features that must be considered in building a model or prototype of a solution to a given design problem.*

5-PS1-1. Use a particle model of matter to explain common phenomena involving gases, and phase changes between gas and liquid and between liquid and solid.

5-PS1-2. Measure and graph the weights (masses) of substances before and after a reaction or phase change to provide evidence that regardless of the type of change that occurs when heating, cooling, or combining substances, the total weight (mass) of matter is conserved.

5-PS1-3. Make observations and measurements of substances to describe characteristic properties of each, including color, hardness, reflectivity, electrical conductivity, thermal conductivity, response to magnetic forces, and solubility.

5-PS1-4. Conduct an experiment to determine whether the mixing of two or more substances results in new substances with new properties (a chemical reaction) or not (a mixture).