Solid Materials
- Gravel - tiny rocks
- Salt - Ocean, Kitchens, streets, crystals
- Diatomaceous Earth - Crushed Sea shells

Vocabulary
- Solution: solid material that is mixed with water, the solid material dissolves. Solution is transparent (clear) and it can't be separated by a filter. A solution is made of 2 parts:
 - Solvent - liquid
 - Solute - solid material that dissolves
- Mixture: when you put 2 or more material together

Mixtures + Solutions
Sample Notebook Gr. 5
<table>
<thead>
<tr>
<th>Texture</th>
<th>Gravel</th>
<th>Salt</th>
<th>Diatomaceous Earth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>rough</td>
<td>rough</td>
<td>Soft</td>
</tr>
<tr>
<td></td>
<td>bumpy</td>
<td></td>
<td>smooth</td>
</tr>
<tr>
<td>Size</td>
<td>large</td>
<td>medium</td>
<td>Small</td>
</tr>
<tr>
<td>Weight</td>
<td>gray</td>
<td>white</td>
<td>white</td>
</tr>
<tr>
<td>Color</td>
<td>brown</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>black</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odor</td>
<td>pointy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shape</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.1 Mixtures + Solutions
Lesson 1.1

Observations when water is added

- **Gravel**
 - you can still see gravel
 - gravel doesn't float

- **Salt**
 - most of the salt dissolved
 - barely any salt left

- **Diatomaceous Earth**
 - white
 - murky
 - you can only see powder on the bottom of the cup

Observations when mixtures are separated

<table>
<thead>
<tr>
<th></th>
<th>Screen</th>
<th>Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravel</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Salt</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Diatomaceous Earth</td>
<td>N</td>
<td>Y</td>
</tr>
</tbody>
</table>
I noticed that the salt changed when it mixed with water. When I poured water in with the salt, the salt dissolved. Also when the salt and water mixed, it created a solution because the salt is a solute which is a solid material that dissolves and the water was a liquid or solvent. I tried separating the salt and water with a screen and a filter, but the solution went through both times. I also put water with gravel and Diatomaceous Earth. The salt and water was a solution where as the Diatomaceous Earth and water and the gravel and water was a mixture. When I used the filter it separated both the gravel and the Diatomaceous Earth from the water. I wonder why the Diatomaceous Earth and the gravel from the water, but not the salt. Therefore, I noticed that solid materials can change when they’re mixed with water.
Where does a (solid material) go when a solution is made?

Solution
Solvent
Solute

Materials list:
- Salt
- Water
- Scale
- Cups
- Weights (g)

Salt

Shape - cube
- oblong

Size - larger than before

Texture - rough edges
- some were still moist

Odor - transparent

Color - white

Other - have x shape in middle

1.2 Mixtures & Solutions
WARNING — This set contains chemicals that may be harmful if misused. Read cautions on individual containers carefully. Not to be used by children except under adult supervision.

Making a Solution

Procedure
1. Weigh 50 mL of water. Record its mass on line 2.
2. Add 1 level spoon of salt to make a solution.
3. Weigh the solution carefully. Record its mass on line 1.

<table>
<thead>
<tr>
<th></th>
<th>Mass of salt solution</th>
<th>53 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Mass of 50 mL of water</td>
<td>50 g</td>
</tr>
<tr>
<td>3</td>
<td>Mass of salt</td>
<td>3 g</td>
</tr>
</tbody>
</table>
Response Sheet—Investigation 1

A friend made a solution. She used 100 mL of water and several spoons of salt. All the salt dissolved. After making this solution, she realized she needed to know how many grams of salt she had used so that she could make another solution just like the first one.

a. How could she find out the mass (grams) of the salt she used to make the solution?

b. Explain why your plan would work.

A. She could find the mass by letting the water evaporate and then use a scale to figure out how much it weighs.

B. My plan would work because when the water evaporates all the salt will be left in the cup. After that you would put the cup on the scale and then keep adding the weights (grams) until both sides are even
What procedure could you use to separate a dry mixture?

Steps:
1. Take apart dry mixture:
 - 1 scoop of gravel
 - 1 scoop of salt
 - 1 scoop of Diatomaceous Earth

Procedure:
1. Use screen to separate gravel from mixture.
2. Add water to salt and Diatomaceous Earth. Then separate.
3. Pour in funnel so that 1 chemical is left.
4. Use magnet to separate remaining objects.

1.3 Mixtures & Solutions
I noticed that I had to use a magnet to separate the dry mixture. I figured that the mystery material was magnetic because the magnet was a new tool. I knew that the mystery material had to be magnetic because it was one of the materials from the inventory check. I also didn't notice anything in the salt to diatomaceous earth. Another reason is that I didn't notice any black colored pebbles in the gravel during previous lessons. Therefore, I noticed that the new material has to be magnetite.
What do you notice about our four different solutions?

<table>
<thead>
<tr>
<th>Solvent</th>
<th>1</th>
<th>2</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1000 mL of water</td>
<td>1000 mL of water</td>
<td>1000 mL of water</td>
<td>500 mL of water</td>
</tr>
<tr>
<td>Solute</td>
<td>3 scoops of powder</td>
<td>1 scoop of powder</td>
<td>2 scoops of powder</td>
<td>2 scoops of powder</td>
</tr>
</tbody>
</table>

See:
- 1 - light orange
- 2 - dark orange
- A - transparent
- B - transparent

Taste:
- 1 - Sweet
- 2 - Under
- A - Kinda Sweet
- B - Really Sweet
- Not the same

2.1 Mixtures & Solutions
Soft-Drink Recipes

Solution 1. 3 spoons of powder and 1000 mL of water
Solution 2. 1 spoon of powder and 1000 mL of water

Similarities
- Transparent
- See light through it
- Has a solvent and solute

Differences

<table>
<thead>
<tr>
<th>Solution 1</th>
<th>Solution 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Dark orange</td>
<td>- Light orange</td>
</tr>
<tr>
<td>- Sweet</td>
<td>- Kinda watery</td>
</tr>
<tr>
<td>- 3 scoops powder</td>
<td>- 1 scoop powder</td>
</tr>
</tbody>
</table>

Solution A. 2 spoons of powder and 1000 mL of water
Solution B. 2 spoons of powder and 500 mL of water

Similarities
- 2 Scoops powder
- Transparent
- Has a solvent and solute
- See light through

Differences

<table>
<thead>
<tr>
<th>Solution A</th>
<th>Solution B</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 1000 mL</td>
<td>- 500 mL</td>
</tr>
<tr>
<td>- Sweet</td>
<td>- Really sweet</td>
</tr>
<tr>
<td>- Transparent</td>
<td>- Strong</td>
</tr>
<tr>
<td>- Light orange</td>
<td>- Dark orange</td>
</tr>
</tbody>
</table>
1. I noticed the more concentrated the solution, the sweeter it was.
 - My evidence is that solution B only had 500 mL of water with 2 scoops of powder while solution A had 1000 mL of water with 2 scoops of powder.

2. I noticed that solution 2 had the lightest color.
 - My evidence is that solution 2 had 1000 mL of water and only 1 scoop of powder. Therefore, there was mostly water and a little bit of powder so the color appeared to be lighter.

3. I noticed that solution B was the darkest.
 - My evidence is that solution B had 2 scoops of powder and 500 mL of water. Therefore, solution B didn't have as much water so the solution appeared to be the darkest.

4. I noticed that even though solutions A and B both had 2 scoops, solution B had less water.
 - My evidence is that
WARNING — This set contains chemicals that may be harmful if misused. Read cautions on individual containers carefully. Not to be used by children except under adult supervision.

Salt Solutions 1 and 2

Solution 1. 1 spoon of salt and 50 mL of water
Solution 2. 3 spoons of salt and 50 mL of water

Similarities
- 50 mL water

Differences

<table>
<thead>
<tr>
<th>Solution 1</th>
<th>Solution 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 1 spoon of salt</td>
<td>- 3 spoons of salt</td>
</tr>
<tr>
<td>- more diluted</td>
<td>- more concentrated</td>
</tr>
</tbody>
</table>

Mass and volume of Solutions 1 and 2

<table>
<thead>
<tr>
<th>Solution</th>
<th>Mass (g)</th>
<th>Volume (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.2 g</td>
<td>50 mL</td>
</tr>
<tr>
<td>2</td>
<td>6.0 g</td>
<td>50 mL</td>
</tr>
</tbody>
</table>
Comparing Salt Solutions

Compare Equal Volumes
If you compare the mass of 50 mL of Solution 1 with the mass of 50 mL of Solution 2, what will you observe?

Prediction
Measured mass:
Solution 1 _______ Solution 2 _______
Solution 3: 52 g

Salt Solution 3: 3 spoons of salt and 150 mL of water
Is Solution 3 more concentrated, less concentrated, or the same concentration as Solution 2? Explain your answer.

Focus Question
How can you determine which salt solution is more concentrated?
The more mass the solution has, the more concentrated it is.
when equal volumes have equal their concentration is equal. For example, solution 1 and solution 3 both weigh 52 grams in mass and they have equal volume. Therefore, they have equal concentration, so the ratio for solutions 1 and 3 would be 1:50. However, when they don't have equal mass their concentration isn't equal. For example, solution 1 and 2 don't have equal mass. Solution 1 has 1 scoop of salt and 50 ml of water and solution 2 has 3 scoops of salt and 50 ml of water. This means that the salt (solute) is the variable and the water (solvent) is the equal volume. Also solution 2 weighs 55 grams in mass so it's more concentrated than solution 1 and solution 1 weighs 53 grams in mass so it is more dilute than solution 2. Therefore, you can determine which solution is more concentrates by figuring out their mass and volume.
Lesson 2.3

How can you determine if the mystery solution has different concentrations?
- Not the same concentration of solute to more mass solvent
- Solution 1 red
- Solution 2 green
- Solution 3 blue

Procedure:
- Use syringe to get 50 mL of solution 1 and pour it into the graduated cylinder
- Use syringe to pour solution 1 into a smaller cup and weigh on the balance scale
- Place weights (grams) in the empty cup to figure out the mass
- Repeat steps for solutions 2 and 3

<table>
<thead>
<tr>
<th>Solution 1</th>
<th>Solution 2</th>
<th>Solution 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 g</td>
<td>53 g</td>
<td>49 g</td>
</tr>
<tr>
<td>50 mL</td>
<td>50 mL</td>
<td>50 mL</td>
</tr>
</tbody>
</table>

Inv. 2.3 Mixtures + Solutions
You can determine which solution is most concentrated by measuring the mass. Solution 2 had the most mass; therefore it was the most concentrated. Solution 3 was the most dilute so it had the least amount of mass (49g). Another way to determine which solution is the most concentrated is to measure the density. For example, Solution 3 had a density of 1.00 so it was the most dense while Solution 3 had a density of 0.98 which made it the least dense. Therefore you can determine the concentration of solutions by measuring their weight or their density.
How can we determine which solution is most concentrated?

- What is the order from most dense to least dense?
Liquid Layers

Use the straws to record the colors of the salt solutions you tried to layer.

When you succeed in layering all four solutions, put them in order in the table below, from most concentrated to least concentrated.

```
<table>
<thead>
<tr>
<th>Color</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td>Least concentrated</td>
</tr>
<tr>
<td>yellow</td>
<td></td>
</tr>
<tr>
<td>green</td>
<td></td>
</tr>
<tr>
<td>blue</td>
<td>Most concentrated</td>
</tr>
</tbody>
</table>
```

Which solution is most dense? Which is least dense? Why do you think so?
Carbon Dioxide

Gist: The gist of this article is that Charles Keeling studied the concentration of carbon dioxide in the air. Based on his studies, he learned that the concentration is lowest in the late afternoon and highest in the early morning. He discovered that it meant plants were taking in CO₂ during the day and giving it off during the night. His most important discovery was that the amount of CO₂ went up every year and it was mostly from human activities.

Vocabulary:
- CO₂
- concentration
- average
- climate
- fossil fuels
- petroleum
- greenhouse gas
- global

Important Details:
The pattern of the carbon dioxide is known as the Keeling Curve.

2.4 Reading
3/7/15

What's more concentrated: Milk or Juice?

Procedure:
- Use a lab balance to get equal volumes
- Pour in two cups, then weigh on scale with glasses
- Compare their weights

Materials:
- Scale
- Glasses
- Cups
- Milk
- Weights (g)

<table>
<thead>
<tr>
<th>Weight (g)</th>
<th>Equal Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juice</td>
<td>26 g</td>
</tr>
<tr>
<td>Milk</td>
<td>27 g</td>
</tr>
</tbody>
</table>

Mistakes *Solutions

Extension: Student Inquiry:
Lesson 3.1

Is there a limit to the amount of salt that will dissolve in 50 ml of water?

Procedure:
- Use syringe to get some of water and pour in each bottle.
- Use salt scoops to pour salt into the water.
- Continue to add salt until water until it doesn't dissolve in the water any more.

<table>
<thead>
<tr>
<th># of Scoops</th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Scoops</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Clear water
- No salt
- Salt particles on bottom & side of cup
- 5 scoops

- Saturated solution:
- Solute doesn't dissolve
- Solution is heavier

Grains = 13
- 10-15 g or just to saturate 50 ml of water
- Class Determination
- 10 g

Class Average = 13
WARNING — This set contains chemicals that may be harmful if misused. Read cautions on individual containers carefully. Not to be used by children except under adult supervision.

Saturating a Solution

Determine the amount of solid material required to saturate 50 mL of water.

Procedure

1. Put a filter paper in the funnel. Wet the paper to soak it.
2. Place a labeled cup under the funnel.
3. Pour the saturated solution from the bottle into the wet filter.
4. Place the saturated solution on one side of the balance. Put a cup with 50 mL of water on the other side.
5. Add gram pieces to the water until the system is balanced.

![Saturated solution](image)

50 mL of water and gram pieces

13 grams
Do you think there is a limit to the amount of salt that dissolves in 50 ml of water? During our investigation I determined that there is a limit. I figured out that the limit is about 5 or 6 scoops of salt or 13 grams. I got 13 grams by separating the salt solution from the extra salt in the container using the funnel and by putting the salt solution in one end of the balance scale and the water on the other. Then I added the gram pieces and got 13. There was extra salt on the sides of the container and across the bottom. I know this is a saturated solution because the salt stopped dissolving and it sank to the bottom. Therefore, there is a limit to the amount of salt that dissolves in a solution.

Inv 3.1 Student Writing