Molecular investigation reveals epi/endophytic extrageneric kelp (Laminariales, Phaeophyceae) gametophytes colonizing *Lessoniopsis littoralis* thalli

Christopher E. Lane** and Gary W. Saunders
Centre for Environmental and Molecular Algal Research, University of New Brunswick, Fredericton, New Brunswick, E3B 6E1, Canada, e-mail: c.lane@dal.ca

*Corresponding author

Abstract

A recent molecular investigation of kelp systematics revealed mitochondrial sequences that gave phylogenies inconsistent with those based on nuclear and chloroplast sequences for the species *Lessoniopsis littoralis*. Sequence from the mitochondrial *nad6* region placed *L. littoralis* in the middle of a clade of *Alaria* species in our trees, whereas Rubisco and nuclear ribosomal DNA sequences resolved *L. littoralis* within the Alariaceae, but distinct from *Alaria*. To resolve these conflicting results, the *nad6* region was sequenced from additional samples of *L. littoralis*. The resulting data variously placed *L. littoralis* with *Macroystis integrifolia*, *Nereocystis luetkeana*, and an additional *Alaria* isolate. A series of hypotheses were devised and explored to effectively exclude introgression via hybridization as a viable explanation for our observations. Rather, molecular and microscopy data revealed that gametophytes of *Alaria*, *Macroystis* and *Nereocystis* epi/endophytically colonize the older portions of the thallus of *L. littoralis*. A substantial primer mismatch, unique to *L. littoralis*, was uncovered subsequently explaining why *nad6* sequences from only *Alaria*, *Macroystis* and *Nereocystis* were amplified from *L. littoralis* sporophyte samples, although the DNA from the gametophytes likely represented only a small percentage of the total DNA extracted.

Keywords: gametophyte; kelp; Laminariales; *Lessoniopsis littoralis*; mitochondria; *nad6*.

Introduction

The northeastern Pacific coastline is one of the richest areas of kelp taxonomic richness in the world, with 40 species recognized from Baja California to the Aleutian Islands, Alaska. Vancouver Island, located off the coast of British Columbia, Canada, is within this region and has the greatest number of kelp species (28) in any one area of this range (Druehl 1970). It is common to find more than 15 species living sympatrically in the inter- and sub-tidal zones along the western Vancouver Island coast.

Members of the Laminariales make up the majority of the seaweed biomass in the intertidal zone of this region and their size and distinctive morphology have made them an extensively studied order of brown algae (Lane et al. in press).

Members of the Laminariales exhibit an alternation of heteromorphic generations of different ploidy levels. The macroscopic sporophytes are well characterized and the morphological classification within the Laminariales is based on features of this diploid generation (Setchell and Gardner 1925). Kelp gametophytes are haploid, dioecious and sexually dimorphic; male filaments are typically smaller in diameter and more branched than their female counterparts (McKay 1933, Hollenberg 1939). Our understanding of the microscopic, filamentous, gametophytes is poor compared with that of the sporophytes, and a comprehensive morphological survey of kelp gametophytes has never been completed, making identification to even genus impossible (Garbary et al. 1999a). In addition, little is known about the ecology, distribution and abundance of kelp gametophytes *in situ*.

Until recently, classification in the “derived” families of the Laminariales had undergone little change since circumcision by Setchell and Gardner (1925). Setchell and Gardner (op. cit.) used gross morphological characters of the sporophyte to separate genera into families nearly 80 years ago. In their classification scheme, species with sporophylls (blades specialized for reproduction) were placed in the Alariaceae, those with splitting between the stipe and blade in the Lessoniaceae, and the species with simple blades were included in the Laminariaceae. However, the morphological classification was not without problems. For instance, *Lessoniopsis littoralis* was discussed by Setchell and Gardner (1925) as an anomaly because it has both splitting and sporophylls, characteristics of two families. Setchell and Gardner decided to place *L. littoralis* in the Lessoniaceae, because its habit is closer to *Lessonia* than to *Alaria*.

Recent molecular phylogenies (Saunders and Druehl 1993, Druehl et al. 1997, Yoon and Boo 1999, Yoon et al. 2001, Lane et al. in press) have indicated that the morphological characters used by Setchell and Gardner for kelp classification result in an unnatural grouping of taxa. Substantial taxonomic revision of the Alariaceae-Laminariaceae-Lessoniaceae complex has led to a re-organization of these three families, as well as the description of a new family, the Costariaceae (Lane et al. in press). One consequence of the taxonomic changes in the Laminariales was the placement of *Lessoniopsis littoralis* in the Alariaceae (Lane et al. in press), in association with *Pterygophora californica* (Figure 1), rather than grouping in the Lessoniaceae, as proposed by Setchell and Gard-
C.E. Lane and G.W. Saunders: Cryptic kelp gametophytes

Figure 1 Illustration of the Laminariales phylogeny as proposed by Lane et al. (in press).

Both Alaria and Lessoniopsis are resolved in the Alariaceae, though not in close association. Nereocystis and Macroystis are placed in the Laminariaceae, relatively distant from taxa in the Alariaceae. Taxa discussed here are in bold text.

ner (1925). This relationship was robustly supported by nuclear and chloroplast DNA sequences. However, when the mitochondrial NADH dehydrogenase subunit six gene (nad6) was sequenced initially, we discovered that the nad6 sequence from a sample of L. littoralis was nearly identical to that for a collection of Alaria. While both genera are members of the Alariaceae, sequence data from either nuclear or chloroplast regions did not support a particularly close association for these taxa. In addition, the sequence from the nad6 region is highly variable within the Laminariales (Lane et al. in press), making nearly identical sequences between genera unlikely.

Our sequence data indicate a possible transfer of the mitochondrial genome from Alaria to Lessoniopsis through a hybridization/introggression event (transfer of a maternally inherited organelle resulting from a hybridization and subsequent breeding of the offspring back to the paternal lineage). Intergeneric hybridization within the Laminariales has been reported frequently in the literature (Tokida et al. 1958, Neushul 1962, Sanbonsuga and Neushul 1978, Coyer and Zaugg-Haglund 1982, Migita 1984, Coyer et al. 1992, Lewis and Neushul 1995), but hybridization had not been assessed with molecular tools until recently (Kraan and Guiry 2000, Liptack and Druehl 2000, Druehl et al. 2005). Molecular evidence indicates that hybridization is very rare, and that parthenogenesis, apogamy and apospory are common in culture, resulting in either normal or abnormal morphological development, which has been misinterpreted as F1 hybrids (Druehl et al. 2005). The only intergeneric cross confirmed by molecular investigation was between Alaria marginata and Lessoniopsis littoralis (Liptack and Druehl 2000), which leaves open the possibility of an introgression event explaining the anomalous mitochondrial results for L. littoralis.

The mitochondrion is maternally inherited in the Fucales (Coyer et al. 2002), a related order of brown algae (Draisma et al. 2001, Rousseau et al. 2001). If a hybridization event occurred between a female Alaria and a male Lessoniopsis littoralis, followed by a female of the F1 generation mating with a male L. littoralis, the mitochondrial genome of Alaria could be transferred to L. littoralis. However, the work of Coyer et al. (2002) also indicated that the chloroplast is maternally inherited in the Fucales. Our mitochondrial data were aberrant compared with the chloroplast data sets, suggesting either a different inheritance pattern for the chloroplast and mitochondrion in the Laminariales, or that our incongruent data sets were not the result of mitochondrial introgression. Sequencing nad6 from additional samples of L. lit-
toralis only further confounded the problem because the new sequences allied with *Macrocystis integrifolia*, *Nereocystis luetkeana* and an additional *Alaria* isolate.

To explain the perplexing array of *nad6* sequence data from four independent samples of *Lessoniopsis littoralis*, we devised and tested a series of hypotheses, ruling out introgression as a course, and establishing contamination, owing to cryptic gametophyte habitat, as the explanation.

Materials and methods

Sample collection

Samples, collected as indicated in Table 1, were transported back to the laboratory in seawater where the thalli were cleaned with cheesecloth to remove epiphytes. Subsequently, a portion of the thallus from each sample was individually dried for molecular analysis on silica gel. Blades from *Lessoniopsis littoralis* collected at Execution Rock were divided into tip, middle and base portions, and two pieces of the thallus were removed from each region. One piece of tissue from each portion was cleaned and dried while the other was left unclean and preserved in 4% formalin for microscopy. All dried material was ground with a mortar and pestle under liquid nitrogen and stored at -20°C for DNA extraction.

DNA extraction and sequencing

Extraction of DNA and routine PCR amplification and sequencing of the *nad6* region were performed as described previously (Lane et al. in press). In addition, genus-specific primers were developed for the *nad6*

<table>
<thead>
<tr>
<th>Classification</th>
<th>Collection location</th>
<th>Accession number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification</td>
<td></td>
<td>nad6</td>
</tr>
<tr>
<td>Alariaceae</td>
<td></td>
<td>nd</td>
</tr>
<tr>
<td>Alaria esculenta (Linnaeus) Greville</td>
<td>Prospect Point, Resolute Bay, N.W.T., Canada</td>
<td>AY878857</td>
</tr>
<tr>
<td>Alaria marginata Postels et Ruprecht</td>
<td>Seal Rock, Oregon, USA</td>
<td>AY857907</td>
</tr>
<tr>
<td>Alaria nana Schrader</td>
<td>Louis Druheh culture</td>
<td>AY878859</td>
</tr>
<tr>
<td>Alaria taeniata Setchell</td>
<td>Louis Druheh culture</td>
<td>AY857911</td>
</tr>
<tr>
<td>Lessoniopsis littoralis (Farlow et Setchell) Reinke 1* (Alaria sp.)</td>
<td>Amphitrite Point, Ucuelet, B.C., Canada</td>
<td>AY878860</td>
</tr>
<tr>
<td>Lessoniopsis littoralis 2* (Alaria sp.)</td>
<td>Frank Island, Ucuelet, B.C., Canada</td>
<td>AY878861</td>
</tr>
<tr>
<td>Lessoniopsis littoralis</td>
<td>Frank Island, Ucuelet, B.C., Canada</td>
<td>AY878862</td>
</tr>
<tr>
<td>Lessoniopsis littoralis</td>
<td>Execution Rock, Bamfield, B.C., Canada</td>
<td>AY857910</td>
</tr>
<tr>
<td>Lessoniopsis littoralis</td>
<td>Execution Rock, Bamfield, B.C., Canada</td>
<td>AY857913</td>
</tr>
<tr>
<td>Lessoniopsis littoralis</td>
<td>Execution Rock, Bamfield, B.C., Canada</td>
<td>AY857914</td>
</tr>
<tr>
<td>Lessoniopsis littoralis</td>
<td>Execution Rock, Bamfield, B.C., Canada</td>
<td>AY857915</td>
</tr>
<tr>
<td>Lessoniopsis littoralis</td>
<td>Execution Rock, Bamfield, B.C., Canada</td>
<td>AY857916</td>
</tr>
<tr>
<td>Lessoniopsis littoralis</td>
<td>Execution Rock, Bamfield, B.C., Canada</td>
<td>AY857917</td>
</tr>
<tr>
<td>Lessoniopsis littoralis</td>
<td>Execution Rock, Bamfield, B.C., Canada</td>
<td>AY857918</td>
</tr>
<tr>
<td>Lessoniopsis littoralis</td>
<td>Execution Rock, Bamfield, B.C., Canada</td>
<td>AY857919</td>
</tr>
<tr>
<td>Lessoniopsis littoralis</td>
<td>Execution Rock, Bamfield, B.C., Canada</td>
<td>AY857920</td>
</tr>
<tr>
<td>Lessoniopsis littoralis</td>
<td>Execution Rock, Bamfield, B.C., Canada</td>
<td>AY857921</td>
</tr>
<tr>
<td>Lessoniopsis littoralis</td>
<td>Execution Rock, Bamfield, B.C., Canada</td>
<td>AY857922</td>
</tr>
<tr>
<td>Lessoniopsis littoralis</td>
<td>Execution Rock, Bamfield, B.C., Canada</td>
<td>AY857923</td>
</tr>
<tr>
<td>Lessoniopsis littoralis</td>
<td>Execution Rock, Bamfield, B.C., Canada</td>
<td>AY857924</td>
</tr>
</tbody>
</table>

Sequences in bold are reported for the first time here, those in normal type are from Lane et al. (in press).

1 Indicates aberrant sequences (i.e., from donor genera in brackets), which were originally sequenced as *Lessoniopsis littoralis*, but were renamed later based on our findings. "nd" indicates that data were not determined.

2 Indicates isolates that were separated into lower, middle and tip portions for analysis. All *nad1* sequences are coding strand only.
region of Alaria, Nereocystis, Macrocystis, and, later, Lessoniopsis (Figure 2), based on known sequences. Specific primers were tested against all of the genera studied, using the same thermocycler conditions as our original nad6 primers, to ensure amplification of only the target species. Each of our samples of Lessoniopsis littoralis DNA (Table 1) was tested with all of the genus-specific primers to determine the identity of the mitochondrial variants within. Negative controls (without DNA), for each primer, were conducted simultaneously to ensure that contamination was not occurring during PCR. All oligonucleotide primers used for PCR and sequencing of nad6 are shown in Figure 2.

An additional set of primers was created to flank each of the original PCR primers of Lane et al. (in press) (KN51/KM10 around KM1, as well as KM9/KM112 around KM4) to check the sequence of Lessoniopsis littoralis at these sites (Figure 2). Primers for the mitochondrial nad1 gene (forward (LN11) 5’ TTATGGCMGTAGTCAAAG 3’ and reverse (LN14) 5’ TTAATTGGMAYCCAATC 3’) were designed based on published mitochondrial sequences (Oudot-Le Secq et al. 2001, 2002) and were used under identical PCR and sequencing conditions as the nad6 primers (Lane et al. in press). Sequence data from the nad1 region were read only from the coding DNA strand, whereas nad6 sequence data were read from both the coding and non-coding strands. Species-specific primers for the internal transcribed spacer (ITS) of the nuclear ribosomal DNA for Alaria marginata, Lessoniopsis littoralis, Macrocystis integrifolia and Nereocystis luetkeana were used from Druehl et al. (2005) with amplification parameters described therein.

Sequence analysis

Complementary and overlapping sequences were edited and aligned using Sequencer™ 4.2 (Gene Codes Corporation, Ann Arbor, USA). Multiple sequence alignments were constructed for both the nad1 and nad6 data with MacClade 4.06 (Maddison and Maddison 2003). The seven-sequence nad1 alignment was explored using the unweighted P settings and UPGMA in Paup*4.0b10 (Swofford 2002). Phylogenetic trees for the 15-taxa nad6 alignment were created with 100 random sequence additions in unweighted parsimony. Neighbor-joining and maximum likelihood (10 random sequence additions) nad6 analyses were performed using model parameters (TIM+G) determined in Modeltest V3.5 (Posada and Crandall 1998). Bootstrap analyses were carried out with 1000 replicates for parsimony (10 random additions) and neighbor-joining. Bayesian inference was completed with default values in MrBayes V3.0b4 (Huelsenbeck and Ronquist 2003) using the GTR+I+G model with the model parameters and posterior probabilities estimated during the analysis. Trees were sampled every 100 generations for 4 million generations and a “burn-in” of 200,000 generations was determined by visual inspection of likelihood values. The first 400,000 generations were discarded to ensure stabilization, and the remaining trees were used to construct a consensus tree to estimate posterior probabilities.

Light microscopy

Light microscopy was used to investigate portions of the Execution Rock thalli for epi/endophytes. Samples used for microscopy were not cleaned before examination and epiphytes were visible under a dissecting microscope. Tissue was removed where epiphytes were observed and sectioned using a freezing cryostat (International Equipment Company, Needham Heights, USA). Material was either left unstained or stained with a 3% aniline blue, 6.3% acetic acid solution, and permanently mounted in a 50% aqueous karo solution with 3% formalin. Observations were made on a Leica DM5000 B microscope (Wetzlar, Germany) and photomicrographs were taken.
Results and discussion

The first nad6 sequence isolated from Lessoniopsis littoralis was nested within a clade of Alaria species and on this basis we hypothesized that we had uncovered an example of mitochondrial introgression. Alaria and Lessoniopsis are relatively closely related genera (Lane et al. in press), and they have been shown to hybridize in the laboratory (Liptack and Druehl 2000). However, when we sequenced the nad6 from additional samples of L. littoralis, the resulting data were nearly identical to sequences from a second Alaria isolate, Macrocystis integrifolia and Nereocystis luetkeana (Figure 3). Several recent, independent, mitochondrial introgression events between genetically distant members of the Laminariales would be required to explain these results under a hybridization/introgression hypothesis. Whereas the literature is replete with reports of kelp hybridization, more recent molecular investigations suggest that intergeneric hybridization is rare. Rather, research indicates that parthenogenic, apogamous and aposporic sporophyte growth resulting in normal or aberrant morphologies (Nakahara and Nakamura 1973) is common in culture (Kraan and Guiry 2000, Druehl et al. 2005). If hybridization under ideal conditions in the laboratory is rare, it seemed highly improbable that multiple introgression events between distantly related taxa in the field could explain our results.
To investigate the extent of the aberrant kelp DNA in our samples of Lessoniopsis, genus-specific PCR primers were constructed for the nad6 of Alaria, Macrocystis and Nereocystis and used as probes for foreign nad6 sequence in the samples tested previously. PCR produced positive results from at least two of the donor genera for every sample of DNA tested (Figure 4), indicating the presence of the nad6 gene from multiple species in each L. littoralis sample. This weakened our hypothesis of simple hybrid introgression.

We next attempted to determine if full complements of mitochondrial DNA from Alaria, Macrocystis and Nereocystis were present in our samples of Lessoniopsis littoralis, or if only partial regions of the donor genomes were present. Primers were designed to amplify and sequence the nad1 gene, because of its position on the opposite side of the circular mitochondrial genome, relative to nad6 (Oudot-Le Secq et al. 2002). The resulting nad1 sequences from our L. littoralis samples (Table 1) were nearly identical to one another, were genetically distant from any of the potential donor genera (Figure 5), and were presumed to be bona fide L. littoralis sequences. Although we failed to test the outlined hypothesis, we did provide the first evidence for a L. littoralis mitochondrial in our samples. Nonetheless, the use of nad6 genus-specific primers revealed mitochondrial DNA from the donor genera as well (Figure 4). One of our samples, L. littoralis 1, contained DNA from only Alaria and Macrocystis, whereas the other three, L. littoralis 2–4, contained mitochondrial DNA from all three donor genera (Figure 4). It appeared that L. littoralis, in addition to its own mitochondrial genome, contained a mosaic of full or partial mitochondrial DNA.

To establish that this phenomenon was specific to the mitochondrial genome of the donor genera, we used species-specific primers for the internal transcribed spacer (ITS) of the ribosomal DNA (Druel et al. 2005) to probe for nuclear DNA from Alaria marginata, Macrocystis integrifolia and Nereocystis luetkeana in our samples of Lessoniopsis. PCR revealed results for the nuclear primers that were identical to our results for the genus-specific mitochondrial primers (Figure 6); Alaria and Macrocystis DNA was revealed in L. littoralis 1, and the remaining samples (L. littoralis 2–4) contained DNA from all three donor genera. Thus, it was clear that our samples of L. littoralis were contaminated with nuclear, as well as mitochondrial DNA from the donor genera.

The only plausible conclusion remaining was that our samples were contaminated. However, great care was taken in the laboratory to avoid contamination of samples, and we had not observed contamination in any of our 41 kelp DNA samples used previously (Lane et al. in press, and Table 1). To test this further, genus-specific primers were tested on four DNA samples from other genera in the Alariaceae, and six from the Laminariaceae. No contamination was found (data not shown). Therefore, the contamination was limited to, and affected all of our four samples of Lessoniopsis littoralis. This prompted two further questions: why did the nad6 of Lessoniopsis fail to PCR amplify; and why did this contamination occur only in our samples of L. littoralis?

During an earlier study on kelp hybridization (Druel et al. 2005), the authors discovered that an equal mix of DNA from two species would occasionally result in only a single product, where two would be expected. In such cases, sequences of the products showed no evidence of a weak secondary signal, indicating a “competitive exclusion” of one DNA over the other. When the two DNA samples were amplified independently, both produced a clean product. Competitive PCR has been described in forensic science (e.g., Fregeau et al. 2003), but has not been introduced previously in the phylogenetic literature to our knowledge. Speculating that the Lessoniopsis littoralis nad6 was not amplifying because of exclusion by the donor DNA, a new combination of primers (KM1N–KM2N, KM3N–KM4N; Figure 2) from highly conserved regions across our alignment was used in an effort to amplify bona fide nad6 from L. littoralis as two overlapping fragments. The new primer combinations produced a nad6 sequence that was unique in our data set, grouped in the Alariaceae, but was distinct from other genera, and had a placement for L. littoralis consistent with previous nuclear and chloroplast analyses (Lane et al. in press). This provided the necessary nad6 sequence from Lessoniopsis for phylogenetic analysis, and was consistent with our competitive PCR hypothesis. However, a further experiment indicated that competition was not, strictly, the source of our PCR problem.

We were now able to design specific primers for the nad6 from Lessoniopsis littoralis and use these as a positive control in our genus-specific PCR reactions and establish that all of our L. littoralis samples (Table 1) contained a bona fide L. littoralis nad6 gene (data not shown). However, there were a few samples of Lessoniopsis (Figure 7; see below) for which donor DNA was not detectable with our various genus-specific primers, whereas our novel Lessoniopsis specific primer yielded a
positive result. Nonetheless, our initial nad6 amplification strategy still failed to amplify product from these samples. This was clear evidence that our initial nad6 primers were not functioning for Lessoniopsis, despite successfully amplifying this region from every other genus of kelp studied by Lane et al. (in press), and that we were not dealing with straightforward competitive PCR.

To assess the problem with our initial nad6 amplification strategy in Lessoniopsis, new PCR primers were designed to flank the original primers [KN51 and KM10 around KM1, as well as KM9 and KN112 around KM4 (Figure 2)] of Lane et al. (in press) to determine if primer mismatch could explain the lack of PCR amplification in this taxon. While there was only a single mismatch in the L. littoralis sequence at the site of KM4, KM1 contained five mismatches, with three among the seven nucleotides at the 3’ end of the primer. Clearly, these incongruencies contributed to the results we obtained. One final question remained, what was the source of the contamination that led to the aberrant results?

Light microscopy and molecular tools were used to determine if epi/endophytic gametophytes were responsible for contamination in the Lessoniopsis littoralis DNA samples. The blades of Lessoniopsis littoralis, like most kelp, grow from the intercalary meristem between the base of the blade and the stipe. Therefore, the oldest portion of the blade is at the tip. Tips of L. littoralis blades are typically frayed and worn from wave surge, providing an opening in the cortical layer of the thallus that may be exploited by invading gametophytes of other kelp genera to colonize the exposed medulla, possibly explaining the source of contamination in our study. We hypothesized that gametophyte infection should increase towards the tips, relative to the base of the blades. Five new samples of L. littoralis were collected (Execution Rock, Table 1), but DNA from distinct portions of the blade (base, mid-
used in Figure 4. Results from L. littoralis (not shown) were identical to those from L. littoralis 2 and 3. Primers for both Macrocystis and Nereocystis regularly produced multiple bands, but the band between 650 bp and 700 bp (sixth and seventh bands from the bottom of the ladder, respectively) was gel extracted and always produced the expected sequence product. All negative control lanes were blank.

Examination of the tips of uncleaned L. littoralis samples under a dissecting microscope revealed brown epiphytes on the thallus. Interestingly, the majority of epiphytic clumps on the thallus were found on the edges of damaged portions of the blade or surrounding holes punctured through the thallus. These areas may be missed when the thallus is cleaned with cheesecloth because the cloth could pass over holes or small indentations on the edge of the blade without removing the epiphytes entirely, whereas no amount of surface cleaning will remove endophytes, contributing contaminating DNA to extracted samples.

Light microscopy of sections from damaged areas indicated the presence of an array of epiphytes including diatoms, and clumps of small filaments, which erupt to the surface from between cortical cells (Figure 8). Following the filamentous cells of these potential gametophytes into the filamentous medulla of the host was nearly impossible due to the similarity in cell structure. If these filamentous thalli are gametophytes growing epi/endo-phytically on L. littoralis, why are developing sporo-phytes absent on L. littoralis in the field (hours of observation over many trips and locations have failed to reveal this phenomenon), despite apparently high rates of colonization (eight of nine L. littoralis samples tested here were contaminated)?

L. littoralis thriving in the low intertidal zone of exposed areas of coastline and is subject to wave velocities as high as 14–16 m/s and acceleration in excess of 400 m/s² (Denny et al. 1985). Typical sporophytes have adapted to remain attached to the substratum and resist the forces of flow and drag in this habitat. For sporophytes attempting to grow on the surface of L. littoralis in high wave exposure, the smooth surface of the host thallus likely prevents the developing sporophyte from attaching as firmly as it would to rock. This is impor-
Figures 8–11 Light micrographs of Lessoniopsis and Laminaria setchellii.

8) Small filaments of cells on the surface of the tip portion of a sample of Lessoniopsis. The arrow indicates the area between two cortical cells where the filaments appear to exit from the thallus surface. Scale bar—25 μm. (9) Immature sporophytes attached to a mature sporophyte of Laminaria setchellii found in the field. Scale bar—5 mm. (10) The haptera (arrow) fill in indentations but do not penetrate the thallus (crossed arrow). Scale bar—45 μm. (11) Attachment site of an immature kelp sporophyte to Laminaria setchellii. The immature haptera of the attached sporophyte (arrow) spread across the surface (crossed arrow) of the mature thallus. There appears to be a thick filament (arrowhead), which extends from the immature sporophyte into the medulla of the mature thallus. Scale bar—100 μm.

tant because an organism that is bent by flowing water, such as a developing sporophyte, has the greatest stress at its attachment site (Koehl 1984, Figure 4c). It is quite likely that developing sporophytes are quickly dislodged by wave energy or lost as the blade tip of the host is eroded. For this reason immature sporophytes attached to mature L. littoralis may be extremely rare in the field, despite rampant colonization by gametophytes.

Whereas no sporophytes were observed attached to Lessoniopsis littoralis sporophytes, we did find one example of immature sporophytes attached to a mature Laminaria sporophyte in the field (Figure 9). An individual blade of Laminaria setchellii P.C. Silva living in an area with moderate surf exposure was discovered with two attached sporophytes. The haptera of the developing sporophyte spread over the mature thallus without penetrating it (Figure 10). However, sections of the immature sporophyte attachment site revealed a filament extending from the developing stipe into the thallus of the host (Figure 11). Whether this is an indication of an endophytic origin of the female gametophyte that gave rise to this sporophyte is unclear.

It appears that epi/endophytic colonization of mature Lessoniopsis littoralis is a common phenomenon, but this can only be an ecologically significant habitat for kelp gametophytes in two ways. The first is if the widespread belief that the egg remains attached to the female gametophyte after fertilization (Bisalputra et al. 1971, van den Hoek et al. 1995) is untrue in high wave energy. If the egg or zygote is sheared from the gametophyte, and remains viable to settle on hard substratum, an epi/endophytic strategy could result in a genetic contribution to the next generation. Another possibility is if gametophyte filaments grow large enough to fractionate, or disperse with pieces of the host thallus as it erodes. Clonal cultures of gametophytes are commonly made by macerating an individual (Druehl et al. 2005) and using the fractionated filaments to begin new cultures. As the filaments grow on the host thallus, and it is eroded by wave energy, this may act to spread the gametophytes vege-
tatively to habitat more suitable for sporophyte development.

Conclusion

A combination of molecular techniques and microscopy has revealed a cryptic habitat for kelp gametophytes. Our results underscore the necessity of interpreting molecular results with caution. The taxonomy of *Lessoniopsis littoralis* has been unclear since Setchell and Gardner (1925) decided to place it in the Laminariaceae, based on habit, rather than in the Alariacea, with other sporophyll-bearing kelp. The phylogenetic position derived for *Lessoniopsis* based on our original *nad6* sequences would have been very different depending on which sample we used, and incorrect, regardless of the sample included in the data set. Furthermore, what at first appeared to be an intergeneric hybridization/introgenesis event was, upon subsequent investigation, revealed to be an issue of cryptic contamination.

Whether kelp gametophytes invade damaged portions of the sporophytes of other kelp genera, remains unclear. Kelp sporophytes were found growing on *Laminaria setchellii* in the field, but developing sporophytes were never observed in the field attached to *Lessoniopsis littoralis* despite continued observations on our part. However, the potential for sporophyte growth on mature thalli of *L. littoralis* can be inferred from our results: eight out of nine *L. littoralis* sporophytes tested were contaminated by gametophytes. We suggest that wave action and blade erosion are likely reasons for the lack of sporophyte growth on *L. littoralis*.

Acknowledgements

We would like to thank Colin Bates for providing *Lessoniopsis littoralis* samples from Execution Rock, British Columbia, and the staff of the Bamfield Marine Science Centre for their assistance. We also appreciate helpful comments on the manuscript from Louis Druelh, Janice Lawrence and Line Le Gall. This work was funded by the Natural Sciences and Engineering Research Council of Canada and the Canada Research Chair Program, as well as the Canada Foundation for Innovation and New Brunswick Innovation Foundation.

References

Received 22 March, 2005; accepted 6 October, 2005