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Introduction

No Interference
▶ Outcome of one individual assumed to be unaffected by the

treatment assignment of others
▶ Typical assumption of causal inference
▶ Part of SUTVA

Clearly not true in some settings
▶ Infection diseases, education interventions. social sciences
▶ Individuals often embedded in networks even if we ignore this in

our study

Phenomenon of interest vs. nuisance
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Halloran and Struchiner (1991, 1995)

The following slide shows different possible vaccine effects described by
HS

Several vaccine studies have been conducted or analyzed with the intent
to estimate these effects (Moulton et al 2001; Longini et al 2002; Ali et
al 2005; King et al 2006)

Overlap in nomenclature with mediation literature (direct, indirect)
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Interference Definition

That two potential outcomes sufficiently represent all potential
outcomes for an individual assumes no interference between
individuals
i.e., the treatment of one individual does not affect the outcome
of other individuals (Cox 1958)

The no interference assumption may not hold in some settings

Examples: Vaccine studies, educational intervention studies, HIV
prevention studies

Settings: Epidemiology, medical research, econometrics, social
network analysis
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SUTVA (Fine Points 1.1-1.2)

No interference is part of SUTVA (Rubin 1980)

Stable Unit Treatment Value Assumption

1 No interference
2 Only one version of treatment and one version of no treatment

(control)

Or if there are multiple versions of treatment, they are irrelevant (Cole and
Frangakis 2008, VanderWeele 2009, Pearl 2010)

See Fine Point 1.2 regarding multiple versions of treatment

Ashley L. Buchanan Causation in Networks 7 / 54



General Approach

Population of groups of individuals (blocks of units; clusters)

Assume partial interference: Possibly inteference between individuals in
a group but not between groups.

Define direct, disseminated (indirect), composite (total) causal effects

Two-stage randomization

1 Groups to allocation strategies α1, α0
2 Given 1, individuals randomized to treatment/controls A ∈ 0, 1

Unbiased estimators, variance using randomization-based inference or
M-estimation
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Example: Vaccine Trial

Groups: Schools sufficiently separated geographically

Individuals: Students

Assignment mechanism

1 Randomized some schools to 50%, others to 25% vaccine
coverage

2 Randomized students to vaccine or placebo conditional on school
assignment strategy from step 1
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Notation

N groups; ni individuals in groups i = 1, . . . ,N

Ai = (A1i , . . . ,A1ni ) treatments received for ni individuals in group i
Aij = 0 or 1 implies Ai can take on 2ni possible values

Ai,−j is the ni − 1 subvector of Ai with the j th entry deleted
ai and aij denote possible values of Ai and Aij

Let A(n) be the set of vectors of all possible exposure allocations of
length n. e.g., A(2) = {(0, 0), (0, 1), (1, 0), (1, 1)}, ai ∈ Rni

A(n, k) denotes when exactly k individuals receive treatment 1 (i.e.,
completely randomized design)

Let α be the proportion assigned to treatment in a group
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Assignment Mechanism

Si = 1 if the i th group is assigned to α1 and 0 otherwise
S = (S1, . . . ,SN)
C =

∑
i Si

Parameterization for treatment assignment strategy
▶ Complete randomized group assignment strategy if ki number

treated in block i , i.e., π(ai , α) = I (ai ∈ A(ni , ki ))/
(ni
ki

)
▶ Bernoulli Allocation: π(ai , α) =

∏ni
j=1 α

aij (1− α)1−aij
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Potential Outcomes

yij (ai ) is the potential outcome of individual j in group i under ai

Allows for interference between individuals within group i

Can write yij (ai ) as yij (ai,−j , aij = a)

Have 2ni potential outcomes per individual, instead of 2 potential
outcomes per individual in the absence of interference
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Average Potential Outcomes

Individual average potential outcome

ȳij (a, α) =
∑

ai,−j∈A(ni−1)

yij (α, aij = a) Pr(Ai,−j = ai,−j |Aij = a)

Group average potential outcome

ȳi (a, α) =
1

ni

ni∑
i=1

ȳij (a, α)

Population average potential outcome

ȳ(a, α) =
1

N

N∑
j=1

ȳi (a, α)
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Average Potential Outcomes: Example

Suppose that group 1 has the following potential outcomes y1j (x1)

j 000 001 010 100 011 101 110 111
1 1 2 3 4 5 6 7 8
2 9 10 11 12 13 14 15 16
3 17 18 19 20 21 22 23 24

Suppose completely randomized individual treatment assignment with
K1 = 2 for α1 and K1 = 1 for α0

ȳ1(0, α1) =?

ȳ1(0, α0) =?
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Average Potential Outcomes: Example

Suppose that group 1 has the following potential outcomes y1j (x1)

j 000 001 010 100 011 101 110 111
1 1 2 3 4 5 6 7 8
2 9 10 11 12 13 14 15 16
3 17 18 19 20 21 22 23 24

Suppose completely randomized individual treatment assignment with
K1 = 2 for α1 and K1 = 1 for α0

ȳ1(0, α1) =
5 + 14 + 23

3
= 14

ȳ1(0, α0) =
(2 + 3)/2 + (10 + 12)/2 + (19 + 20)/2

3
= 11
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Average Potential Outcomes

Marginal individual average potential outcomes

ȳij (α) =
∑

ai∈A(ni )

yij (α1) Pr(Ai = ai )

Marginal group and population average potential outcomes

ȳi (α) =
1

ni

ni∑
i=1

ȳij (α)

ȳ(α) =
1

N

N∑
i=1

ȳi (α)
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Causal Estimands: Direct Effects

Individual direct causal effect of treatment 0 compared to treatment 1
for the individual j in group i by

CED
ij (α) = yij (aij = 1, α)− yij (aij = 0, α)

Individual average direct causal effect

CE
D
ij (α) = ȳij (1, α)− ȳij (0, α)

Group average direct causal effect

CE
D
i (α) = ȳi (1, α)− ȳi (0, α)

Population average direct causal effect

CE
D
(α) = ȳ(1, α)− ȳ(0, α)

Q: Which of the quantities above can never be identified in the observed data
(A,Y )?
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Causal Estimands: Indirect Effects

Individual indirect causal effect of treatment programs α1 compared
with α1 on individual j in group i by

CE I
ij (α1, α0) = yij (α1, aij = 0)− yij (α0, aij = 0)

Individual average indirect causal effect

CE
I
ij (α1, α0) = ȳij (0, α1)− ȳij (0, α0)

Group average indirect causal effect

CE
I
i (α1, α0) = ȳi (0, α1)− ȳi (0, α1)

Population average indirect causal effect

CE
I
(α1, α0) = ȳ(0, α1)− ȳ(0, α0)
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Causal Estimands: Total and Overall Effects

Population average total causal effect

CE
T
(α1, α0) = ȳ(1, α1)− ȳ(0, α0)

Population average overall causal effect

CE
O
(α1, α0) = ȳ(α1)− ȳ(α0)
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Causal Estimands: Remarks

Total = direct + indirect

Estimands in general depend on treatment allocation strategy

Under no interference

yij (ai ) = yij (a
′
i ) for all ai , a

′
i such that aij = a′ij

▶ Indirect causal effects are zero
▶ Total causal effect equals direct causal effect
▶ Causal effects not dependent on the treatment strategies
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Estimators

Assumption 1: Completely randomized assignment strategy

For a = 0, 1:

Ŷi (a, α) =

∑
i Yij I (Aij = a)∑
i I (Aij = a)

=
1

ni

∑
j

Yij I (Aij = a)

Pr[Aij = a|Si = 1]

Under assumption 1, E [Ŷi (a, α)|Si = 1] = ȳi (a, α).
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Example Revisited

Suppose that group 1 has the following potential outcomes y1j (x1)

j 000 001 010 100 011 101 110 111
1 1 2 3 4 5 6 7 8
2 9 10 11 12 13 14 15 16
3 17 18 19 20 21 22 23 24

Under Assumption 1, with K1 = 2 for α1 and K1 = 1 for α0

E{Ŷi (0, α1)|Si = 1} =?

E{Ŷi (0, α0)|Si = 0} =?
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Example Revisited

Suppose that group 1 has the following potential outcomes y1j (x1)

j 000 001 010 100 011 101 110 111
1 1 2 3 4 5 6 7 8
2 9 10 11 12 13 14 15 16
3 17 18 19 20 21 22 23 24

Under Assumption 1, with K1 = 2 for α1 and K1 = 1 for α0

E{Ŷ1(0, α1)|S1 = 1} =
5 + 14 + 23

3
= 14 = ȳ1(0, α1)

E{Ŷ1(0, α0)|S1 = 0} =
1

3
{
2 + 10

2
+

3 + 19

2
+

12 + 20

2
} = 11 = ȳ1(0, α0)
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Estimators

ĈE
D
(α1) = Ŷ (1, α1)− Ŷ (1, α1)

ĈE
I
(α1, α0) = Ŷ (0, α1)− Ŷ (0, α0)

ĈE
T
(α1, α0) = Ŷ (1, α1)− Ŷ (0, α0)
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Overall Estimators

Ŷi (α) =
∑

j Yij

ni

Ŷ (α) =
∑

i Ŷi (α)I [Si=1]∑
i I [Si=1]

Under assumption 1, E{Ŷ (α)} = ȳ(α)

Unbiased estimator: ĈE
O
(α1, α0) = Ŷ (α1)− Ŷ (α0)

Ashley L. Buchanan Causation in Networks 25 / 54



Variance

Unbiased estimators of the variance of the estimators does not exist
without further assumptions

Stratified Interference (SI): Only matters how many were treated in
group or cluster, and does not matter who was treated

For a given aij = a, individual j in group i has
1 potential outcome assuming no interference
ni potential outcomes assuming stratified interference
2ni−1 potential outcomes under no assumptions

Under SI, simple random sampling and two stage cluster sampling yield
unbiased estimators of variance of Ŷi (0, α) and Ŷ (0, α1)

Variance estimators are unbiased when effect is additive, positively
biased otherwise
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Illustrative Example

Two-stage randomized placebo-controlled vaccine trial based on data from Ali
et al. (2005)

α Vaccine (Xij = 1) Placebo (Xij = 0)
Total∑

j Xij

Cases∑
j XijYij

Total∑
j (1−Xij )

Cases∑
j (1− Xij )Yij

1 α1 12541 16 12541 18
2 α1 11513 26 11513 54
3 α1 10772 17 25134 119
4 α0 8883 22 20727 122
5 α0 5627 15 13130 92

α0 is the allocation strategy for the group that randomized 50% to the treatment.
α1 is the allocation strategy for the group that randomized 30% to the treatment.
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Estimates of population average effects per 1000
individuals per year

Effect Parameter Estimate Estimated Variance

Direct CE
D
(α1) 1.30 0.856

Direct CE
D
(α0) 3.64 0.178

Indirect CE
I
(α1, α0) 2.81 3.079

Total CE
T
(α1, α0) 4.11 0.672

Overall CE
O
(α1, α0) 2.37 1.430

Indirect: 50% vaccine coverage results in 2.8 fewer cholera cases per
1000 unvaccinated individuals per year compared to 30% vaccine
coverage

Overall: 50% vaccine coverage results in 2.4 fewer cholera cases per
1000 individuals per year compared to 30% vaccine coverage
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Observational Studies

Methods in the presence of interference often rely on randomization and
the assumption of partial interference, but provides a solution to the
problem of interference in randomized and nonrandomized designs with
nonoverlapping clusters (e.g. Sobel, 2006; Hong and Raudenbush, 2006;
Rosenbaum, 2007; Hudgens and Halloran, 2008; Tchetgen Tchetgen
and VanderWeele, 2012; Liu and Hudgens, 2014; Buchanan et al, 2018).

Suppose a two-stage randomization not employed, but instead we have
an observational study

Tchetgen Tchetgen and VanderWeele (2012) suggest IPW estimator
where all observations from group i are weighted by the inverse of
probability of the treatment assignment vector Ai given Xi

Essentially, standardizing to a counterfactual study with a Bernoulli
allocation mechanism

Alternative approaches to standardize to a study with correlation
between the treatment assignment mechanisms (Barkley, et al 2020;
Papadogeorgou et al. 2019)
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Parameters

π(ak,−i ;α) = Pr(Ak,−i = ak,−i ) =
∏nk

j=1,j ̸=i α
akj (1− α)1−akj

π(ak ;α) = Pr(Ak = ak ) =
∏nk

j=1 α
akj (1− α)1−akj .

ȳki (a, α) =
∑

ak,−i
yki (ai = a, ak,−i )π(ak,−i ;α).

Averaging over all individuals in each cluster, then over all clusters, we
define the population average potential outcome as
ȳ(a, α) =

∑K
k=1{

∑nk
i=1 ȳki (a, α)/nk}/K .

Define the marginal average potential outcome for individual i under
allocation strategy α by ȳki (α) =

∑
ak

yki (ak )π(ak ;α).

Averaging over individuals within each cluster, then over all clusters,
define the population average potential outcome as
ȳ(α) =

∑K
k=1{

∑nk
i=1 ȳki (a)/nk}/K .

Effects can be defined such as the spillover or indirect
IE(α, α′) = ȳ(0, α)− ȳ(0, α′)
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Assumptions

Representativeness of the unexposed for the treatment response had
they been exposed and vice versa conditional on baseline covariates (i.e.,
conditional exchangeability at the cluster level)
Pr(Ai = ai |Li ,Yi (·)) = Pr(Ai = ai |Li )
Homogeneity of treatment effects despite any variations that may occur
in practice, and no multiple versions of treatment

No measurement error in any variable needed for valid analysis

No interference between clusters.

Cluster-level positivity assumption for the propensity score.
Pr(Ai = ai |Li ) > 0
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Estimators

Cluster-level propensity score can be calculated by adjusting with individual
level covariates among those in the cluster.

fAi |Xi
(Ai |Xi ; θx , θs) =

∫ ni∏
j=1

hij (bi ; θx )
Aij {1− hij (bi ; θx )}1−Aij fb(bi ; θs)dbi

where hij (bi ; θx ) = Pr(aij = 1|Xij , bi , θx ) = logit−1(Xijθx + bi ) is a propensity
score for individual j in cluster i and fb(·; θs) is the density of cluster specific
random effect bi ∼ N(0, θs).
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IPW estimation: IPW estimator

IPW estimator for group-level potential outcome:

Ŷi
ipw

(a, α) =

∑ni
j=1 πi (Ai,−j ;α)I (Aij = α)Yij

ni fAi |Xi
(Ai |Xi ; θ̂)

Marginal potential outcome:

Ŷi
ipw

(α) =

∑ni
j=1 πi (Ai ;α)I (Ai = α)Yij

ni fAi |Xi
(Ai |Xi ; θ̂)
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Population-level IPW estimators

D̂E(α) = Ŷ ipw (a = 0;α)− Ŷ ipw (a = 1;α)

ÎE(α, α′) = Ŷ ipw (a = 0;α)− Ŷ ipw (a = 0;α′)

T̂E(α, α′) = Ŷ ipw (a = 0;α)− Ŷ ipw (a = 1;α′)

ÔE(α, α′) = Ŷ ipw (α)− Ŷ ipw (α′)

coverage: α < α′
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Illustrative Example (Perez-Heydrich et al, 2014)

Individually randomized placebo-controlled vaccine trial based on data from
Clemens et al. (1988) with (A) direct; (B) indirect; (C) total; and (D) overall.

Ashley L. Buchanan Causation in Networks 35 / 54



Introduction to Networks

Each node (person) has an outcome, treatment and covariates
(attributes)

Nodes are connected through edges, which represent social, work,
school, sexual, healthcare, drug use/injection drug use, etc. partnerships

Estimands: peer effects, treatment effects, spillover/interference effects,
effects of network interventions

Challenges:

1 How to define and identify causal effects in a network-based study
2 How to quantify uncertainty with complex network dependence
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Approaches in the Literature

Christakis and Fowler (2007, 2008, 2009, 2010, 2011, 2012) estimated
peer effects in social network data

▶ Model: Y t
ego ∼ Y t−1

alter ,Y
t−2
alter ,Y

t−2
ego ,Cego

▶ Results included significant peer effects for obesity, smoking,
alcohol consumption, etc.

▶ Peer effects evaluated in other settings (Ali and Dwyer, 2009,
Cacioppo et al, 2009; 2008; Lazer et al., 2010; Rosenquist et al,
2010, Wasserman, 2012)
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Randomization-based Inference

Randomization-based inference for networks (e.g., Toulis and Kao,
2013; Bowers et al., 2013; Aronow and Samii, 2013; Eckles et al., 2014,
Choi 2016).

▶ Assumes on finite population of N individuals and for each
individual there is a set of individuals that may interfere with that
individual (i.e., interference sets, neighborhoods, friends)

▶ Interference sets can be represented by an adjacency matrix and
often assumed to be known and fixed
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Non-randomized Interventions

In many studies, the intervention or treatment is not randomized

There may be confounding at either the individual, network-level or both

Also face issues of network dependence and homophily

Complex dependencies between observations

Current methods employ
▶ A generalized propensity score (Forastiere, 2020) or a Bayesian

generalized propensity score (Forastiere, 2018) that account for
individual and neighborhood covariates

▶ Targeted maximum likelihood estimation (TMLE) (Sofrygin,
2015)
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Statistical Dependence in Networks

Latent variables (i.e., homophily) lead to similar outcomes among close
contacts

Networks often observed at a single time point, so difficult to
disentangle homophily from an effect

Why is this a problem?
▶ We cannot assume independence (i.e., cannot assume

independent and identically distributed (iid))
▶ Central limit theorem may not hold
▶ Standard error estimates and confidence intervals will be

anti-conservative!

Network dependence (e.g., autocorrelation) is another threat to validity
(particularly for single site studies) that can create bias (different from
confounding and homophily!)
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Possible Solutions for Dependence in Networks

Create conditionally independent units; analyze with standard models,
but conditional on information barriers (Ogburn and Vanderweele, 2017)

Extension of influence function from iid setting with interference set
(van der Laan, 2014) and social network setting with contagion and
homophily (Ogburn, et al., 2017)

Nearest neighbor approach: Potential outcomes of any individual only
depends their own exposure and on exposures of their nearest neighbors
(or two-step neighbors) (Lee, et al, 2021; Forastiere, et al., 2020)

Subsampling: Implementation and conditions may not be applicable to
networks (e.g., bootstrap)

K-dependence: Cov(Wi ,Wj ) = σk , where k = ||i , j || and estimate using
a plug-in estimator
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Proposed Methodology

Nearest neighborhood IPW estimator
We propose an inverse probability weighted (IPW) estimator where the
interference set is defined as the set of the individual’s nearest neighbors
within the network.

IPCW estimator
The nearest neighborhood IPW estimator was extended into a setting with
missing outcomes using inverse probability censoring weights (IPCW), where
we consider two different assumptions for the censoring mechanism:

(1) censoring indicators are independent across participants

(2) censoring indicators are correlated between participants within a
connected subnetwork or component in the social network.
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Motivating Study: Transmission Reduction Intervention
Project (TRIP)

Sociometric network-based study of injection drug users in Athens,
Greece from 2013 to 2016.

Intervention: community alerts.
Outcome: the HIV risk behavior at 6-month follow up.

Baseline interview

277 participants

29 alerted

six-month time
period

follow up interview

57 missing

4 were alerted
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Figure 1: TRIP network with isolates removed. There are 277
participants and 542 links in the network.
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Notations

Let i = 1, 2, · · · , n denote each participant in the study.

Ai : the self-selected binary treatment/exposure of participant i

Zi : the vector of covariates for participant i

Ni : the set of participants that share a link with i

di : |Ni |, the degree of node i

ANi
: the vector of baseline exposures for participants in Ni

ZNi
: the vector of baseline covariates for participants in Ni

Ci : the binary censoring indicator for participant i . i.e. due to loss to
follow-up or administrative end of the study.
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Potential Outcomes

We assume Bernoulli counterfactual treatment allocation strategy with
coverage α (∼ participants in Ni are exposed with prob. α).

Let π(aNi
;α) = α

∑
aNi (1− α)|Ni |−

∑
aNi denote the probability of the

nearest neighborhood for an individual i receiving treatment ANi
under

allocation strategy α.

Define ȳi (a, α) =
∑

aNi
yi (ai = a, aNi

)π(aNi
;α) to be the average

potential outcome for individual i under allocation strategy α.
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Estimands (1)

Under allocation strategy α, the probability of neighborhood of i is denoted by

π(aNi
;α) = α

∑
aNi (1− α)di−

∑
aNi and the probability of individual of i is

π(ai ;α) = αai (1− α)1−ai .

The population average potential outcome is defined by

ȳ(a, α) =
1

n

n∑
i=1

∑
aNi

yi (ai = a, aNi
)π(aNi

;α)

and the marginal population average potential outcome is

ȳ(α) =
1

n

n∑
i=1

∑
ai ,aNi

yi (ai , aNi
)π(ai , aNi

;α)
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Estimands

Under allocation strategy α, the direct effect is

DE(α) = ȳ(1, α)− ȳ(0, α).

The disseminated or indirect effect under allocation strategy α = (α0, α1) is

IE(α) = ȳ(0, α1)− ȳ(0, α0).

The composite or total effect is

TE(α) = ȳ(1, α1)− ȳ(0, α0).

The overall effect is
OE(α) = ȳ(α1)− ȳ(α0).
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Assumptions (1)

The potential outcomes only depends on exposure of the individual and
their nearest neighbors yi |ai , aNi

.

Conditional exchangeability for participants:

Pr(Ai = ai |Zi = zi ) = Pr(Ai = ai |zi , zNi
, y1(·), . . . , yn(·))

Conditional exchangeability for neighbors:

Pr(Ai = ai ,ANi
= aNi

|zi , zNi
) = Pr(Ai = ai ,ANi

= aNi
|zi , zNi

, y1(·), . . . , yn(·))
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Assumptions (2)

We assume the treatment positivity

Pr(ai , aNi
|zi , zNi

) > 0 for all ai , aNi
, zi , and zNi

.

Ci ⊥⊥ Ai |Li . i.e. Ci only depends on the baseline covariates.

Stratified interference assumption with nearest neighbors

Smaller groupings or neighborhoods for each individual can be identified
in the observed network.
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Nearest Neighborhood IPW Estimator

Ŷ IPW (a, α) =
1

n

n∑
i=1

yi (Ai ,ANi
)I (Ai = a)π(ANi

;α)

f (Ai ,ANi
|Zi ,ZNi

)
.

The marginal IPW estimator is defined as

Ŷ IPW (α) =
1

n

n∑
i=1

yi (Ai ,ANi
)π(Ai ,ANi

;α)

f (Ai ,ANi
|Zi ,ZNi

)
.

The propensity score is defined as

f (Ai ,ANi
|Zi ,ZNi

) =

∫ ∏
j∈N∗

i

p
Aj

j (1− pj )
1−Aj f (bi , 0, θs)dbi

where N ∗
i = Ni ∪ {i} and pj = logit−1(Zi · θz + bi ).
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Simulation Results

Figure 2: The average absolute value of bias (left) and empirical
coverage probability (right) on networks with 10, 50, 100, and 200
components using logistic censoring model (top) and mixed effect
censoring model (bottom)
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Community Alerts and HIV Risk Behavior in TRIP at 6
months

Figure 3: The risk difference estimates and the Wald 95%
confidence intervals of direct, indirect, total, and overall effects
under allocation strategies 25%, 50%, and 75%.
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Discussion Questions

Which settings would you expect there to be
interference? Which settings would you find the
assumption of no interference plausible?

Do you have any suggestions on how to disentangle
homophily from a causal effect in a network?

Can you think of any other ways to create
(conditional) independence in a network?
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