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Microplastic pollution in freshwater poses ecological and health risks, but key 
processes like fragmentation remain poorly understood. This study investigates 
how weathering processes such as particle-particle collisions and ultraviolet (UV) 
aging contribute to the formation of secondary micro- and nanoplastics. Glitter 
was used as a model microplastic due to it’s uniformity and real world relevance 
as a primary microplastic.

The main goals of this study are to: 
1) characterize the physical and chemical properties of different size classes and 
colors of commercial microplastic glitters; and 
2) test the weathering effects on microplastic glitters by simulating their degrad-
ability in wastewater treatment plants and the environment

Introduction

Developed a reproducible methodology for filtering 
and imaging microplastics across size classes.

Secondary microplastics (1–2000 μm) formed via 
mechanical aging collisions showed an exponential 
decay in size distribution.

Photomicroscopy identified key damage types from 
glitter-on-glitter collisions.

SEM and optical microscopy confirmed biofilm 
growth on glitter; higher glitter concentrations 
and sizes likely increased bacterial presence due to 
greater surface area. 
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Vaccum filtration process with varying pore sizes

Used scanning electron 
microscopy to detect 

secondary nanoplastics and 
bacteria

Isolated primary micro-
plastics for further analysis 

by optical microscopy, 
Raman spectroscopy and 

Microhardness testing

Imaged 20x20 center of filter 
using at 100x objective. Used 
ImageJ for quantitative image 

analysis.

Raman Spectroscopy
reflects chemical bonds to identify 
material composition an chemical 
changes. Raman spectra were taken 
from pristine glitters and after UV 
weathering. 

Microhardness Testing
Evaluates material properties by 
indentation such as hardness (HT115) 
and elastic modulus (Eit). Testing was 
done on pristine glitters and after 
UV and mechanical weathering.

Experimental setup of jar tester with paddles to simu-
late particle-particle collisions and water shear forces:

Model Glitters 
Used

Raman Spectroscopy

Microhardness TestingQuantitative analysis of microplastics distributed on 1.2um Millipore filter

Degraded primary glitter photomicroscopy SEM Photomicroscopy 
SEM revealed bacterial growth in the wastewater simulation 
and nanoplastics generated from particle collisions.

Bacteria were uniformly rod-shaped (~1 μm × ~2 μm). 

Nanoplastics were not uniformly shaped, but generally had
sharp edges and triangular shapes (~0.1 μm × ~2 μm).

A biofilm-like layer, likely dead cells and extracellular matrix, 
covered much of the filter, hindering nanoplastic detection. 

More cell material was observed in filters from higher-con-
centration samples and larger glitter sizes.
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Orange: Significant* changes in both Eit and HIT115 after UV 
and mechanical weathering.

Green: Significant* change in HIT115 only; Eit unchanged.

Blue: Significant* change in Eit only; HIT115 unchanged.
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*significant = p-value <0.0001

Differening concentrations show 
significant* differences in 
Eit (positive correlation) and 
HT115 (negative correlation)

UV-aged glitter produced ~2× more secondary 
microplastics compared to pristine samples.

UV and mechanical weathering altered glitter 
properties, affecting hardness and elastic modulus, 
with color-dependent responses.

In blue glitter, increasing concentration raised 
elastic modulus but reduced hardness.

Raman spectroscopy revealed material differenc-
es between glitter colors — explaining variation 
in responses to aging and fragmentation — and 
chemical differences in the glitters after UV aging.

The histograms show a trend of exponential decay in the size distribution of the microplastics, with most particles in the 
0–100 μm range and few above 400 μm. Particle concentration of the blue glitter had no significant effect on size distri-
bution, while glitter size did: the largest glitter (orange, 1500 μm) produced ~10 times more small particles (0–100 μm) 
than the smallest glitter (blue, 150 μm).

Green

850um 
Diameter

21um 
Thickness

Blue

150um 
Diameter

26um 
Thickness

Polyester Film *3000 (78.34%) Polyester Film (52.86%)

Polyester Film *3000 (67.42%)
Irgalith Blue (73.46%)

Copper phthalocyanine (72.14%)

Polyester Film *3000 (79.44%) Copper phthalocyanine (72.14%)

Pristine UV

Pristine UV

Pristine UV

10 um

30 um

30 um

10 um 500 um

500 um

500 um

30 um

10 um

20 um 10 um

5 um

10 um


