Competitor avoidance drives within-host feeding site selection in a passively dispersed herbivore

SARA GÓMEZ,1,2 LIAHNA GONDA-KING,1 COLIN M. ORIANS2 and EVAN L. PREISSER1 1Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, U.S.A. and 2Department of Biology, Tufts University, Medford, Massachusetts, U.S.A.

Abstract. 1. Evolutionary theory predicts that ovipositing females that can actively disperse should select hosts that increase offspring performance. However, for organisms that are exclusively passively dispersed, feeding site selection is possible only at the within-host level. This is particularly important for their offspring, which have strong temporal and spatial dispersal constraints within a host. Such constraints are probably magnified by tissue quality heterogeneity caused by competing herbivores.

2. We investigated within-host feeding site selection of passively dispersed neonates of a sessile herbivore, the hemlock woolly adelgid (Adelges tsugae Annand), when it shares its eastern hemlock (Tsuga canadensis Carrière) host with another sessile herbivore, the elongate hemlock scale (Fiorinia externa Ferris). Within-host feeding site selection was studied (a) at the shoot level (with or without F. externa) using choice tests, and (b) at the needle level by scoring insect presence in field surveys.

3. Adelges tsugae avoided F. externa-colonised foliage in both the choice tests and field surveys. As A. tsugae has no efficient predators or parasitoids in the study area, we conclude that our results are due to the presence of the competing herbivore.

4. Although A. tsugae cannot actively disperse among hosts, we showed that within-host feeding site selection is an important mechanism to minimise the co-occurrence with a competing herbivore that has known negative impacts on A. tsugae population densities. Studying within-host feeding site selection in a multiple-species context could assist in understanding and predicting the impact of destructive pests such as A. tsugae and the interactions with their novel hosts.

Key words. Choice tests, female choice, performance, preference, sessile herbivores, within-host selection.

Introduction

Evolutionary theory predicts that ovipositing females capable of discriminating between hosts should lay eggs on those hosts that increase the performance of their offspring (Thompson, 1988; Gripenberg et al., 2010). Most studies on herbivore behaviour to date have focused on quality differences at the whole-plant level, comparing adult and/or offspring preferences among different genotypes or phenotypes within a plant species and the relationship between preference and offspring performance (Horner & Abrahamson, 1992; van Leur et al., 2008; Kleine & Müller, 2011; Nyman et al., 2011; Soler et al., 2012). Although selecting a high-quality host is an important first step in maximising the performance of future offspring, assessing multiple hosts is impossible for some organisms such as passively dispersed herbivores. As a result, the selection of suitable feeding locations for such organisms is possible only at the within-host level. Because of ubiquitous within-plant heterogeneity in food quality (Shelton, 2004) and its potential impact on plant–herbivore interactions (Awmack & Leather, 2002), the ability to select feeding sites within a given host may prove crucial to offspring performance. Evidence shows that herbivores display different preferences between tissues within a host, and this can be affected by prior herbivory or other factors extrinsic to the host plant (McAuslane & Alborn, 2000; Anderson & Agrell, 2005;...
In its invaded range, *A. tsugae* frequently co-occurs on eastern hemlock with a second non-native hemipteran pest, the elongate hemlock scale (*Fiorinia externa* Ferris). *Adelges tsugae* and *F. externa* overlap throughout much of their invaded range, and are found in the same hemlock stands and on the same individual trees (Preisser *et al.*, 2008). *Fiorinia externa* also feeds preferentially on eastern hemlock and, like *A. tsugae*, continues to expand its invaded range (Preisser *et al.*, 2008, 2011). At low to moderate densities, *F. externa* has minimal impacts on its host (Miller-Pierce *et al.*, 2010; Radville *et al.*, 2011; Gonda-King *et al.*, 2012); at high densities, however, it may be able to kill already-stressed trees (McClure, 1980). There is strong evidence of interspecific competition between *A. tsugae* and *F. externa* (Preisser & Elkinton, 2008). Because *A. tsugae* crawlers are produced in midsummer, 1–2 months after *F. externa* crawlers have settled and begun to feed, *F. externa*-induced changes in host quality could alter *A. tsugae* performance. This hypothesis is consistent with the results of a previous study showing a 40% decrease in *A. tsugae* population density in trees previously infested with *F. externa* for 2 years (Miller-Pierce & Preisser, 2012). If this difference in *A. tsugae* performance can alter its settling behaviour, a selective advantage will accrue to crawlers capable of detecting and avoiding *F. externa*-infested foliage within a host. Under heavy *F. externa* densities, this selective advantage might be absent due to a generalised suboptimal quality of the host.

Here we examine tissue selection and distribution of *A. tsugae* crawlers in the presence and absence of *F. externa*. Because crawlers are small, few studies have explored patterns of distribution within or between hosts (but see Evans & Gregoire, 2007; Turner *et al.*, 2011), and to our knowledge no previous studies have addressed active within-host feeding site selection. Because adult *A. tsugae* have no effective predators in the invaded range (Wallace & Hain, 2000; Havill *et al.*, 2011), within-tree crawler movement is probably driven by the need to find a permanent feeding site, and by the site-specific likelihood of competition with other herbivores. Specifically, we hypothesised that *A. tsugae* prefers uninfested eastern hemlock foliage over *F. externa*-infested foliage. We tested our hypothesis by conducting laboratory choice tests and field surveys.

Materials and methods

Herbivores

Adelges tsugae has two generations a year in its invaded range (McClure, 1987). Briefly, the April-to-June progrediens generation emerges in early spring and settles on previously produced hemlock foliage, where it produces ~75 eggs per female. In contrast, crawlers from the July-to-April sistens generation settle on newly produced foliage in midsummer. They aestivate until late autumn, then feed throughout the youngest hemlock foliage (McClure, 1989). Because sessile *A. tsugae* adults must oviposit in situ, within-host selection of feeding sites by the newly hatched crawlers may be crucial for their survival and future fitness.
winter, producing ∼300 eggs per female that will become the next progresiens generation. *Fiorinia externa* has only one generation in the northern part of the invaded range; *F. extera* crawlers emerge in late spring and are the first herbivores to settle on newly produced hemlock foliage (Abell, 2010). The mobile *F. extera* crawlers also settle on young foliage and reduce host nitrogen levels (McClure, 1980; Gómez et al., 2012). While *A. tsugae* feeds at the base of hemlock needles by inserting its stylet bundle into ray parenchyma cells at the base of the needle cushion (Young et al., 1995), *F. extera* crawlers settle on the underside of the needles, where they suck fluids from the mesophyll cells (McClure, 1980). Both herbivores’ crawlers remain sessile once they settle.

Laboratory choice tests

We conducted choice tests to study whether *A. tsugae* crawlers showed preference for uninfested versus *F. extera*-infested foliage within the same tree. In April 2012, 47 eastern hemlocks naturally infested with *F. extera* were haphazardly selected in the Middlesex Fells Reservation (Winchester, MA). In each tree, two ∼5 cm shoots produced during the previous growing season were selected, one collected from an uninfested branch and the other having at least five adult *F. extera* settled on the needles (= 47 replicates). All of the selected foliage was carefully inspected for the presence of *A. tsugae* or any other non-*F. extera* herbivores; there was no evidence of *A. tsugae* or other herbivores on any of the shoots.

In addition, to investigate *A. tsugae* preference in naturally infested trees, we conducted a second set of laboratory choice tests using foliage sources from nursery-purchased trees to control for unknown factors governing *F. extera* infestation in the field. These choice tests were conducted following the same procedure as above, but using uninfested and infested foliage (minimum two scales present) from eastern hemlock saplings manually inoculated yearly with *F. extera* in June 2011 and 2012. The saplings were planted in the understorey of a mixed conifer-deciduous forest in Kingston, RI. By enforcing the infestation of *F. extera* on a given set of experimental trees rather than using naturally infested trees, we can rule out the possibility that the *F. extera* foliage used in the choice tests was successfully infested by *F. extera* due to unknown traits of the host rather than by chance, and the possibility that *A. tsugae* behavioral patterns in feeding site selection were due to innate differences in preference/survival across hosts (or tissues within hosts) by these two insects. In a subset of those tests (n = 30), *F. extera* remained intact on the infested foliage, while in a second subset (n = 32), *F. extera* was manually removed from the foliage to determine whether *A. tsugae* preference is driven by the physical presence of the scale or by *F. extera*-induced changes in the foliage quality.

In all choice tests, the base of each shoot was placed inside an Eppendorf tube with a pierced lid filled with deionized water to avoid desiccation. Both tubes were taped to the bottom lid of a 9 cm diameter Petri dish. Eastern hemlock foliage with *A. tsugae* egg masses was collected from naturally infested trees and a small stem fragment with three *A. tsugae* egg masses was placed inside each Petri dish touching both shoots (Fig. 1b). The Petri dishes were closed and sealed with parafilm, and placed on their sides so that the shoots were in an upright position at 21 °C and natural light conditions. We inspected each Petri dish daily for the presence of *A. tsugae* crawlers. Once *A. tsugae* crawlers were detected, the inoculants were removed and the crawlers allowed to choose between the two foliage types. Seven days after *A. tsugae* crawlers were first detected, the number of *A. tsugae* crawlers on each shoot was counted and the percentage of crawlers on each choice was calculated. A sign test was used to assess whether *A. tsugae* crawlers prefer uninfested foliage by comparing the number of replicates with a higher percentage of crawlers on uninfested versus *F. extera*-infested foliage. The second set of choice tests (experimental trees) was analysed by using a repeated-measures ANOVA on the amount of crawlers present on either choice at the end of the test, using infestation by *F. extera* (uninfested versus infested foliage) as the within-subjects factor, and the removal of *F. extera* from the infested foliage (yes/no) as the between-subjects factor.

Field surveys

We conducted three surveys of *A. tsugae* preference in the field. Three hemlock stands were selected based on their moderate densities of naturally occurring *A. tsugae* and *F. extera* (11–100 insects/m branch) as shown by 2011 field surveys (Preisser et al., 2011). The stands were located in Massachusetts (Belchertown and Hampden; sampled on 21 June 2012) and Connecticut (Suffield; sampled on 2 July 2012). In each site we selected 25 trees infested with both insects. In each tree, we selected two ∼5 cm new-growth shoots (produced during the 2012 growing season) that were infested with at least three *A. tsugae* and three *F. extera* individuals. We counted the number of needles on each shoot with neither insect; *A. tsugae* only; *F. extera* only; or both insects. The results from the two shoots per tree were averaged and the expected distribution of needles in each category was analysed using a 2 × 2 contingency table. Because there were no statistical differences among sites (likelihood ratio test; site effect: $\chi^2 = 0.9261$, $P = 0.629$), data from the three sites were pooled in the analysis.

Results

Laboratory choice tests

A. tsugae crawlers chose uninfested foliage over *F. extera*-infested foliage from the same tree in both naturally and artificially infested with *F. extera* trees. In choice tests using naturally infested trees, 32 of 47 (68%) choice tests, the majority of *A. tsugae* crawlers were present on the uninfested foliage (one-tailed sign test, $P = 0.015$; Fig. 1a). Although there was considerable variation in the percentage of *A. tsugae* crawlers choosing uninfested foliage, 23 of 47 choice tests had between 51% and 75% of crawlers on the uninfested foliage (Fig. 1c). Interestingly, the percentage of *A. tsugae*
Within-host selection by a sessile herbivore

(c) (d)

Fig. 1. (a) Percentage of choice tests with the majority of Adelges tsugae crawlers on uninfested foliage (white) or Fiorinia externa-infested foliage (grey); (b) typical choice test experimental setup; (c) frequency distribution of choice tests with different ranges of A. tsugae crawler percentages on uninfested foliage; (d) correlation between A. tsugae crawlers on F. externa-infested foliage and number of F. externa present on the infested foliage.

crawlers on F. externa-infested foliage was not correlated with the amount of F. externa present on the foliage (Pearson correlation = −0.087, P = 0.561; Fig. 1d). In choice tests using foliage from experimentally inoculated trees, A. tsugae crawlers also exhibited an overall preference for uninfested foliage (insect infestation P < 0.0001), regardless of whether F. externa was left intact on the foliage or manually removed (insect infestation × insect removal P = 0.194; Fig. 2).

Field surveys

Our field surveys found that A. tsugae and F. externa co-occurred less often than expected (χ² = 19.04, P < 0.0001; Table 1). Had A. tsugae been randomly distributed with respect to F. externa, 3.1% of needles should have contained both insects. Our results show that A. tsugae and F. externa co-occurred on only 1.8% of needles, meaning that the observed value was 42% lower than expected. Conversely, A. tsugae and F. externa occurred alone more often than expected if both species were randomly distributed with respect to the other.

Discussion

We found both experimental and survey evidence for active within-host feeding site selection in A. tsugae. Specifically, we found that A. tsugae crawlers preferred foliage that lacks the competing herbivore F. externa in both laboratory choice tests and field surveys of naturally infested trees. The lower preference for F. externa-infested foliage was driven by plant-mediated changes on the foliage caused by F. externa attack rather than the physical presence of this insect. This
demonstrates that relying on passive between-host dispersal does not preclude *A. tsugae* (and, presumably, many other small-bodied insects) from actively choosing a suitable feeding site within a given host.

Insect performance inevitably will differ across hosts of the same species because of varying genotypic and ontogenetic host quality, which is in turn influenced by abiotic factors such as nutrient availability and by biotic factors such competing herbivores (Cronin & Abrahamson, 1999). While differences in host quality are important for all herbivores, they are perhaps most critical for sessile species that must quickly assess host quality before settling irrevocably in a single location (Ward, 1987). In such organisms, the success of newly hatched juveniles thus depends upon the quality of their natal host or being dispersed to a new suitable host.

Our results showed that *F. externa* crawlers could discriminate between *F. externa*-infested foliage at the shoot level (choice tests) and at the needle level (field survey). In the laboratory, 68% of the choice tests had more *A. tsugae* crawlers on uninfested foliage than on *F. externa*-infested foliage from trees naturally infested by *F. externa*. This preference was particularly evident in choice tests conducted on experimentally infested trees, with a known prior history of no infestation, where on average approximately twice as many *A. tsugae* crawlers showed preference for uninfested foliage. In the field, the co-occurrence of *A. tsugae* and *F. externa* on the same needle occurred 42% less often than expected if both insects were randomly distributed with respect to each other. Because *F. externa* crawlers settled on the surveyed newly produced foliage earlier in the summer than *A. tsugae* crawlers, the most likely explanation for our results is that the presence of settled *F. externa* drives *A. tsugae* preference and settlement through plant-mediated changes in foliage quality. The possibility of apparent competition can also be ruled out as *A. tsugae* has no efficient predators in the invaded range or parasitoids worldwide (Wallace & Hain, 2000; Havill et al., 2011).

Our results showed that *A. tsugae* has a lower preference for *F. externa*-infested shoots, regardless of the number of *F. externa* present on the infested shoot. This suggests that the foraging cue *A. tsugae* uses to avoid *F. externa* is not density-dependent. Instead, a presence/absence cue might be used as a longer-range detection mechanism to identify (and subsequently avoid) a broader tree area infested with *F. externa*. This is advantageous because, in tree hosts where *F. externa*

density is not high, their distribution is initially very patchy within the tree (Preisser, unpublished data). Although we found that *A. tsugae* has a lower preference for *F. externa*-infested foliage, we still observed co-occurrence in the field and especially in the laboratory choice tests. One possible explanation is that *A. tsugae* has not yet adapted to avoid *F. externa*-infested foliage to a larger extent. While *A. tsugae* invaded New England in the late 1980s (McClure & Cheah, 1999), the rapid spread of *F. externa* through this area began in the early 2000s (Preisser et al., 2008); as a result, the co-occurrence of high-density populations of both species is a relatively new event. It is also possible that, while *A. tsugae* prefers to settle on *F. externa*-free foliage, it will settle in a suboptimal location rather than incur the risk of increased mortality associated with continued searching for a feeding location.

The fact that *A. tsugae* is obligately asexual in its invaded range (McClure, 1987) might constrain selection for *F. externa* avoidance; since all offspring are clones of their parent, the only source of genetic variation is randomly occurring mutations in a given individual. The lack of sexual reproduction, and the recombination that results, might limit the adelgid’s ability to adapt to avoid a competing herbivore. Despite this limitation, there is some evidence that adelgids in the invaded range have differentiated in response to strong selection; specifically, northern adelgid clones are more tolerant to cold winter temperatures than their southern counterparts (Butin et al., 2005). The extremely high rates of adelgid fecundity (a single female can produce >300 eggs in one generation) might produce so many individuals that even ‘rare’ random mutations could often occur. If avoiding *F. externa* foliage increases *A. tsugae* fitness, as suggested by higher *A. tsugae* population growth rate on uninfested versus *F. externa*-infested trees (Miller-Pierce & Preisser, 2012), mutations that promote *F. externa* avoidance (or quality discrimination in general) could provide a substantial fitness advantage to the clonal line.

Despite being the more recent invader in New England, *F. externa* has now exceeded the northern range of *A. tsugae* and is present in areas that currently lack the adelgid. If *F. externa* can reduce *A. tsugae* densities (Miller-Pierce & Preisser, 2012), and therefore tree mortality (Preisser et al., 2008), hemlock stands previously colonised by *F. externa* might derive some benefit from the presence of this second invasive herbivore. Alternately, the ability of *A. tsugae* to discriminate efficiently against *F. externa*-infested foliage within a host might minimise the potential benefits of *F. externa* infestation. Future research should investigate what herbivore-induced plant-mediated traits influence within-host feeding site selection and whether they are similar in response to hetero- and conspecific herbivores.

Acknowledgements

The authors thank L. Glidden for practical assistance during preliminary experiments, C. Thornber for statistical advice, landowners for granting permission to survey the trees used in the field study, and two anonymous reviewers for useful comments on the manuscript. This project was funded by NSF DEB-0715504 and NIFA 2011-67013-30142 to ELP.

© 2013 The Royal Entomological Society, Ecological Entomology, 39, 10–16

Table 1. Observed counts of *Adelges tsugae* and *Fiorinia externa* on individual needles of eastern hemlock naturally occurring in the field. Numbers in brackets represent the expected values.

<table>
<thead>
<tr>
<th></th>
<th>A. tsugae Absent</th>
<th>F. externa Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. tsugae Present</td>
<td>1556 (1586)</td>
<td>339 (308)</td>
</tr>
<tr>
<td>F. externa Present</td>
<td>408 (377)</td>
<td>43 (73)</td>
</tr>
</tbody>
</table>
References

Accepted 19 July 2013
First published online 17 September 2013