Hard Clam Response to a Warming Environment: a Mesocosm Experiment.

Michael S. Potter II

MS Student / Marine Research Specialist II Biological Oceanography, Marine Ecosystems Research Laboratory

Objectives

Investigate the impact of the winter-spring phytoplankton bloom on the hard clam

Investigate the impact of sediment on the hard clam

Hypothesis & Rationale

Weakening/loss of the winter-spring bloom will result in diminished recruitment, condition, growth of the hard clam

Winter spring bloom

food store benthic community

- Bay to warm $3-6^{\circ}$ C by 2100
- Food & temperature primary factors

2021 Daily Averages Conimicut Point (Upperbay Buoy #13)

Winter Spring Bloom and Temperature

Sediment Selection

- Two sites,
- "H" Polluted vs pristine sediment
- Are legacy contaminants a factor?
- 2021 PRE (Conimicut pt.)
- 2022 MB (Jamestown)

Mesocosm Model

Temperature

Primary production Chl-a

Now to the Clams

- Recruitment / reproductive potential
- Condition / heath
- Growth

Looking at the Stages of Gonad as a Metric of Fecundity

Engorged

Partially Engorged

Reduced

Condition Index and Growth

CI= [dry soft tissue wt (g) *1000] / [total wt (g) - Shell wt (g)]

Ordered Logistic Regression MASS Package in R

This type of model looks at the relationships between Condition, Growth, and Treatment on the likelihood of a clam belonging to any one of the Progressive Gonad Stages

Higher Condition, greater likelihood of being reproductive

Higher Growth, lower likelihood of being reproductive

Cold Treatment greater likelihood of being reproductive

Warm Treatment lower likelihood of being reproductive

What about the sediment?

PRE vs MB

CI metric for health/success of clams

No significant difference between experiments with respect to CI and sediment

Conclusion

Do the results support the hypothesis

Acknowledgments

My Committee, & PI's working together on the Mesocosms Support from Ed Baker & MSRF Interns and friends at MERL (Esp. Kristin, Kathryn, Riley) RI Sea Grant for funding & support

THE UNIVERSITY OF RHODE ISLAND GRADUATE SCHOOL OF OCEANOGRAPHY

Model Results 2021

For every one-unit increase in condition

Clam Gonad was 8.7% <u>more likely</u> to be engorged or partially engorged vs Reduced.

-Higher Condition, greater likelihood of being reproductive

For every one-unit increase in growth

Clam Gonad was 1.4x <u>less likely</u> to be Engorged vs Partially Engorged or Reduced

-Higher growth, lower likelihood of being reproductive

Clams in the Warm Treatment (C-A ~ NSD)

Clam Gonad was 8.2x <u>less likely</u> to belong to be Engorged vs Partially Engorged or reduced.

-Cold treatments greater likelihood of being reproductive

-Warm treatments lower likelihood of being reproductive

System Production vs respiration Differences between types of primary production between experiments

Sediment Stuff

Gonad Stage as a Metric

Mesocosm Clam Gonad Stage 2022

Condition Index

100

Growth Measurement

