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The nonlinear response of yield stress fluids remains difficult to predict and control. Here, we show that
the height of the overshoot in the loss modulus G00, a key characteristic of yielding, depends only on linear
viscoelastic properties. Furthermore, the position of this overshoot depends on linear viscoelastic and flow
properties, demonstrating the important and enduring role of elasticity in yielding. The physics governing
linear viscoelasticity is therefore not only preserved during yielding but also controls two commonly
reported yielding metrics.
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Yielding is a nonlinear physical phenomenon in which
soft materials transition from deforming recoverably to
unrecoverably under an applied load. Yield stress fluids
(YSFs) are typically thought of as behaving like visco-
elastic solids below the yield stress and liquids when the
yield stress is exceeded. Although yielding has been
observed for over a century [1], the precise mechanisms
by which materials undergo this transition remain poorly
understood. This absence of understanding is caused at
least in part by the significant ambiguity over how to
identify, and define, yielding [2,3].
Multiple rheological protocols have been used to inter-

rogate material failure and flow, including creep tests in
which the viscosity bifurcates about the yield stress [4],
shear start-up [5], serial creep divergence [6], fatigue tests
[7,8], and flow sweeps with controlled shear history [9].
The protocol perhaps most commonly employed to identify
yielding is large amplitude oscillatory shear [10–15], in
which sinusoidal stresses or strains are applied at varying
amplitudes. The periodic material response can then be
used to determine the dynamic moduli, referred to as the
storage (G0) and loss (G00) moduli, which are proportional
to the average energy stored and dissipated per cycle [16].
Although not observed for all classes of YSFs, one
common feature of yielding rheology in oscillatory

shearing is an overshoot in G00, which has formed the
basis of measures of both the yield stress and the yield
strain [3].
At large amplitudes, the rheological response can no

longer be fully described by a linear differential equation
with constant coefficients, and the response is said to be
nonlinear. Such nonlinear responses from oscillatory shear-
ing have been mathematically analyzed through procedures
such as Fourier transform rheology [17,18] and stress
decomposition [19], but physical insight from these meth-
ods has been difficult to obtain. Recently, an experimental
procedure called recovery rheology has been used to gain
insight into nonlinear rheological responses according to
the relative acquisition of recoverable and unrecoverable
strains. This technique has been used to show that the
commonly observed overshoot in the loss modulus G00 [20]
arises from the acquisition of unrecoverable strain [21]. The
decomposition into recoverable and unrecoverable strain
components forms the basis of the recent KDR model [22],
which accurately models many of the features of the
yield transition.
In this Letter, we show that the size of the G00 overshoot

apparent in the nonlinear response of YSFs—a feature that
is now known to arise due to acquisition of unrecoverable
strain—is determined by the loss tangent in the linear
regime, which is defined only in terms of recoverable
behaviors. We further show that the amplitude at which the
overshoot occurs is determined by a combination of linear
viscoelastic and steady shear metrics. These relationships
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are shown to hold across a library of model YSFs and prior
results reported in the literature. Specifically, we analyze
polymer-linked emulsions (PLEs) with tunable yield tran-
sitions and compare their nonlinear responses to those
reported in the literature for other classes of materials. For
all materials analyzed, we find that the height of the G00
overshoot, quantified by the magnitude of the maximum
relative to the small amplitude value, and the corresponding
strain amplitude at which it occurs γ0;peak can be collapsed
onto master curves that are functions solely of linear
recoverable metrics and combinations of linear recoverable
and unrecoverable steady shear metrics, respectively.
Furthermore, we show through both direct numerical
solutions and theoretical approximations that these univer-
sal curves are accounted for by the KDR model. From this
agreement between theory and experiment, we demonstrate
that the physics responsible for the linear recoverable
response of materials persists across the yield transition
to control the nonlinear response where unrecoverable
processes arise and ultimately dominate. These findings
unify our physical interpretation of the nonlinear yield
transition with linear viscoelasticity and identify nondi-
mensional parameters that control yielding. These metrics
can therefore serve as simplified targets for the design and
optimization of soft materials.
We examine the linear and nonlinear rheological

responses of a wide range of soft materials prepared
in our previous works, including PLEs [23–25], colloidal
gels [6,26], and fibrillar networks [26]. Their rheology is
characterized on a TA Instruments HR-20 rheometer with
parallel plate or cone-and-plate geometries. Linear rheol-
ogy is collected through oscillatory frequency sweeps as a
function of angular frequency ω with a constant strain
amplitude γ0 within the linear viscoelastic regime (LVR).
Nonlinear rheology is measured by varying γ0 at a constant
frequency ω, and steady shear data are collected by
measuring the steady state stress σ as a function of shear
rate γ̇. Additionally, we analyze rheological data available
in literature for YSFs displaying an overshoot in G00,
including high-internal-phase emulsions [27,28], colloidal
glasses and gels [29–32], hydrogels [33–38], linked
emulsions [39], polymer melts [40], and rubber composites
[41–43]. Materials from literature are further detailed in
Supplemental Material [44].
The typical rheological response of soft materials is

exemplified by PLEs, as shown in Fig. 1(a). The PLEs
shown here are prepared from 50 vol % decanol-in-water
emulsions that are linked into a cohesive elastic network by
the addition of a telechelic, triblock copolymer (POJO)
with hydrophobic end blocks and a hydrophilic, bottlebrush
midblock [25]. We tune the linear rheology by varying the
polymer concentration c. At low c, these PLEs are elastic at
high frequency but relax viscoelastically at lower frequen-
cies as a result of the weakly percolated network. These
viscous relaxations are suppressed on experimentally

accessible timescales at higher c as the network density
increases, resulting in G0 becoming nearly independent of
frequency. Moreover, these stiff PLEs exhibit a pronounced
minimum in G00 at ω ≈ 1 rad s−1, which we attribute to an
interplay between glassy colloidal dynamics and segmental
fluctuations of polymer midblocks [25]. The steady shear
flow curves, in which the stress σ is measured as a function
of shear rate γ̇, are shown in Fig. 1(b). Similar to the linear
frequency sweeps, we observe an increase in σ with c as the
network becomes more robust. The flow sweeps are well
described by the Herschel-Bulkley model σðγ̇Þ ¼ σy þ kγ̇n,
where σy is the yield stress, k is the consistency index, and
n is the flow index [45]. From both small amplitude
oscillatory shear and steady shear experiments, we find
that the rheological behavior of PLEs can be tuned solely
by the concentration of bridging polymers. This tunable
rheology allows us to investigate the relationship between
linear viscoelasticity and yielding independent from
structural or compositional changes that may occur in
other systems.
To characterize the yielding behavior, we show the

results of amplitude sweeps at various angular frequencies
and concentrations in Fig. 2. For each test, we observe the
expected behavior [20], including a linear viscoelastic
region at small strain amplitudes (γ0 ≲ 10−2) where the
dynamic moduli are independent of the strain amplitude,
followed by a decrease in G0 and an overshoot in G00 at
larger amplitudes. This nonlinear response depends
strongly on both polymer concentration and frequency.
With increasing c, shown in Fig. 2(a), and thereby with
increasing network elasticity, the decay in G0 becomes
steeper as a function of γ0, and the relative maximum of the
G00 overshoot becomes larger. Physically, these differences
in yielding behavior indicate that a greater number of
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FIG. 1. (a) Storage modulus G0 (closed symbols) and loss
modulusG00 (open symbols) as a function of oscillation frequency
ω. (b) Stress σ as a function of shear rate γ̇ for samples containing
the specified concentration of POJO-250. Curves are fits to the
Herschel-Bulkley model.
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elastic elements transition to dissipating energy via unre-
coverable processes upon yielding in PLEs formed at
higher polymer concentrations, consistent with the increase
in density of elastic bridges quantified in earlier work [25].
The dependence on frequency is more complex, as

shown in Fig. 2(b). For a 3 wt% PLE, the yielding behavior
varies significantly as a function of ω. First, we observe that
the G00 overshoot is significantly larger at intermediate
frequencies (ω ¼ 100) than at low frequencies (ω ¼ 10−2)
where G00 is larger, but the decrease in G0 occurs at
approximately the same strain amplitude. Second, the
magnitude of theG00 overshoot is similar at low (ω ¼ 10−2)
and high (ω ¼ 101.5) frequencies with comparable values
of G00, but the decrease in G0 occurs at significantly
larger amplitudes when tested at higher frequencies.
Qualitatively similar behavior is observed for PLEs pre-
pared at different c [44].
For linear deformations, it is well known that the rate of

deformation relative to the rate of relaxation dictates the
relative contributions from elastic deformation and viscous
flow. Because such intrinsic dynamics are also present
during nonlinear deformations, we expect that they should
manifest in the frequency dependence of the yield tran-
sition. We explore this hypothesis by comparing linear and
nonlinear rheological metrics. Specifically, we note that the
relative contributions of viscous and elastic elements,
quantified by the loss tangent tanðδÞ ¼ G00=G0, and the
magnitude of the overshoot in G00 both depend strongly

on ω. Thus, we plot the value of G00 at the overshoot
normalized by the loss modulus G00

0 in the linear visco-
elastic regime (G00

max=G00
0) as a function of tanðδÞ and find a

universal collapse, as shown in Fig. 3. The collapse of the
overshoot height as a function of tanðδÞ holds across orders
of magnitude in PLE moduli and frequency.
The dependence of the size of the overshoot in G00, a

nonlinear behavior, on tanðδÞ defined in the linear regime
is unexpected and surprising. It is now known that the
overshoot in G00 arises due to the acquisition of unrecov-
erable strain [21], and yet tanðδÞ in the linear regime
represents recoverable behavior. The dependence also
indicates that the physics governing the material response
to small deformations are preserved across the yield
transition. Furthermore, given that the collapse is indepen-
dent of material class, the physics controlling how soft
materials yield must be universal and independent of
material structure, chemistry, and the nature of interparticle
interactions. To explain this phenomenon, we turn to the
recently developed KDR model [22], which separates
the strain into recoverable and unrecoverable components
γ ¼ γrec þ γunrec and describes yielding according to non-
local physics where the rapid acquisition of recoverable
strain enhances plastic unrecoverable deformation. With
this framework, the relationship between stress and strain is
described by the differential equation,

σ þ ηfðγ̇Þ þ ηs
G

σ̇ ¼ ηfðγ̇Þ
�
γ̇ þ ηs

G
γ̈

�
; ð1Þ

where ηfðγ̇Þ is the Herschel-Bulkley viscosity under
steady flow, ηs ¼ G00

0=ω is a structural viscosity defined
in the linear regime, and G is the linear elastic modulus.
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FIG. 2. Storage modulus G0 (closed symbols) and loss modulus
G00 (open symbols) as a function of strain amplitude γ0 (a) for
samples containing different polymer concentrations c at the
same frequency ω ¼ 10 rad s−1 and (b) for samples containing
c ¼ 3 wt% POJO-250 at different frequencies ω.
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FIG. 3. Normalized magnitude of the G00 overshoot (G00
max=G00

0)
as a function of the LVR value of tanðδÞ. Literature sources of
yielding metrics are from Refs. [27–43] and are described in
Supplemental Material [44]. Curves indicate numerical (red) and
theoretical (blue) predictions based on the KDR model.
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We numerically solve this differential equation for
oscillatory deformations γðtÞ ¼ γ0 sinðωtÞ over orders
of magnitude in γ0, ω, and ηfðγ̇Þ. Specific ranges are
given in Supplemental Material [44]. The moduli are
calculated according to G0 ¼ ω=ðπγ20Þ

H
σðtÞγðtÞdt and

G00 ¼ 1=ðπγ20Þ
H
σðtÞγ̇ðtÞdt, respectively [16,21]. These

values correspond to the most common outputs from
commercial rheometers and remain well defined in the
nonlinear regime even when the geometric interpretation of
in-phase and out-of-phase contributions no longer holds.
We find that for all conditions investigated, the overshoot

height, G00
max=G00

0, collapses as a function of tanðδÞ, as
shown in Fig. 3. This agreement exists without any fitting
parameters, indicating that the same physics dictates both
the linear recoverable properties and the nonlinear flow
behavior captured by the overshoot height. Although the
numerical solution slightly overestimates the magnitude of
theG00 overshoot, it accurately captures the inverse relation-
ship at low tanðδÞ and the turnover to a plateau as
tanðδÞ → 1. The single numerical solution across such a
wide range of amplitudes, frequencies, and sample proper-
ties demonstrates that the height of the G00 overshoot is
solely determined by the relative contributions of elastic
and viscous elements in the linear viscoelastic regime,
quantified by tanðδÞ. From this relationship, we can
accurately predict one aspect of the nonlinear response
of YSFs from purely linear metrics.
We gain additional insight into the physical mechanisms

controlling this relationship by returning to the physics
described by the KDR differential equation given in Eq. (1).
This model is analytically solvable for sufficiently small γ0,
as is expected for linear responses, but cannot be directly
evaluated once γ0 ≳ ðσyÞ1=n=kω or γ0 ≳ σy=ωηs. Instead,
following the foundations of the KDR model, we decom-
pose the loss modulus into solidlike and fluidlike elements
such that G00=G00

0 ¼ ðG00
fluid þ G00

solidÞ=G00
0 , which can be

rewritten as G00=G00
0 ¼ γ20;rec=γ

2
0 þ ½ηfðγ̇Þ=ηs�ðγ20;unrec=γ20Þ

by substituting their corresponding definitions. To predict
theG00 overshoot height, we therefore require a relationship
between flow ηfðγ̇Þ and structural ηs viscosities. We build
this relationship by recognizing that the stress in the
recoverable and unrecoverable elements must be equal
and that the stress of the recoverable element is described
by σ ¼ Gγrec þ ηsγ̇rec. Substituting this expression into
Eq. (1) yields a differential equation describing purely
unrecoverable elements according to

σ þ ηs
G
σ̇ ¼ ηfðγ̇unrecÞ

�
γ̇unrec þ

ηs
G
̈γunrec

�
: ð2Þ

We now make two simplifying assumptions. First, we
approximate the instantaneous response of the system by
their averaged parameters such that γ̇ ≈ γ0ω and ̈γ ≈ γ0ω

2,
from which it follows that

ηfðγ̇Þ ¼
Gγ0;recð1þ ηsω=GÞ

ωγ0;unrec
: ð3Þ

Second, we assume that the recoverable and unrecoverable
strain amplitudes are equal at the overshoot such that
γ0;rec ≈ γ0;unrec, which is reasonable based on experimental
observations but likely overestimates the magnitude of
unrecoverable strain. With this assumption, we can sim-
plify the expression to

G00
max

G00
0

≈
1

2
þ 1

4

G
ηsω

¼ 1

2
þ 1

4
tanðδÞ−1: ð4Þ

Equation (4) is independent of any flow behavior and
shows that the size of the overshoot in the loss modulus,
which is a nonlinear property that arises according to the
acquisition of unrecoverable strain, is dependent only on
the linear viscoelastic value of tanðδÞ, which corresponds to
the acquisition of recoverable strain. The full details of this
derivation are provided in Supplemental Material [44].
This theoretical approximation is in good agreement

with both experimental data and the numerical solution
shown in Fig. 3. It captures the appropriate scaling at small
tanðδÞ and agrees quantitatively with experimental findings
across materials and frequencies. At large tan(δ), however,
our simplified expression misses the appropriate plateau
and instead predicts a value of G00

max smaller than G00
0. This

discrepancy presumably occurs because the assumption
that the maximum in G00 occurs when γ0;rec ≈ γ0;unrec
overestimates the magnitude of γ0;unrec, consistent with
our observations thatG00

max occurs at strain amplitudes close
to, but always slightly smaller than, the strain amplitude at
the crossover [22]. Even within the limitations of our
approximations, this simple theoretical relationship is
surprisingly robust and confirms that the nonlinear yielding
response of soft materials can, at least in part, be predicted
by linear recoverable measurements. Our results also
confirm that elastic behaviors play an important role during
yielding, and that the G00 overshoot exhibited by soft
materials can be fully understood as a transition from
energy storage via recoverable processes to energy dis-
sipation via unrecoverable processes.
Lastly, we find that the strain amplitude at the G00

overshoot γ0;peak exhibits a universal collapse as a function
of linear and steady shear properties, shown in Fig. 4. We
observe that γ0;peak scales linearly with the ratio of the flow
stress σf ¼ ηfðγ̇Þωγ0;peak to the linear elastic modulus G
modulated by tanðδÞ. This is a universal collapse across all
frequencies, polymer concentrations, and material classes.
Furthermore, we confirm the linearity of this relationship
from the numerical solution to the KDR model, which
predicts a prefactor of ≈1.5 that is in excellent agreement
with experimental data. To understand the mechanisms
controlling this transition, we return to the KDR model,
subject to the same assumptions as above. Starting with
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Eq. (2) and substituting in the expressions for the stress
associated with recoverable strain and average values in
place of instantaneous derivatives gives

Gγ0;rec þ 2ηsγ0;recωþ η2sγ0;recω
2

G

¼ ηfðγ̇Þγ0;unrecωþ ηfðγ̇Þηsγ0;unrecω2

G
: ð5Þ

Further assuming that γ0;rec ≈ γ0;unrec at the G00 overshoot
results in

γ0;peak ≈
ηfðγ̇Þωγ0;peak
G½1þ tanðδÞ� ¼

σf
G½1þ tanðδÞ� ; ð6Þ

where we approximate ηfðγ̇Þ ≈ ηfðωγ0;peakÞ according to
the empirical Rutgers-Delaware relationship [10], which is
an extension of the Cox-Merz relationship specifically
applied to YSFs relating the viscosity measured under
steady and oscillatory shearing [46,47]. The KDR model
assumes that the magnitude of the flow viscosity depends
on the total shear rate so that the Rutgers-Delaware
relationship always holds [47]. Our theoretical approxima-
tion underestimates the experimental data but achieves
the correct scaling and is within the appropriate order of
magnitude. As with the size of the overshoot, this deviation
is expected given our assumption that the recoverable and
unrecoverable strain components are equal at the overshoot.
The explicit dependence of γ0;peak on tanðδÞ is shown in
Supplemental Material [44]. The near quantitative agree-
ment between experiments, numerical solutions, and theo-
retical approximations demonstrate that the strain
amplitude corresponding to the overshoot in G00 follows
from linear and steady shear rheological metrics.

Our results help to explain why there has been significant
ambiguity over how to identify yielding from oscillatory
shearing. Although the yield transition is marked by a
transition from recoverable to unrecoverable acquisition of
strain, most yielding metrics are defined in terms of the
total strain only. Additionally, while the overshoot in G00
is known to result from the acquisition of unrecoverable
strain [21], our results demonstrate that its magnitude is
determined by recoverable properties only and that the
corresponding total strain amplitude is determined by the
relative contributions of recoverable elasticity within
the linear regime and unrecoverable deformation under
flow. Even when brittility is taken into account [48], our
derivation remains unchanged, confirming that both brittle
and ductile yielding modes result in similarly sized over-
shoots. The size and position of the G00 overshoot, a major
feature of the oscillatory shear rheology of YSFs, therefore
correspond to intrinsic material properties and do not serve
as accurate metrics by which to determine the extrinsic
yield transition.
In this Letter, we have demonstrated that the nonlinear

yielding rheology of soft materials exhibits universal
characteristics that can be quantitatively predicted from
linear and steady shear flow properties. Specifically, we
have shown that the magnitude of the overshoot in G00,
which is known to be caused by the acquisition of
unrecoverable strain, depends exclusively on tanðδÞ in
the linear viscoelastic regime, which is defined entirely
in terms of recoverable properties. Further, we have shown
that the amplitude at which the overshoot occurs, γ0;peak,
depends on tanðδÞ and the viscous stress developed under
steady shear flow. These relationships persist across all
classes of YSFs that exhibit a G00 overshoot, across all
deformation frequencies, and across orders of magnitude
in tanðδÞ. YSFs that do not exhibit this overshoot [49] or
those that undergo more complex transitions such as strain
stiffening [50,51], may form distinct classes or possess
sufficiently small ratios of unrecoverable dissipation
that the overshoot is experimentally undetectable [52].
Although the precise mechanism by which materials yield
may be specific to a material class [53], the universality of
these relationships indicates that yielding is governed by
elements of the same nonlocal physics represented by the
KDR model, in which elastic recoverable properties
enhance plastic unrecoverable behaviors. This demon-
strated relationship between linear and nonlinear properties
in YSFs will accelerate the development of novel complex
fluids and soft materials by shifting design targets and
performance metrics from experimentally challenging char-
acterizations of the yield transition to the relatively
straightforward optimization of their linear viscoelasticity.
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