

Objectives

Objective 1: uptake, transformation and bioaccumulation of PFAS in phytoplankton **Objective 2**: uptake, transformation and bioaccumulation of PFAS in zooplankton **Objective 3**: bioaccumulation and magnification of PFAS from phytoplankton to zooplankton (diet effect)

Acknowledgments

Thanks to the Menden-Deuer lab group, especially Pierre Marrec and Jason Schaedler for their help in isolating and providing initial plankton cultures.

My appreciation goes to all members of the Lohmann lab group. A special gratitude for Simon Vojta for his support.

From The Bottom Up: Deciphering Bioaccumulation And **Biomagnification Of PFAS In Plankton (ER22-3139)**

Asta Habtemichael^{*}; Jitka Becanova; Susanne Menden-Deuer; Rainer Lohmann University of Rhode Island, Graduate School of Oceanography Corresponding Author: ahabtemichael@uri.edu

Com QA/C

Phyt prec Zoop AFFF Wate trans Deta

Zoop AFFF PFAS in Na

 Heterosigma akashiwo species were exposed to 14 PFAA at 100ng/L individual concentration for 24hrs and 96hr (Figure 2)

 long chain PFCA (>C8) and PFOS accumulated preferentially.

 PFAA accumulation increased with exposure time for most compounds

Figure 1. Preliminary results from an exposure autotroph) exposed to PFAA of 100ul/L individual compounds in solution. PFAA accumulated in pg/sample of plankton is shown with the SD from triplicate samples.

Next Steps • Vary individual [PFAA] to identify concentration dependency of uptake; whether K values vary with [PFAS] in solution.

 Add 120hrs, 144hrs, 168hrs exposure to verify partitioning equilibrium has been reached

 Understand the impact of the plankton growth rate on the PFAA accumulation

References

Schedule					
ponent	Deliverables	Yr 1	Yr 2	Yr 3	Yr 4
QC for PFAS	PFAS Analyte List, PFAS Analytical Confirmation White Paper and 3 Standard Operating Procedures (SOP)				
oplankton culturing and PFAS/ ursor/ AFFF exposure via water	BAF _{phyto} for PFAA, precursor formed PFAA, EOF and AFFF				
blankton culturing and PFAS/ precursor/ exposure via water	BAF _{zoo} for PFAA, precursor formed PFAA, EOF and AFFF				
er parameters affecting precursors sformation	Transformation rate as a function of temperature, salinity and pH				
iled reaction pathways	Identification of major PFAS intermediates and degradation products				
lankton exposure to PFAS/ precursor/	BAF _{zoo,} , BMF _{zoo/phyto} for PFAA, precursor formed PFAA, EOF and AFFF				
S bioaccumulation from plankton to fish arragansett Bay	Trophic levels, PFAS in water, biota, BAF, BMF, TMF				

Results to Date

Preliminary trial

Lessons Learned and/or data gaps

Yang et al. 2011. Occurrence and partitioning of per fluorinated compounds in water and sediment from Liao River and Taihu Lake, China. https://doi.org/10.1016/j.chemosphere.2011.02.075

2. Sunderland et al. 2019. A review of the pathways of human exposure to poly – and perfluoroalkyl substances (PFASs) and present understanding of health effects. <u>https://doi.org/10.1038/s41370-018-0094-1</u>

3. Zhang et al. 2019. Poly- and perfluoroalkyl substances in seawater and plankton from the Northwestern Atlantic Margin. https://doi.org/10.1021/acs.est.9b03230

4. De Silva, A. O., Armitage, J. M., Bruton, T. A., Dassuncao, C., Heiger-Bernays, W., Hu, X. C., & Sunderland, E. M. (2021). PFAS exposure pathways for humans and wildlife: a synthesis of current knowledge and key gaps in understanding. Environmental toxicology and chemistry, 40(3), 631-657. https://doi.org/10.1002/etc.4935

Culture Age

Figure 2. Plankton (microalgae) growth phase (Farag and Price, 2013)