

Introduction

- Poly- and perfluoroalkyl substances (PFAS) are omnipresent in environmental matrices¹ Human exposure to PFAS has been
- associated with immune suppression, metabolic disruption, high cholesterol levels²
- Seafood consumption accounts for 86% of mean chronic adult exposure to PFOS³
- PFAS in seawater and marine plankton governs accumulation in marine food webs³
- Its imperative to understand PFAS interaction in the lower trophic levels to better understand bioaccumulation patterns.

Objectives

Objective 1: Determine the uptake, transformation and bioaccumulation of PFAS in phytoplankton.

Objective 2: Determine the uptake, transformation and bioaccumulation of PFAS in zooplankton.

Objective 3: Assess bioaccumulation and magnification of PFAS from phytoplankton to zooplankton.

Figure 1. A very simplified path way for PFAS human exposure pathways

Acknowledgments

Thanks to the Menden-Deuer lab group, especially Pierre Marrec and Jason Schaedler for their help in isolating and providing initial plankton cultures.

My appreciation goes to all members of the Lohmann lab group. A special gratitude for Simon Vojta for his support.

From The Bottom Up: Deciphering Bioaccumulation And **Biomagnification Of PFAS In Plankton**

Asta Habtemichael^{*}; Jitka Becanova; Susanne Menden-Deuer; Rainer Lohmann University of Rhode Island, Graduate School of Oceanography Corresponding Author: ahabtemichael@uri.edu

National Institute of Environmental Health Sciences Superfund Research Program

References

- Lake, China. https://doi.org/10.1016/j.chemosphere.2011.02.075
- understanding of health effects. <u>https://doi.org/10.1038/s41370-018-0094-1</u>
- https://doi.org/10.1021/acs.est.9b03230

Jre	Cplankton	(ng/g	w.w.)	and	C _{water}	(ng/mL)

Cwater with SPME fibers using KSPME-water						
	Conc. in SPME Conc. in water entration factor	(Eq.1) rs (BCF)				
$= \left(\frac{Conc. \text{ in plan}kton}{Conc. \text{ in water}}\right), \dots, (Eq. 2)$						
ve hinarcu	mulation factor	s (RAF)				

1. Yang et al. 2011. Occurrence and partitioning of per fluorinated compounds in water and sediment from Liao River and Taihu

2. Sunderland et al. 2019. A review of the pathways of human exposure to poly – and perfluoroalkyl substances (PFASs) and present

3. Zhang et al. 2019. Poly- and perfluoroalkyl substances in seawater and plankton from the Northwestern Atlantic Margin.