Investigating a Novel Cyclodextrin Sorbent for Use Within an Integrative Passive Sampler for PFAS

Matt Dunn^{*,1}, Ri Wang², Yuhan Ling², Matt Notter², Rainer Lohmann¹ 1. Graduate School of Oceanography, University of Rhode Island 2. Cyclopure Inc. Skokie IL *mbdunn33@uri.edu

What Are All These Things?

- 4000+ man made compounds
- Myriad of negative human health outcomes
- Poorly regulated in US

Integrative Passive Samplers^{9,10,11,12}

- 7 cm long
- Filled with sorbent (HLB or WAX)
- Measure time weighted average

Slide 3

Can we use this in our passive sampler?

Methods and Process

Slide 4

• Validate a method for extraction

 Quantify sorbentwater partitioning values (K_{sw})

• Deploy in contaminated waters

Tumble in ~20 mL 1% NaOH in LC MeOH (v/v)

Collect

Tumble in ~20 mL 1% NaOH in LC MeOH (v/v)

Collect

Concentrate at 40 C^o under gentle stream of N

Dilute with buffered water and inject to LC-MS

Step 1: Mass labeled surrogates recovered from Passive Sampler w/Dexsorb+

Slide 5

Strong complexation with shorter chains, harder to break, may need correction factor⁴

	DEX	WAX	HLB
	Log K _{sw}	Log K _{sw}	Log K _{sw}
PFBA	2.9	3.6	NR
PFPeA	3.4	3.7	NR
PFHxA	4.0	4.2	2.4
PFHpA	4.3	4.7	NR
PFOA	4.5	5.0	NR
PFNA	4.5	5.1	3.9
PFDA	4.7	5.1	4.9
PFPrS	4.0	4.1	3.2
PFBS	4.3	4.4	NR
PFPeS	4.7	4.9	3.0
PFHxS	4.9	5.3	3.7
PFHpS	4.9	5.4	4.2
PFOS	4.9	5.3	5.0
GenX	3.8	4.3	NR
FHxSA	4.5	5.0	5.2
8:2 FTS	4.6	5.1	4.9
4:2 FTS	4.1	4.2	NR
6:2 FTS	4.6	4.9	NR

Step 2: Batch experiments with environmental water

- Units = dimensionless = g water / g sorbent
- Coefficient of variance (%) ranged from
 - 0.3-17 for DEX+
 - 1.5-13 for HLB
 - 1.1-14 for WAX

	DEX	WAX	HLB
	Log K _{sw}	Log K _{sw}	Log K _{sw}
PFBA	2.9	3.6	NR
PFPeA	3.4	3.7	<mark>NR</mark>
PFHxA	<mark>4.0</mark>	<mark>4.2</mark>	<mark>2.4</mark>
PFHpA	4.3	4.7	NR
PFOA	<mark>4.5</mark>	<mark>5.0</mark>	<mark>NR</mark>
PFNA	4.5	5.1	3.9
PFDA	4.7	5.1	4.9
PFPrS	4.0	4.1	3.2
PFBS	4.3	4.4	NR
PFPeS	4.7	4.9	3.0
PFHxS	<mark>4.9</mark>	<mark>5.3</mark>	<mark>3.7</mark>
PFHpS	4.9	5.4	4.2
PFOS	<mark>4.9</mark>	<mark>5.3</mark>	<mark>5.0</mark>
GenX	3.8	4.3	NR
FHxSA	4.5	5.0	5.2
4:2 FTS	4.1	4.2	NR
6:2 FTS	4.6	4.9	NR
8:2 FTS	4.6	5.1	4.9

Step 2: Batch experiments with environmental water

- Units = dimensionless = g water / g sorbent
- Coefficient of variance (%) ranged from
 - 0.3-17 for DEX+ 1.5-13 for HLB 1.1-14 for WAX

Step 3: Deployments in Contaminated Surface Waters hit a snag...

Unfortunately, the lab was contaminated with PFOA and PFOS from remediation efforts

Rendering much of the field deployed passive sampler data useless

Step 3: There were some promising results to lead us forward....

Dexsorb+ is suitable alternative to HLB/WAX sorbents for most PFAS compounds

- 1. Method of extraction results in good recovery of C5+ PFAS
- 2. K_{sw} may be lower than WAX, but shows more resistance to matrix than currently used HLB
- 3. Comparable uptake to WAX, better uptake than HLB, cheaper than both

Slide

Future Directions

- Explore alternative numerical models for sampler uptake
- Investigate how to improve recovery of short chain compounds

Acknowledgments

National Institute of Environmental Health Sciences Superfund Research Program

cyclopure

THE UNIVERSITY OF RHODE ISLAND GRADUATE SCHOOL OF OCEANOGRAPHY

ESTCP

Many thanks to Frank Cassou, Tess Teodoro, Simon Vojta, Jitka Becanova, and Tom Garrow

References

- 1 Buck et al. 2011
- 2 Ojo et al. 2021
- 3 Cousins et al. 2020
- 4 Weiss-Errico et al. 2019
- 5 Wang et al. et al. 2020
- 6 Wu et al et al. 2020
- 7 Xiao et al et al. 2017
- 8 Ching et al. 2020
- 9 Fauvelle et al. 2017
- 10 Kaserzon et al. 2019
- 11 Gardiner et al. 2022
- 12 Dunn in revision
- 13 Urik & Vrana 2019
- 14 Gobelius et al. 2019