

Let's Talk About PFAS Monthly Webinar Series March 11, 2021

Taking Action to Protect Your Health

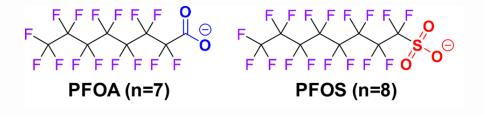
Welcoming remarks	Cheryl Osimo, Mass. Breast Cancer Coalition Mark Ells, Barnstable Town Manager
Presentations	Carmen Messerlian and Philippe Grandjean Harvard T.H. Chan School of Public Health
Q&A	Moderated by Cheryl Osimo Panelists: Dr. Messerlian, Dr. Grandjean, and Amanda Hernandez, Silent Spring Institute

Let's Talk About PFAS: Per- and Polyfluoroalkyl Substances and Immune Function in Children

Carmen Messerlian, PhD Assistant Professor of Environmental Reproductive Epidemiology Departments of Epidemiology and Environmental Health Director of Scientific Early Life Environmental Health and Development Program

THE UNIVERSITY OF RHODE ISLAND

I have no conflicts of interest to declare.



O1 BACKGROUND



Manmade Persistent Chemicals

Class of over 9000 compounds Persistent, long half lives (2-9 years) Resistant to degradation Mobile in the environment Drinking water pollutant "Forever chemicals"

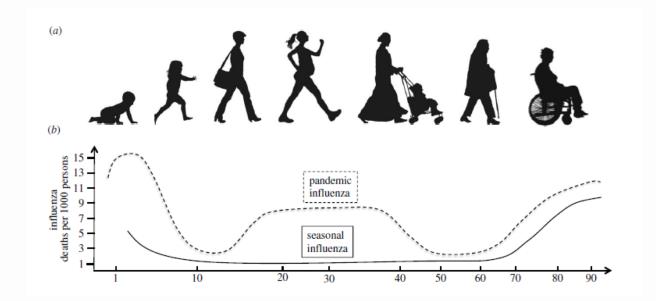
Widespread Applications

Used in products since 1950s Heat, oil, stain, and water resistant Diverse commercial applications textiles, furniture non-stick cookware, food packaging fire-fighting foam

SNEAKY SOURCES OF PFAS CHEMICALS

PFAS in Everyday Products

Carpets and upholstery Waterproof apparel Waxes (floors, skis) Non-stick cookware Grease proof food packaging Dental Floss Cosmetics Paints


Children: Higher Body Burden of PFAS

Routes: oral, dermal, inhalation, placental Mouthing behaviors Different body size to surface area/intake ratios Placental transfer Breastfeeding

Early Childhood as a Critical Window for Immune System Maturation

Department of Environmental Health

Mother-Fetus-Infant

Highly Interdependent

Fetus: placental transfer IgG antibodies

Neonate: breastmilk transfer of antibodies

Adaptive immune system: antigen specific and immune memory based

Variation in response and immune maturation

Acquisition of innate and adaptive immune system in infancy may be influenced by exposure to PFAS in pregnancy and early infancy

O2 PFAS and Immune Function

Experimental Studies in Rodents

Most studies on PFOS and PFOA Some studies for PFNA and PFDA Very limited evidence for other compounds

Immunotoxic Effects

Decreased spleen and thymus weights Reduction in circulating immune cells Reduction in antibody levels Altered cytokine production

Epidemiologic Evidence Immunosuppression

Antibody level: prenatal or childhood PFAS exposure is negatively associated with specific antibody levels in childhood (Most robust evidence)

Other lab markers of the immune function: reduced C-reactive protein response, increased basophil counts among children

Immune morbidity: increased risks of common cold, infections, upper and lower respiratory airway infections among children

O3 PFAS AND COMMON COLD in NHANES

National Health and Nutrition Examination Study (NHANES)

A national survey

Measures health and nutritional status every two years

Questionnaire interview, physical examination, and specimen collection for environmental and biomarker measurements

We included children 3 to 11 and adolescents 12-19

Cycle: 2013-2014

Exposure

Serum concentrations of the following PFAS compounds: PFOA, PFOS, perfluorohexane sulfonic acid (PFHxS), perfluorononanoic acid (PFNA)

Outcome

Common cold obtained by:

"Did your child have a head cold or chest cold that started during the previous 30 days?"

Children 3-11 years

N=517 Mean age 7

52% non-Hispanic white 14% non-Hispanic black

Prevalence of common cold 23%

Adolescents 12-19 years

N=394 Mean age 16

55% non-Hispanic white 15% non-Hispanic black

Prevalence of common cold 17%

Multivariate Model

Adjusted Odds Ratio of Common Cold per Doubling of Biomarker Concentrations

Biomarkers	3-11 years	12-19 years	
PFOA	1.32 (0.83, 2.10)	1.18 (0.71, 1.97)	
PFOS	1.06 (0.76, 1.48)	1.16 (0.76, 1.78)	
PFHxS	1.31 (1.06, 1.62)	1.23 (0.96, 1.59)	
PFNA	1.36 (1.03, 1.80)	0.68 (0.46, 1.00)	

Covariates: Age (continuous), sex (dichotomous), races (Non-Hispanic White, Non-Hispanic Black, Hispanic, Other), and income-poverty ratio (<1, =1< and <2, 2=<) which is the ratio of family income to poverty guidelines

04 Conclusions

Robust association for serum **PFHxS** concentration and increased odds of common cold among **children and adolescents**

Positive association between serum **PFNA** concentration and common cold in **children** while a possible negative association among adolescents

Associations between PFAS and common cold most evident during childhood

Early childhood: more critical period for PFASrelated immune effects compared to adolescence

Adolescent PFAS exposure: prone to confounding by dietary, personal care product use, and other exposure sources or behaviors (e.g. smoking/alcohol)

ACKNOWLEDGEMENTS

Yu Zhang

Vicente Mustieles

Preconception PFAS Exposure and Reproduction (PREPARE) Study R01ES031657 (PI: Messerlian)

NIEHS Program Officers

Antonia Calafat Centers for Disease Control and Prevention

Yang Sun

Yixin Wang

Stelios Vagios

SCHOOL OF PUBLIC HEALTH Department of Environmental Health

Dr. Rainer Lohmann

Dr. Philippe Grandjean

STEEP Team Members

Sources, Transport, Exposure & Effects of PFASs UNIVERSITY OF RHODE ISLAND SUPERFUND RESEARCH PROGRAM

THE UNIVERSITY OF RHODE ISLAND

THANK YOU

email: cmesser@hsph.harvard.edu

THE UNIVERSITY OF RHODE ISLAND

SCHOOL OF PUBLIC HEALTH Department of Environmental Health

National Institute of Environmental Health Sciences Superfund Research Program

STEEP is funded under award number P42ES027726. More information about STEEP is available at: https://web.uri.edu/steep/

Multivariate Model

Adjusted Odds Ratio of Common Cold per Doubling of Biomarker Concentrations

		3-11 years		12-19 years		
Biomarkers	Male	Female	Test of Heterogeneity p	Male	Female	Test of Heterogeneity p
PFOA	1.28 (0.71, 2.29)	1.43 (0.63, 3.25)	0.84	0.69 (0.32, 1.50)	1.55 (0.77, 3.10)	0.19
PFOS	1.03 (0.67, 1.58)	1.14 (0.65, 1.99)	0.65	0.76 (0.30, 1.90)	1.42 (0.89, 2.24)	0.54
PFHxS	1.61 (1.20, 2.18)	0.96 (0.67, 1.37)	0.09	1.14 (0.79, 1.63)	1.37 (0.94, 2.02)	0.54
PFNA	1.41 (0.99, 2.01)	1.27 (0.80, 2.01)	0.75	0.33 (0.15, 0.72)	0.96 (0.59, 1.56)	0.03

Covariates: Age (continuous), sex (dichotomous), races (Non-Hispanic White, Non-Hispanic Black, Hispanic, Other), and income-poverty ratio (<1, =1< and <2, 2=<) which is the ratio of family income to poverty guidelines

PFAS Biomarker Distribution

Biomarkers	3-11 уе	ars	12-19 years		
	Detection Rate	GM (ng/ml)	Detection Rate	GM (ng/ml)	
PFOA	100%	1.90	100%	1.70	
PFOS	100%	3.87	100%	3.62	
PFHxS	99.81%	0.85	100%	1.29	
PFNA	99.81%	0.80	100%	0.61	

