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Potential Outcomes

Dichotomous (binary) treatment A taking values 0 (untreated), 1
(treated)

Dichotomous outcome Y taking values 0, 1

Potential outcome Y a=1 outcome that would have been observed if,
possibly counter to fact, treatment a = 1 was received

Potential outcome Y a=0 defined similarly
aka counterfactuals

E.g., A is receive heart transplant or not, Y is die or not 5 days later

Assumptions: Consistency, exchangeability, and positivity
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Causation Versus Association

Q: Under what circumstances does association imply causation?

Figure 1.1 (Hernan and Robins)
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Randomized Experiments and Exchangeability

Consider a randomized experiment where individuals are assigned
treatment a = 1 or a = 0 randomly, i.e., independent of their potential
outcomes. Thus, marginal exchangeability holds:

Y a ⊥⊥ A for a = 0, 1

Conditionally randomized experiments can be viewed as two separate
marginal experiments. Thus, conditional exchangeability holds

Y a ⊥⊥ A|L = l for a, l = 0, 1

Causal effects can be identified under conditional exchangeability, e.g.,
using standardization or inverse probability weighting
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Randomized Experiment Paradigm

An observational study can be conceptualized as a conditionally randomized
experiment under the following three conditions:

1 Values of treatment under comparison correspond to well-defined
interventions (Sections 3.4-3.5)

2 Conditional probability of receiving every value of treatment, though not
decided by investigators, depends only on the measured covariates
(Section 3.2)

3 Conditional probability of receiving every value of treatment is greater
than zero, i.e., positive (Section 3.3)

Ashley L. Buchanan Causation in Networks 7 / 26



Causation and Prediction

What if we are not willing to assume positivity, conditional
exchangeability, and well-defined interventions?

There is always prediction (association)
Obesity (A) may predict (or be associated with) mortality risk (Y )

This does not imply causation, just as carrying lighter in pocket
(A) being predictive of lung cancer (Y ) does not imply carrying a
lighter causes cancer

However, associations may be helpful in generating hypothesis.
Why is obesity associated with mortality risk? Is it diet? Exercise?
Other well-defined interventions?

From a public health or scientific viewpoint we may want to go
beyond associations to attempt to understand why such
associations exist
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Introduction to Interference

No Interference
I Outcome of one individual assumed to be unaffected by the

treatment assignment of others
I Typical assumption of causal inference
I Part of SUTVA

Clearly not true in some settings
I Infection diseases, education interventions. social sciences

Phenomenon of interest vs. nuisance

The following slide shows different possible effects of pre-exposure
prophylaxis for HIV prevention adapted from Halloran and Struchiner
(1991, 1995)
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Interference Definition

That two potential outcomes sufficiently represent all potential
outcomes for an individual assumes no interference between
individuals
i.e., the treatment of one individual does not affect the outcome
of other individuals (Cox 1958)

The no interference assumption may not hold in some settings

Examples: Vaccine studies, educational intervention studies, HIV
prevention studies

Settings: Epidemiology, medical research, econometrics, social
network analysis
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General Approach

Population of groups of individuals (blocks of units)

Assume partial interference: Possibly inteference between individuals in
a group but not between groups.

Define direct, disseminated (indirect), composite (total) causal effects

Two-stage randomization

1 Groups to allocation strategies α1, α0
2 Given 1, individuals randomized to treatment/controls A ∈ 0, 1

Unbiased estimators, variance using randomization-based inference or
M-estimation
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Illustrative Example

Two-stage randomized placebo-controlled cholera vaccine trial based on data
from Ali et al. (2005)

α Vaccine (Xij = 1) Placebo (Xij = 0)
Total∑

j Xij

Cases∑
j XijYij

Total∑
j (1−Xij )

Cases∑
j (1− Xij )Yij

1 α1 12541 16 12541 18
2 α1 11513 26 11513 54
3 α1 10772 17 25134 119
4 α0 8883 22 20727 122
5 α0 5627 15 13130 92

α0 is the allocation strategy for the group that randomized 50% to the treatment.
α1 is the allocation strategy for the group that randomized 30% to the treatment.
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Estimates of population average effects per 1000
individuals per year

Effect Parameter Estimate Estimated varaince

Direct CE
D

(α1) 1.30 0.856

Direct CE
D

(α0) 3.64 0.178

Indirect CE
I
(α1, α0) 2.81 3.079

Total CE
T

(α1, α0) 4.11 0.672

Overall CE
O

(α1, α0) 2.37 1.430

Indirect: 50% vaccine coverage results in 2.8 fewer cholera cases per
1000 unvaccinated individuals per year compared to 30% vaccine
coverage

Overall: 50% vaccine coverage results in 2.4 fewer cholera cases per
1000 individuals per year compared to 30% vaccine coverage
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Introduction to Networks

Each node has an outcome, treatment and covariates

Nodes connected through edges (e.g., sexual, drug use, social
connections)

Estimands: peer effects, treatment effects, spillover/interference effects,
effects of network interventions
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Approaches in the Literature

Christakis and Fowler (2007, 2008, 2009, 2010, 2011, 2012) estimated
peer effects in social network data

I Model: Y t
ego ∼ Y t−1

alter ,Y
t−2
alter ,Y

t−2
ego ,Cego

I Results included significant peer effects for obesity, smoking,
alcohol consumption, etc.

I Peer effects evaluated in other settings (Ali and Dwyer, 2009,
Cacioppo et al, 2009; 2008; Lazer et al., 2010; Rosenquist et al,
2010, Wasserman, 2012)
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Randomization-based Inference

Randomization-based inference for networks (e.g., Toulis and Kao,
2013; Bowers et al., 2013; Aronow and Samii, 2013; Eckles et al., 2014,
Choi 2016).

I Assumes on finite population of N individuals and for each
individual there is a set of individuals that may interfere with that
individual (i.e., interference sets, neighborhoods, friends)

I Interference sets can be represented by an adjacency matrix and
often assumed to be known and fixed

For an observational study, Tchetgen Tchetgen and VanderWeele
(2012) suggest IPW estimator where all observations from group i are
weighted by the inverse of probability of the treatment assignment
vector Ai given Xi

Methods in the presence of interference often rely on randomization and
the assumption of partial interference, but provides a solution to the
problem of network dependence in cluster randomized trials (e.g. Sobel,
2006; Hong and Raudenbush, 2006; Rosenbaum, 2007; Hudgens and
Halloran, 2008; Tchetgen Tchetgen and VanderWeele, 2012; Liu and
Hudgens, 2014; Buchanan et al, 2018).
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Non-randomized Interventions

In many studies, the intervention or treatment is not randomized

There may be confounding at either the individual, network-level or both

Methods employ
I A generalized propensity score (Forastiere, 2018) or a Bayesian

generalized propensity score (Forastiere, 2018) that account for
individual and neighborhood covariates

I Targeted maximum likelihood estimation (TMLE) (Sofrygin,
2015)
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Statistical Dependence in Networks

Latent variables (i.e., homophily) lead to similar outcomes among close
contacts

Contagion: Indirect effect that treating one individual may have on
another by preventing the treated individual from getting the disease
and thereby from passing it on

Networks often observed at a single time point, so difficult to
disentangle homophily from an effect

Why is this a problem?
I We cannot assume independence (i.e., cannot assume

independent and identically distributed (iid))
I Central limit theorem may not hold
I Standard error estimates and confidence intervals will be

anti-conservative!
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Possible Solutions for Dependence in Networks

Create conditionally independent units; analyze with standard models,
but conditional on information barriers (Ogburn and Vanderweele, 2017)

Extension of influence function from iid setting with interference set
(van der Laan, 2014) and social network setting with contagion and
homophily (Ogburn, et al, 2017)

Nearest neighbor approach: Potential outcomes of any individual only
depends on their nearest neighbors (or two-step neighbors)

Subsampling: Implementation and conditions may not be applicable to
networks (e.g., bootstrap individual nodes)

K-dependence: Cov(Wi ,Wj ) = σk , where k = ||i , j || and estimate using
a plug-in estimator
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Nearest Neighbor Approach

Diagram of the network disseminated effect with intervention subnetwork
(left) and control subnetwork (right) (Index shaded green or blue)
(Benjamin-Chung et al, 2017)
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Motivating Example with Community Detection

The Social Factors and HIV Risk Study (SFHR)

Sociometric network study conducted between 1991 and 1993 in
Bushwick, Brooklyn, New York among street-recruited injection
drug users

Investigated how HIV/AIDS infection spread through shared
sexual and injection risk behaviors.

767 participants along with 3,162 dyadic relationships (i.e. a
connection b/w two people).

Connections were shared risk behaviors (i.e. inject drug together
and/or having sexual intercourse) within 30 days before the
interview.

Assess attitudes toward HIV/AIDS risk among PWIDs and their
effect on health-seeking behaviors.
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Causal Inference with Observational Study

Tchetgen Tchetgen and VanderWeele (2012) developed an inverse
probability weighting (IPW) method to replicate two-stage randomized
design with observational study.

We apply this method to evaluate how PWIDs locus of control/ blame
attitudes affect on both their own health-seeking behavior and that of
other members in their subnetworks/ communities.

APPROACH
1. Split the SFHR network into smaller subnetworks/ communities of

PWIDs.

2. Calculate group-level propensity score (i.e. probability of having specific
attitude toward HIV/AIDS risk) for each subnetwork based on
individual-level covariates of sex, race, education, age and their pairwise
interactions.

3. Use the inverse of propensity score as weights to create IPW estimator
of potential outcome.
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Causal Inference: IPW estimation

Table 1: Estimated risk differences (RDs) with 95% CIs of locus of
control (external vs. internal) on likelihood of receiving HIV test
results in SFHR (coverage of internal)

Unadjusted Adjusted with interactions

Effect Coverage RD 95% CI RD 95% CI
(α, α′)

Direct (50%, 50%) -0.148 (-0.230, -0.065) -0.160 (-0.265, -0.055)
Direct (70%, 70%) -0.142 (-0.246, -0.038) -0.162 (-0.268, -0.055)
Direct (99%, 99%) -0.101 (-0.258, 0.056) -0.130 (-0.268, 0.008)

Indirect (50%, 70%) -0.041 (-0.071, -0.012) -0.031 (-0.054, -0.008)
Indirect (50%, 99%) -0.070 (-0.156, 0.019) -0.062 (-0.123, 0.000)
Indirect (70%, 99%) -0.029 (-0.098, 0.040) -0.030 (-0.072, 0.011)

Total (50%, 70%) -0.183 (-0.271, -0.096) -0.193 (-0.286, -0.100)
Total (50%, 99%) -0.172 (-0.278, -0.066) -0.192 (-0.291, -0.093)
Total (70%, 99%) -0.130 (-0.254, -0.006) -0.161 (-0.272, -0.049)

Overall (50%, 70%) -0.067 (-0.096, -0.038) -0.065 (-0.089, -0.041)
Overall (50%, 99%) -0.097 (-0.183, -0.010) -0.111 (-0.190, -0.032)
Overall (70%, 99%) -0.030 (-0.095, 0.035) -0.046 (-0.105, 0.013)
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Why Does Spillover Matter for Society?

Interventions can be tailored to maximize impact by capitalizing on
network structure

Informs community-level treatments and policy
I How many and which community members to target for

Treatment as Prevention and Pre-exposure Prophylaxis?
I How to best distribute naloxone for opioid overdose prevention in

the community?
I What are the social influences on injection drug use among youth

with NMU-PO ?
I Who to train as a peer education within a community of people

who use drugs?

Design interventions to leverage beneficial disseminated effects beyond
those directly treated

Implications for cost-effectiveness evaluations
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Discussion Questions

Which settings would you expect there to be
interference? Which settings would you find the
assumption of no interference plausible?

Can you think of other settings where this type of
analysis could be useful?

Why is it important to understand these types of
effects for health outcomes?
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Example

Table 1.1 of Potential Outcomes and Table 1.2 of Observed Data

Patient Y a=0 Y a=1

Rheia 0 1
Kronos 1 0
Demeter 0 0
Hades 0 0
Hestia 0 0
Poseidon 1 0
Hera 0 0
Zeus 0 1
Artemis 1 1
Apollo 1 0
Leto 0 1
Ares 1 1
Athena 1 1
Hephaestus 0 1
Aphrodite 0 1
Cyclope 0 1
Persephone 1 1
Hermes 1 0
Hebe 1 0
Dionysus 1 0

Patient A Y
Rheia 0 0
Kronos 0 1
Demeter 0 0
Hades 0 0
Hestia 1 0
Poseidon 1 0
Hera 1 0
Zeus 1 1
Artemis 0 1
Apollo 0 1
Leto 0 0
Ares 1 1
Athena 1 1
Hephaestus 1 1
Aphrodite 1 1
Cyclope 1 1
Persephone 1 1
Hermes 1 0
Hebe 1 0
Dionysus 1 0
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Average Causal Effects

There is an average causal effect in the (super-)population if

Pr[Y a=1 = 1] 6= Pr[Y a=0 = 1]

or more generally (i.e., for a non-dichotomous Y )

E [Y a=1] 6= E [Y a=0]

There is no average causal effect in the population if

Pr[Y a=1 = 1] = Pr[Y a=0 = 1]

This is implied by, but does not imply, the sharp null

E.g., treatment may have an effect on some individuals, but no average
effect
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Measures of Association

Associational risk difference (RD)

Pr[Y = 1|A = 1]−Pr[Y = 1|A = 0] = E(Y = 1|A = 1)−E(Y = 1|A = 0)

Associational risk ratio (RR)

Pr[Y = 1|A = 1]

Pr[Y = 1|A = 0]

Associational odds ratio (OR)

Pr[Y = 1|A = 1]/Pr[Y = 0|A = 1]

Pr[Y = 1|A = 0]/Pr[Y = 0|A = 0]

If A ⊥⊥ Y (independent) then assoc. RD equals 0, assoc. RR and OR
equal 1
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Conditional Randomization

In a marginally randomized experiment, full exchangeability holds, which
implies exchangeability

Y a ⊥⊥ A for a = 0, 1

This is not necessarily true in a conditionally randomized experiment

Conditionally randomized experiments can be viewed as two separate
marginal experiments

Thus, conditional exchangeability holds

Y a ⊥⊥ A|L = l for a, l = 0, 1

where is written as Y a ⊥⊥ A|L = l for a = 0, 1 for notational ease
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Standardization

Under conditional exchangeability, the standardized mean equals
the counterfactual mean had all individuals in population received
treatment a

Thus causal effects can be identified under conditional
exchangeability, e.g., the casual RR equals

Pr[Y a=1 = 1]

Pr[Y a=0 = 1]
=

∑
l E [Y = 1|A = 1, L = l ] Pr[L = l ]∑
l E [Y = 1|A = 0, L = l ] Pr[L = l ]

In the usual scenario where we are not ignoring sampling
variability, this suggests a consistent estimator based on
plugging-in observed proportions∑

l P̂r[Y = 1|A = 1, L = l ]P̂r[L = l ]∑
l P̂r[Y = 1|A = 0, L = l ]P̂r[L = l ]

Similarly for the causal RD and OR
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Inverse Probability Weighting

Consider the following Horwitz-Thompson-type estimator of E [Y a]

1

n

n∑
i=1

I [Ai = a]Yi

Pr[Ai = a|Li ]

This estimator is unbiased when Pr[A = a|L = l ] is known for all a, l (as
in a conditional randomized experiment) and conditional exchangeability
holds

Pr[A = 1|L = l ] is the propensity score

Notes: (i) notation Pr[A = a|L] is different from notation of HR
(Technical Point 2.2); (ii) Pr[A = a|L] is a random variable whereas
Pr[A = a|L = l ] is a constant
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Conditional Exchangeability (CE)

Unfortunately, it is not possible to verify Y a ⊥⊥ A|L because, in
order to do so, one would need to test

Pr[Y a = 1|A = a, L = l ] = Pr[Y a = 1|A 6= a, L = l ]

But this is not possible because Y a is never observed for
individuals with A 6= a (i.e., right side is not identifiable)

Thus causal inference in observational studies often relies on
expert knowledge to select L in order to ensure CE plausible [In
Section 7, we will discuss how to use graphs to choose the set of
covariates L to ensure CE holds]

CE will not hold if there exist unmeasured independent predictors
U of outcome such that probability of receiving treatment A
depends on U within strata of L. For this reason, Y a ⊥⊥ A|L often
referred to as the no unmeasured confounders assumption.
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Positivity

Positivity is defined to be

Pr[A = a|L = l ] > 0 for all l such that Pr[L = l ] > 0

In Table 3.1 positivity holds because there are individuals at both levels
of treatment (A = 0 and A = 1) for each level of the covariate L (0 and
1)

Positivity would not hold if an individual with critical condition at
baseline L = 1 always gets treatment, i.e., Pr[A = 0|L = 1] = 0

Unlike conditional exchangeability, positivity can sometimes be
empirically verified
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Well-defined interventions

Up until now we have assumed there are only two versions of treatment,
a = 1 and a = 0, and hence two potential outcomes, Y a=0 and Y a=1,
per individual (recall this was part of SUTVA)

However it may be there are different versions of treatment a = 1

E.g., “heart transplant” might entail different surgeons, different pre-op
procedures, etc

These different versions of treatment could result in different potential
outcomes
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Notation

N groups; ni individuals in groups i = 1, . . . ,N

Ai = (A1i , . . . ,A1ni ) treatments received for ni individuals in group i
Aij = 0 or 1 implies Ai can take on 2ni possible values

Ai,−j is the ni − 1 subvector of Ai with the j th entry deleted
ai and aij denote possible values of Ai and Aij

Let A(n) be the set of vectors of all possible exposure allocations of
length n. e.g., A(2) = {(0, 0), (0, 1), (1, 0), (1, 1)}, ai ∈ Rni

A(n, k) denotes when exactly k individuals receive treatment 1 (i.e.,
completely randomized design)

Let α be the proportion treated in a group
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Assignment Mechanism

Si = 1 if the i th group is assigned to α1 and 0 otherwise
S = (S1, . . . ,SN)
C =

∑
i Si

Parameterization for treatment assignment strategy

I Complete randomized group assignment strategy if ki number
treated in block i , i.e., π(ai , α) = I (ai ∈ A(ni , ki ))/

(ni
ki

)
I Bernoulli Allocation: π(ai , α) =

∏ni
j=1 α

aij (1− α)1−aij
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Potential Outcomes

yij (ai ) is the potential outcome of individual j in group i under ai

Allows for interference between individuals within group i

Can write yij (ai ) as yij (ai,−j , aij = a)

Have 2ni potential outcomes per individual, instead of 2 potential
outcomes per individual in the absence of interference
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Average Potential Outcomes

Individual average potential outcome

ȳij (a, α) =
∑

ai,−j∈A(ni−1)

yij (α, aij = a) Pr(Ai,−j = ai,−j |Aij = a)

Group average potential outcome

ȳi (a, α) =
1

ni

ni∑
i

ȳij (a, α)

Population average potential outcome

ȳ(a, α) =
1

N

N∑
i

ȳi (a, α)
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Causal Estimands: Direct Effects

Individual direct causal effect of treatment 0 compared to treatment 1
for the individual j in group i by

CED
ij (α) = yij (aij = 1, α)− yij (aij = 0, α)

Individual average direct causal effect

CE
D
ij (α) = ȳij (1, α)− ȳij (0, α)

Group average direct causal effect

CE
D
i (α) = ȳi (1, α)− ȳi (0, α)

Population average direct causal effect

CE
D

(α) = ȳ(1, α)− ȳ(0, α)
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Causal Estimands: Indirect Effects

Individual indirect causal effect of treatment programs α1 compared
with α1 on individual j in group i by

CE I
ij (α1, α0) = yij (α1, aij = 0)− yij (α0, aij = 0)

Individual average indirect causal effect

CE
I
ij (α1, α0) = ȳij (0, α1)− ȳij (0, α0)

Group average indirect causal effect

CE
I
i (α1, α0) = ȳi (0, α1)− ȳi (0, α1)

Population average indirect causal effect

CE
I
(α1, α0) = ȳ(0, α1)− ȳ(0, α0)
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Causal Estimands: Total and overall Effects

Population average total causal effect

CE
T

(α1, α0) = ȳ(1, α1)− ȳ(0, α0)

Population average overall causal effect

CE
O

(α1, α0) = ȳ(α1)− ȳ(α0)
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Estimands

Direct effect : DE(α) = Y (a = 0;α)− Y (a = 1;α) (1)

Indirect effect : IE(α, α′) = Y (a = 0;α)− Y (a = 0;α′) (2)

Total effect : TE(α, α′) = Y (a = 0;α)− Y (a = 1;α′) (3)

Overall effect : OE(α, α′) = Y (α)− Y (α′) (4)

coverage: α < α′
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Estimators

ĈE
D

(α1) = Ŷ (1, α1)− Ŷ (1, α1)

ĈE
I
(α1, α0) = Ŷ (0, α1)− Ŷ (0, α0)

ĈE
T

(α1, α0) = Ŷ (1, α1)− Ŷ (0, α0)
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Overall Estimators

Ŷi (α) =
∑

j Yij

ni

Ŷ (α) =
∑

i Ŷi (α)I [Si=1]∑
i I [Si=1]

Under assumption 1, E{Ŷ (α)} = ȳ(α)

Unbiased estimator: ĈE
O

(α1, α0) = Ŷ (α1)− Ŷ (α0)
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Variance

Unbiased estimators of the variance of the estimators does not exist
without further assumptions

Stratified Interference (SI): Only matters how many were treated in
group or cluster, and does not matter who was treated

For a given aij = a, individual j in group i has
1 potential outcome assuming no interference
ni potential outcomes assuming stratified interference
2ni−1 potential outcomes under no assumptions

Under SI, simple random sampling and two stage cluster sampling yield
unbiased estimators of variance of Ŷi (0, α) and Ŷ (0, α1)

Variance estimators are unbiased when effect is additive, positively
biased otherwise
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Notation

Consider finite population of n individuals with ids i = 1, . . . , n

Ai self-selected binary exposure (Ai = 1 if exposed and 0, otherwise)

Zi denote the vector of covariates for participant i .

Observed network represented by a binary adjacency matrix
g = [gij ]

n
i,j=1 ∈ {0, 1}

n×n.

Nearest neighborhood of participant i is Ni = {j : gij = 1}.
Vector of exposures for neighbors of i is ANi

= {Aij , gij = 1}.
The observed outcome of i , Yi , is random and depends not only on Ai ,
but also on ANi

, Yi = yi (Ai ,ANi
).
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Assumptions

We assume Bernoulli counterfactual treatment allocation strategy with
coverage α (∼ participants in Ni are exposed with prob. α).

Let π(aNi
;α) = α

∑
aNi (1− α)|Ni |−

∑
aNi denote the probability of the

nearest neighborhood for an individual i receiving treatment ANi
under

allocation strategy α.

Define ȳi (a, α) =
∑

aNi
yi (ai = a, aNi

)π(aNi
;α) to be the average

potential outcome for individual i under allocation strategy α.

With additional assumption that dissemination (i.e., interference) within
Ni is invariant to which particular subset of neighbors is treated and
depends only on number exposed in Ni → yi (ai , α) = yi (ai , f (aNi

)),
where f (aNi

) =
∑
Ni

ai/di .
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Models and Estimation

Inverse probability weighting (IPW) can be used to replicate two-stage
randomized design with observational study (Tchetgen Tchetgen and
VanderWeele, 2012).

Ŷi
ipw

(a, α) =
n∑

j=1

yi (Ai ,ANi
)πi (ANi

;α)I (Ai = a)

nf (Ai ,Ni |zi , zNi
)
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