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Motivation

Introduction

@ PWIDs are embedded in social (risk) networks and exert
biological and social influence on the members of these
networks (Hayes et al., 2000; Ghosh et al., 2017).

@ In PWID networks, interventions often have indirect or
disseminated effects, which frequently depends on the
network structure and intervention coverage levels.

@ Indirect/disseminated effect could be stronger than
direct/individual effects and ignoring indirect effects can

under-estimate the full impact of interventions
(Buchanan et al., 2018).
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Motivation

Causal Inference

e A Potential Outcome (i.e., Counterfactual)
> Y(0): Response that would have been seen if (possibly contrary
to fact) the participant were not exposed.
> Y(1): Response that would have been seen if (possibly contrary
to fact) the participant were exposed.
@ Assumptions: Consistency, No Interference, Positivity,
Exchangeability (Cole and Frangakis, 2009; Rubin,
1980)

@ Relax the no interference assumption.
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Motivation

Two-stage Randomized Design

@ One design to facilitate causal inference with
interference is a two-stage randomized design
(Halloran and Struchiner, 1991; Hudgens and Halloran,
2008).

o Clusters are randomly assigned to an allocation strategy
(or coverage) of exposure at the first stage; in the
second stage, individuals in a cluster are randomly
exposed according to the allocation assigned in the first
stage.

@ Coverage of exposure is defined as the proportion of
subject who are exposed in a certain cluster.
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Motivation

Interference in an Observed Network

Community with @ = 10% Community with & =~ 80%

Adapted from Benjamin-Chung, et al. (2017).
@ Connections: Shared HIV risk (injection or sexual).
@ Index darker shaded blue or red nodes.
@ Exposed network members light blue or pink.
@ Communities determined in the network.
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Motivation

Motivating Example

The Social Factors and HIV Risk Study (SFHR)

@ Sociometric network study conducted between 1991 and 1993 in
Bushwick, Brooklyn, New York among street-recruited injection
drug users

@ Investigated how HIV/AIDS infection spread through shared
sexual and injection risk behaviors.

@ 767 participants along with 3,162 dyadic relationships (i.e. a
connection b/w two people).

@ Connections were shared risk behaviors (i.e. inject drug together
and/or having sexual intercourse) within 30 days before the
interview.
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Motivation

SFHR PWIDs Network for Analysis

SFHR PWIDs Network

Goal: To assess
attitudes toward
HIV/AIDS risk and
their effects on
health-seeking behaviors
s among PWIDs and their
S risk communities in

V ” SFHR network.

Figure 1: SFHR PWIDs Network for
Analysis. There are 402 vertices and 403
edges.
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Motivation

Exposures and Outcomes

Exposure Outcome
- HIV/AIDS locus of control: - Receipt of study-based HIV
One dimension of an testing result: Did the study
individual's beliefs about how participant receive the results
much control they have about of their HIV test in SFHR?
their HIV/AIDS risk.
& / e v, — {1, if test received
ij — .
1, if internal 0, otherwise
AU = i .
0, if external

Buchanan, et al. JSM 2019 9/20



Evaluation of Disseminated Effects in Networks

Causal Parameters

Direct effect : DE(a) = Y(a=1;a)— Y(a=0;a)

Indirect effect : IE(a,a’) = Y(a=0;a) — Y(a=0;d)

Total effect : TE(a,d/)=Y(a=1,a)— Y(a=0;d)

Overall effect :  OE(a, &) = Y(a) — Y(&)

coverage: o/ < «
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Evaluation of Disseminated Effects in Networks

Causal Inference with Observational Network Data

e Inverse probability weighting (IPW) method to
adjust for confounding in an observational study
(Tchetgen and VanderWeele, 2012).

APPROACH

1. Determine a set of communities of PWIDs in the SFHR
observed network.

2. Calculate community-level propensity score (i.e.,
probability of having specific attitude toward HIV/AIDS
risk) for each subnetwork based on individual-level
covariates of sex, race, education, age and their pairwise
interactions.

3. Use the inverse of propensity scores as weights to
compute IPW estimators of potential outcomes.
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Evaluation of Disseminated Effects in Networks

Assumptions

(1) Partial interference: Allow interference within a community, but
not between communities.

(2) Stratified interference: Individual's potential outcome is
dependent only on own exposure and the proportion exposed in
their community.

(3) Bernoulli individual group allocation strategy: The distribution
of exposure selection mechanism A is assumed to be a Bernoulli
distribution and used to define the average potential outcomes Y?.

(4) No homophily: Assume there is no latent variables related to
health-seeking behavior with which an individual has a tie with
another individual who has the similar characteristics.
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Evaluation of Disseminated Effects in Networks

Community Detection

o Community: A set of vertices densely connected, with
only sparser tie to vertices that belong to other groups
or communities.

e Hierarchical clustering: Common methods for
community detection where the closest or most similar
vertices are combined to form communities with a
measure of similarity or connection strength between
vertices based on the network structure.

@ As the measure of similarity, we use modularity
(Kolaczyk, 2009; Newman, 2006).
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Evaluation of Disseminated Effects in Networks

IPW estimation: Community-Level Propensity Score

Community-level propensity score can be calculated by
adjusting for individual-level covariates among those in the
community.

fa1x; (Ail Xi; 0, 0s) = /H hi(bi; 0x)*5 {1 — hy(bi; 0x) '~ fy(by; 0s)db;
=1

where

h,‘j(b,'; GX) = Pr(a,-j = 1|X,j b,',@x) = Iogit_l(X,-J-GX + b,') is a
propensity score for jth individual in community i and

fp(+; 0s) is the density of community-specific random effect
and assume b; ~ N(0, 6s).
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Evaluation of Disseminated Effects in Networks

IPW estimation: IPW estimator

IPW estimator for community-level potential outcome:

G (2.0) Sy il Ai i )l (Aj = a)Yj
nifa x; (Ail Xi; 0)

(1)

Marginal community potential outcome:

?'ipw(a) _ S mi(An )Y @)
I nifa; x (Ail Xi; 0)
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Evaluation of Disseminated Effects in Networks

Population-level IPW estimators

E\E(a) = YP(a=10)— YP(a=0;0)
IE(a,a!) = YP(a=0;a) — YP(a=0;d)
TE(o,0/) = YP¥(a=1;0) — YP¥(a = 0;a)

OE(ar, o) = YP(a) — VP(o)

coverage: o/ < «
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Results

Causal Inference: IPW estimation

Table 1: Estimated risk differences (RDs) with 95% Cls of locus of
control (internal vs. external) on likelihood of receiving HIV test
results in SFHR (coverage of internal)

Unadjusted Adjusted with interactions
Effect Coverage RD 95% ClI RD 95% ClI
(c o)

Direct (50%, 50%) 0.148 (0.065, 0.230) 0.160 (0.055, 0.265)
Direct (70%, 70%) 0.142  (0.038, 0.246) 0.162 (0.055, 0.268)
Indirect  (70%, 50%) 0.041 (0.012, 0.071) 0.031 (0.008, 0.054)
Total (70%, 50%) 0.183  (0.096, 0.271) 0.193 (0.100, 0.286)
Overall  (70%, 50%) 0.067 (0.038, 0.096) 0.065 (0.041, 0.089)
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Results

Causal Inference: IPW estimation

Table 2: Estimated risk differences (RDs) with 95% Cls of locus of
control (internal vs. external) on likelihood of receiving HIV test
results in SFHR (coverage of internal)

Unadjusted Adjusted with interactions
Effect Coverage RD 95% ClI RD 95% ClI
(v, @)

Direct (50%, 50%) 0.148  (0.065, 0.230) 0.160 (0.055, 0.265)
Direct (70%, 70%) 0.142  (0.038, 0.246) 0.162 (0.055, 0.268)
Direct (99%, 99%) 0.101  (-0.056, 0.258) 0.130 (-0.008, 0.268)
Indirect  (70%, 50%) 0.041  (0.012, 0.071) 0.031 (0.008, 0.054)
Indirect  (99%, 50%) 0.070 (-0.019, 0.156) 0.062 (-0.000, 0.123)
Indirect  (99%, 70%) 0.029  (-0.040, 0.098) 0.030 (-0.011, 0.072)
Total (70%, 50%) 0.183  (0.096, 0.271) 0.193 (0.100, 0.286)
Total (99%, 50%) 0.172  (0.066, 0.278) 0.192 (0.093, 0.291)
Total (99%, 70%) 0.130  (0.006, 0.254) 0.161 (0.049, 0.272)
Overall  (70%, 50%) 0.067  (0.038, 0.096) 0.065 (0.041, 0.089)
Overall  (99%, 50%) 0.097 (0.010, 0.183) 0.111 (0.032, 0.190)
Overall  (99%, 70%) 0.030  (-0.035, 0.095) 0.046 (-0.013, 0.105)
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Discussion

Discussion

o Additional benefit to reporting internal locus beyond
being around those who have internal for likelihood of
receipt of HIV test result.

@ Among those with external locus, having more
community members with internal increased likelihood
of receipt of HIV test.

o Attitudes are an important determinant of
health-seeking behavior among PWIDs and future
interventions could consider this influence in the
network to increase and sustain impact.

o Communities may share edges and, if there are many
edges, partial interference assumption may be dubious.

@ Possibly unmeasured confounders (i.e., health insurance
status) and cannot rule out homophily.
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Future Directions and Collaborations

Future Research Directions

@ Account for uncertainty in estimates due to community
detection.

@ Allow for alternative definitions of the interference set
(e.g., nearest neighbor).

@ Improve methods for generalizing results, particularly in
the presence of dissemination.

o New collaborations to apply these methods to
important public health settings.
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Original PWIDs Network in SFHR

Full Network

o Female HIVIAIDS+
- fjale HIVIAIDS-

Figure 2: Full Network.
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SFHR PWIDs Network for Analysis

SFHR PWIDs Network SFHR PWIDs Network
locus of control and receipt of SFHR HIV testing result locus of control and recent medical visit

= Internal gRecewd Internal Recent medical visit
== External Not received === External No recent medical visit

Figure 3: The Social Factors and HIV Risk Study PWIDs' network for
the analysis. Locus of control and receipt of HIV testing result (Left)
and recent medical encounter (Right).
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Data Pre-processing

Table 3: Questions about Health Beliefs in SFHR (5-point Likert Scale)

Questions related to belief (BLF)

QL.
Q2.
Q3.
Q6.
Q7.
Q8.

It is my own behavior which determines whether | get AIDS or not.
No matter what | do, if I'm going to get AIDS, | will get AIDS.
I'm in control of whether or not | get AIDS.

Getting AIDS is largely a matter of bad luck.

No matter what | do, I'm likely to get AIDS.

If | take the right actions, | can avoid getting AIDS.

Q10. No matter what | do, I'm unlikely to get AIDS.

Questions related to blame (BLM)

Q4. My family have a lot to do with whether | get AIDS.
Q5. If | get AIDS, I'm not to blame.
Q9. If | get AIDS, it is because of the society we live in.
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Causal Inference: IPW estimation - Model 2

Table 4: Estimated risk differences (RDs) with 95%Cls of blame
(others vs. self) on likelihood of receiving HIV testing results in
SFHR (coverage of self-blame).

Unadjusted Adjusted with interactions

Effect Coverage RD 95%Cl RD 95%Cl
(v, @)

Direct (50%, 50%) -0.043 (-0.164, 0.079) -0.045 (-0.159, 0.069)
Direct (70%, 70%) -0.035 (-0.159, 0.088) -0.034 (-0.154, 0.085)
Direct (99%, 99%) -0.077 (-0.250, 0.096) -0.065 (-0.230, 0.100)
Indirect  (50%, 70%) -0.002 (-0.047, 0.044) -0.001 (-0.043, 0.041)
Indirect  (50%, 99%)  0.034  (-0.077, 0.145) 0.034 (-0.066, 0.134)
Indirect  (70%, 99%) 0.036  (-0.037, 0.109) 0.035 (-0.032, 0.102)
Total (50%, 70%) -0.037 (-0.164, 0.090) -0.035 (-0.154, 0.083)
Total (50%, 99%) -0.043  (-0.200, 0.115) -0.031 (-0.175, 0.113)
Total (70%, 99%) -0.041 (-0.197, 0.115) -0.030 (-0.176, 0.116)
Overall  (50%, 70%) -0.005 (-0.048, 0.038) -0.003 (-0.042, 0.036)
Overall  (50%, 99%) -0.021  (-0.135, 0.094) -0.008 (-0.113, 0.097)
Overall  (70%, 99%) -0.015 (-0.095, 0.064) -0.005 (-0.079, 0.068)
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Associations with Recent Medical Visit - Model 3

Table 5: Estimated risk differences (RDs) with 95% Cls of locus of
control (external vs. internal) on likelihood of a recent medical visit in
SFHR (coverage of internal)

Unadjusted Adjusted with interactions

Effect Coverage RD 95% ClI RD 95% ClI
(v, @)

Direct (50%, 50%) 0.211  (-0.286, 0.708) 0.090 (-0.271, 0.451)
Direct (70%, 70%)  0.003  (-0.296, 0.301) -0.111 (-0.346, 0.123)
Direct (99%, 99%) -0.227  (-0.463, 0.009) -0.280  (-0.470, -0.089)
Indirect  (50%, 70%) -0.001 (-0.260, 0.257) -0.008 (-0.181, 0.165)
Indirect  (50%, 99%)  0.208  (-0.298, 0.715) 0.077 (-0.311, 0.464)
Indirect  (70%, 99%) 0.210  (-0.063, 0.482) 0.085 (-0.136, 0.305)
Total (50%, 70%) 0.001  (-0.537, 0.539) -0.119 (-0.496, 0.258)
Total (50%, 99%) -0.019 (-0.491, 0.453) -0.203 (-0.559, 0.153)
Total (70%, 99%) -0.017  (-0.255, 0.220) -0.195 (-0.409, 0.018)
Overall  (50%, 70%) -0.105 (-0.316, 0.106) -0.131 (-0.265, 0.003)
Overall  (50%, 99%) -0.122  (-0.358, 0.114) -0.246  (-0.430, -0.061)
Overall  (70%, 99%) -0.017 (-0.082, 0.048) -0.114  (-0.181, -0.047)
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Associations with Recent Medical Visit - Model 4

Table 6: Estimated risk differences (RDs) with 95%Cls of blame
(others vs. self) on likelihood of reporting a recent medical
encounter within the past year (coverage of self-blame)

Unadjusted Adjusted with interactions

Effect Coverage RD 95%Cl RD 95%Cl
(v, @)

Direct (50%, 50%) 0.017  (-0.141, 0.175) 0.002 (-0.156, 0.160)
Direct (70%, 70%) -0.054 (-0.205, 0.096) -0.076 (-0.213, 0.060)
Direct (99%, 99%) -0.209 (-0.467, 0.050) -0.269  (-0.527, -0.011)
Indirect  (50%, 70%) 0.076  (-0.001, 0.153) 0.086 (-0.014, 0.186)
Indirect  (50%, 99%) 0.238  ( 0.053, 0.423) 0.272 (10.072, 0.472)
Indirect  (70%, 99%) 0.162 ( 0.019, 0.305) 0.186 (10.038, 0.335)
Total (50%, 70%)  0.022  (-0.099, 0.143) 0.009 (-0.126, 0.144)
Total (50%, 99%) 0.029  (-0.159, 0.218) 0.003 (-0.214, 0.219)
Total (70%, 99%) -0.047 (-0.263, 0.170) -0.083 (-0.299, 0.133)
Overall  (50%, 70%) 0.029  (-0.022, 0.081) 0.031 (-0.054, 0.117)
Overall  (50%, 99%) 0.023  (-0.119, 0.164) 0.005 (-0.178, 0.187)
Overall  (70%, 99%) -0.007 (-0.148, 0.134) -0.027 (-0.183, 0.130)
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Modularity

Modularity is defined as following:

@ Assume there are C = {Cy, Gy, -+, Ck} candidate of K
communities in an observed network G.

e We also define f;; = £;;(C) as the fraction of edges in
the original network that connect vertices in cluster i
with vertices in cluster j, i # j.

@ Given this,
K

mod(C) = Z[fkk(c) — fal?, (3)

k=1

where fy is the fraction of edges which connect vertices
within the same cluster k in G, and f, is the expected value
of fix under some model of random edge assignment.
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Modularity-Based Community Detection

85 connected components and one of them forms the giant
component that include 199 participants. In total, 96
communities in the SFHR network for analysis.
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