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Introduction

Definition

Implementation Science

Translation and scale-up of research evidence into practice
(Madon et al., 2007; Padian et al., 2011)

Natural clustering by social network or community

Biological and social influence in networks

Understanding this influence can inform public health
practice and policy
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Introduction

Causal Inference

A Potential Outcome (i.e., Counterfactual)
I Y (0): Response that would have been seen if (possibly contrary

to fact) the participant were not exposed
I Y (1): Response that would have been seen if (possibly contrary

to fact) the participant were exposed

Assumptions: Consistency, No Interference, Positivity,
Exchangeability (Cole and Frangakis, 2009; Rubin,
1980)

With associations, we can predict the future. With
causation, we can change the future.
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Introduction

Two-stage Randomized Design

One approach to conduct causal inference with
interference or dissemination is to use two-stage
randomized design (Halloran and Struchiner (1991),
Hudgens and Halloran (2008)).

In this design, networks/communities are randomly
assigned to an allocation strategy of exposure (or
coverage of exposure) at the first stage, then, in the
second stage, individuals in a community are randomly
exposed according to the coverage assigned in the first
stage.

Coverage of exposure is defined as the proportion of
subjects who are exposed in a certain community.
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Introduction

Cluster-Randomized Trial

Adapted from Halloran and Struchiner (1991, 1995).
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Introduction

Network-Based Study

Adapted from Benjamin-Chung, et al. (2017).

Connections: Shared HIV risk (injection or sexual)

Index shaded blue or red nodes

Nearest neighbors outlined nodes
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Motivation

Study Motivation

Injection drug use increases HIV risk through sharing
equipment (e.g. syringes, needles, etc.) and often
correlates with risky sexual behaviors

PWIDs are not only at high risk of HIV infection, but
also face unique barriers along the HIV treatment
cascade (Ghosh et al., 2017)

Primary Motivation

PWIDs are embedded in HIV/AIDS risk network and such
network structure can support and sustain positive
behavioral change via interventions that leverage network
structure.
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Motivation

Motivating Example

The Social Factors and HIV Risk Study (SFHR)

Sociometric network study conducted between 1991 and 1993 in
Bushwick, Brooklyn, New York among street-recruited injection
drug users

Investigated how HIV/AIDS infection spread through shared
sexual and injection risk behaviors.

767 participants along with 3,162 dyadic relationships (i.e. a
connection b/w two people).

Connections were shared risk behaviors (i.e. inject drug together
and/or having sexual intercourse) within 30 days before the
interview.

full network
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Motivation

Goal of the Study

To assess attitudes toward HIV/AIDS risk among
PWIDs and their effect on health-seeking behaviors.

Used causal inference methods under the presence of
dissemination or spillover effects in an observational
study.

Exposures were (1) health beliefs and (2) blame
attributes of each participants.

Outcomes were (1) receipt of study-based HIV
testing result and (2) a recent medical visit within
the past year.
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Motivation

SFHR PWIDs Network for Analysis

Figure 1: SFHR PWIDs Network for
Analysis. There are 402 vertices and 403
edges.

A network (or graph) G
is defined as a collection
of vertices (or nodes)
(V ) and edges (or
links)(E ), G = (V ,E ).
Here, G is the SFHR
PWIDs network.
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Motivation

SFHR PWIDs Network for Analysis

Figure 2: The Social Factors and HIV Risk Study PWIDs’ network for
the analysis. Locus of control and receipt of HIV testing result (Left)
and recent medical encounter (Right).
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Motivation

Data Pre-processing

Table 1: Questions about Health Beliefs in SFHR (5-point Likert Scale)

Questions related to belief (BLF)

Q1. It is my own behavior which determines whether I get AIDS or not.
Q2. No matter what I do, if I’m going to get AIDS, I will get AIDS.
Q3. I’m in control of whether or not I get AIDS.
Q6. Getting AIDS is largely a matter of bad luck.
Q7. No matter what I do, I’m likely to get AIDS.
Q8. If I take the right actions, I can avoid getting AIDS.
Q10. No matter what I do, I’m unlikely to get AIDS.

Questions related to blame (BLM)

Q4. My family have a lot to do with whether I get AIDS.
Q5. If I get AIDS, I’m not to blame.
Q9. If I get AIDS, it is because of the society we live in.
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Evaluation of Disseminated Effects in Networks

Causal Parameters

Direct effect : DE (α) = Y (a = 0;α)− Y (a = 1;α)

Indirect effect : IE (α, α′) = Y (a = 0;α)− Y (a = 0;α′)

Total effect : TE (α, α′) = Y (a = 0;α)− Y (a = 1;α′)

Overall effect : OE (α, α′) = Y (α)− Y (α′)

coverage: α < α′
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Evaluation of Disseminated Effects in Networks

Causal Inference with Observational Study Data

Inverse probability weighting (IPW) method to
adjust for confounding in an observational study
(Tchetgen and VanderWeele, 2012)

APPROACH

1. Split the SFHR network into smaller subnetworks/
communities of PWIDs.

2. Calculate group-level propensity score (i.e., probability
of having specific attitude toward HIV/AIDS risk) for
each subnetwork based on individual-level covariates of
sex, race, education, age and their pairwise interactions.

3. Use the inverse of propensity scores as weights to
compute IPW estimators of potential outcomes.
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Evaluation of Disseminated Effects in Networks

Assumptions

(1) Partial interference: Allow interference within a
subnetwork/community, but not between subnetworks.

(2) Stratified interference: Individual’s potential outcome is
dependent only on own exposure and the proportion of exposed in
the community.

(3) Bernoulli individual group allocation strategy: The distribution
of exposure selection mechanism A is assumed to be a Bernoulli
distribution and used to define the potential outcomes Y a.

(4) No homophily: Assume there is no latent variables related to
health-seeking behavior with which an individual has a tie with
another individual who has the similar characteristics.

(5) Well-defined interventions: Locus of control is a well defined
exposure and there is no other version of locus of control in the
study.

(6) Positivity: Probability of exposure is positive given each level of
covariates.

(7) Conditional exchangeability: Assume that conditioning on a set
of covariates is sufficient to control confounding.
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Evaluation of Disseminated Effects in Networks

Community Detection

Community: A set of vertices densely connected, with
only sparser tie to vertices that belong to other groups
or communities.

Hierarchical clustering: Common methods for
community detection where the closest or most similar
vertices are combined to form communities with a
measure of similarity or connection strength between
vertices based on the network structure.

As the measure of similarity, we use modularity
(Kolaczyk, 2009; Newman, 2006)
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Evaluation of Disseminated Effects in Networks

Modularity

Modularity is defined as following:

Assume there are C = {C1,C2, · · · ,CK} candidate of K
communities in an observed network G .

We also define fij = fij(C ) as the fraction of edges in
the original network that connect vertices in cluster i
with vertices in cluster j , i 6= j .

Given this,

mod(C ) =
K∑

k=1

[fkk(C )− f ∗kk ]2, (1)

where fkk is the fraction of edges which connect vertices
within the same cluster k in G , and f ∗kk is the expected value
of fkk under some model of random edge assignment.

.
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Evaluation of Disseminated Effects in Networks

IPW estimation: Group-Level Propensity Score

Group-level propensity score can be calculated by adjusting
for individual-level covariates among those in the community.

fAi |Xi
(Ai |Xi ; θx , θs) =

∫ ni∏
j=1

hij(bi ; θx)Aij {1− hij(bi ; θx)}1−Aij fb(bi ; θs)dbi

where
hij(bi ; θx) = Pr(aij = 1|Xij , bi , θx) = logit−1(Xijθx + bi ) is a
propensity score for jth individual in community i and
fb(·; θs) is the density of community specific random effect
and assume bi ∼ N(0, θs).
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Evaluation of Disseminated Effects in Networks

IPW estimation: IPW estimator

IPW estimator for group-level potential outcome:

Ŷi
ipw

(a, α) =

∑ni
j=1 πi (Ai ,−j ;α)I (Aij = a)Yij

ni fAi |Xi
(Ai |Xi ; θ̂)

(2)

Marginal potential outcome:

Ŷi
ipw

(α) =

∑ni
j=1 πi (Ai ;α)Yij

ni fAi |Xi
(Ai |Xi ; θ̂)

(3)
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Evaluation of Disseminated Effects in Networks

Population-level IPW estimators

D̂E (α) = Ŷ ipw (a = 0;α)− Ŷ ipw (a = 1;α)

ÎE (α, α′) = Ŷ ipw (a = 0;α)− Ŷ ipw (a = 0;α′)

T̂E (α, α′) = Ŷ ipw (a = 0;α)− Ŷ ipw (a = 1;α′)

ÔE (α, α′) = Ŷ ipw (α)− Ŷ ipw (α′)

coverage: α < α′
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Results

Modularity-based Community Detection

85 connected components and one of them forms the giant
component that include 199 participants. In total, 96
communities in the SFHR network for analysis.
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Results

Descriptive Statistics (1)

Table 2: The Relationship between Locus of Control and
Health-Seeking Behaviors

Odds Ratio (95% CI)

Giant Not Giant Total

Received
1.94 (0.55, 6.85) 1.64 (0.59, 4.57) 1.87 (0.85, 4.11)

Not received

Recent medical
visit

1.32 (0.49, 3.56) 0.88 (0.28, 2.72) 1.07 (0.51, 2.24)

No recent medi-
cal visit
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Results

Descriptive Statistics (2)

Table 3: The Relationship between Blame and Health-Seeking
Behaviors

Odds Ratio (95% CI)

Giant Not Giant Total

Received
1.35 (0.56, 3.29) 1.00 (0.52, 1.98) 1.15 (0.68, 1.96)

Not received

Recent medical
visit

1.09 (0.47, 2.55) 0.89 (0.39, 1.99) 0.96 (0.54, 1.74)

No recent medi-
cal visit
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Results

Observed Distribution of Locus and Blame Coverages

Figure 3: Observed coverages of subjects with internal locus (left)
and subjects with self-blame (right).
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Results

Causal Inference: IPW estimation - Model 1

Table 4: Estimated risk differences (RDs) with 95% CIs of locus of
control (external vs. internal) on likelihood of receiving HIV test
results in SFHR (coverage of internal)

Unadjusted Adjusted with interactions

Effect Coverage RD 95% CI RD 95% CI
(α, α′)

Direct (50%, 50%) -0.148 (-0.230, -0.065) -0.160 (-0.265, -0.055)
Direct (70%, 70%) -0.142 (-0.246, -0.038) -0.162 (-0.268, -0.055)
Direct (99%, 99%) -0.101 (-0.258, 0.056) -0.130 (-0.268, 0.008)

Indirect (50%, 70%) -0.041 (-0.071, -0.012) -0.031 (-0.054, -0.008)
Indirect (50%, 99%) -0.070 (-0.156, 0.019) -0.062 (-0.123, 0.000)
Indirect (70%, 99%) -0.029 (-0.098, 0.040) -0.030 (-0.072, 0.011)

Total (50%, 70%) -0.183 (-0.271, -0.096) -0.193 (-0.286, -0.100)
Total (50%, 99%) -0.172 (-0.278, -0.066) -0.192 (-0.291, -0.093)
Total (70%, 99%) -0.130 (-0.254, -0.006) -0.161 (-0.272, -0.049)

Overall (50%, 70%) -0.067 (-0.096, -0.038) -0.065 (-0.089, -0.041)
Overall (50%, 99%) -0.097 (-0.183, -0.010) -0.111 (-0.190, -0.032)
Overall (70%, 99%) -0.030 (-0.095, 0.035) -0.046 (-0.105, 0.013)
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Results

Associations with Recent Medical Visit - Model 2

Table 5: Estimated risk differences (RDs) with 95% CIs of locus of
control (external vs. internal) on likelihood of a recent medical visit in
SFHR (coverage of internal)

Unadjusted Adjusted with interactions

Effect Coverage RD 95% CI RD 95% CI
(α, α′)

Direct (50%, 50%) 0.211 (-0.286, 0.708) 0.090 (-0.271, 0.451)
Direct (70%, 70%) 0.003 (-0.296, 0.301) -0.111 (-0.346, 0.123)
Direct (99%, 99%) -0.227 (-0.463, 0.009) -0.280 (-0.470, -0.089)

Indirect (50%, 70%) -0.001 (-0.260, 0.257) -0.008 (-0.181, 0.165)
Indirect (50%, 99%) 0.208 (-0.298, 0.715) 0.077 (-0.311, 0.464)
Indirect (70%, 99%) 0.210 (-0.063, 0.482) 0.085 (-0.136, 0.305)

Total (50%, 70%) 0.001 (-0.537, 0.539) -0.119 (-0.496, 0.258)
Total (50%, 99%) -0.019 (-0.491, 0.453) -0.203 (-0.559, 0.153)
Total (70%, 99%) -0.017 (-0.255, 0.220) -0.195 (-0.409, 0.018)

Overall (50%, 70%) -0.105 (-0.316, 0.106) -0.131 (-0.265, 0.003)
Overall (50%, 99%) -0.122 (-0.358, 0.114) -0.246 (-0.430, -0.061)
Overall (70%, 99%) -0.017 (-0.082, 0.048) -0.114 (-0.181, -0.047)
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Results

Causal Inference: IPW estimation - Model 3

Table 6: Estimated risk differences (RDs) with 95%CIs of blame
(others vs. self) on likelihood of receiving HIV testing results in
SFHR (coverage of self-blame).

Unadjusted Adjusted with interactions

Effect Coverage RD 95%CI RD 95%CI
(α, α′)

Direct (50%, 50%) -0.043 (-0.164, 0.079) -0.045 (-0.159, 0.069)
Direct (70%, 70%) -0.035 (-0.159, 0.088) -0.034 (-0.154, 0.085)
Direct (99%, 99%) -0.077 (-0.250, 0.096) -0.065 (-0.230, 0.100)

Indirect (50%, 70%) -0.002 (-0.047, 0.044) -0.001 (-0.043, 0.041)
Indirect (50%, 99%) 0.034 (-0.077, 0.145) 0.034 (-0.066, 0.134)
Indirect (70%, 99%) 0.036 (-0.037, 0.109) 0.035 (-0.032, 0.102)

Total (50%, 70%) -0.037 (-0.164, 0.090) -0.035 (-0.154, 0.083)
Total (50%, 99%) -0.043 (-0.200, 0.115) -0.031 (-0.175, 0.113)
Total (70%, 99%) -0.041 (-0.197, 0.115) -0.030 (-0.176, 0.116)

Overall (50%, 70%) -0.005 (-0.048, 0.038) -0.003 (-0.042, 0.036)
Overall (50%, 99%) -0.021 (-0.135, 0.094) -0.008 (-0.113, 0.097)
Overall (70%, 99%) -0.015 (-0.095, 0.064) -0.005 (-0.079, 0.068)
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Results

Associations with Recent Medical Visit - Model 4

Table 7: Estimated risk differences (RDs) with 95%CIs of blame
(others vs. self) on likelihood of reporting a recent medical
encounter within the past year (coverage of self-blame)

Unadjusted Adjusted with interactions

Effect Coverage RD 95%CI RD 95%CI
(α, α′)

Direct (50%, 50%) 0.017 (-0.141, 0.175) 0.002 (-0.156, 0.160)
Direct (70%, 70%) -0.054 (-0.205, 0.096) -0.076 (-0.213, 0.060)
Direct (99%, 99%) -0.209 (-0.467, 0.050) -0.269 (-0.527, -0.011)

Indirect (50%, 70%) 0.076 (-0.001, 0.153) 0.086 (-0.014, 0.186)
Indirect (50%, 99%) 0.238 ( 0.053, 0.423) 0.272 ( 0.072, 0.472)
Indirect (70%, 99%) 0.162 ( 0.019, 0.305) 0.186 ( 0.038, 0.335)

Total (50%, 70%) 0.022 (-0.099, 0.143) 0.009 (-0.126, 0.144)
Total (50%, 99%) 0.029 (-0.159, 0.218) 0.003 (-0.214, 0.219)
Total (70%, 99%) -0.047 (-0.263, 0.170) -0.083 (-0.299, 0.133)

Overall (50%, 70%) 0.029 (-0.022, 0.081) 0.031 (-0.054, 0.117)
Overall (50%, 99%) 0.023 (-0.119, 0.164) 0.005 (-0.178, 0.187)
Overall (70%, 99%) -0.007 (-0.148, 0.134) -0.027 (-0.183, 0.130)
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Results

Discussion

Additional benefit to reporting internal locus beyond
being around those who have internal for likelihood of
receipt of HIV test result

Among those with external locus, having more
community members with internal increased likelihood
of receipt of HIV test

Protective overall association of internal locus with
recent medical visit and additional benefit for those
with internal among 99% coverage networks

Attitudes are an important determinant of
health-seeking behavior among PWIDs

Future interventions could consider this influence in the
network to increase and sustain impact
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Results

Original PWIDs Network in SFHR

Figure 4: Full Network.
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