
A2G2V: Automatic Attack Graph Generation and Visualization and

Its Applications to Computer and SCADA Networks*

Alaa Al Ghazo1,2, Ratnesh Kumar2

1Dept. Electrical and Computer Engineering 2 Dept. Electrical And Computer Engineering

University of Hartford, West Hartford, CT 06117 Iowa State University, Ames, IA 50010

A2G2V

Summary

Abstract

Securing Cyber-Physical systems (CPS), and Internet

of things (IoT) systems requires the identification of

how interdependence among existing atomic

vulnerabilities may be exploited by an adversary to

stitch together an attack that can compromise the

system. Therefore, accurate attack-graphs play a

significant role in systems security. A manual

construction of the attack-graphs is tedious and error-

prone, this paper proposes a model-checking based

Automated Attack-Graph Generator and Visualizer

(A2G2V). The proposed A2G2V algorithm uses

existing model-checking tools, an architecture

description tool, and our own code to generate an

attack-graph that enumerates the set of all possible

sequences in which atomic-level vulnerabilities can be

exploited to compromise system security. The

architecture description tool captures a formal

representation of the networked system, its atomic

vulnerabilities, their pre- and post- conditions, and

security property of interest. A model-checker is

employed to automatically identify an attack sequence

in form of a counterexample. Our own code integrated

with the model-checker parses the counterexamples,

encodes those for specification relaxation, and iterates

until all attack sequences are revealed. Finally, a

visualization tool has also been incorporated with

A2G2V to generate a graphical representation of the

generated attack-graph. The results are illustrated

through application to computer as well as control

(SCADA) networks

Background

Attack-Graph

A2G2V Algorithm

Case study

▪ICS/SCADA Control and supervise all

critical infrastructure, such as power grid,

nuclear plants, oil and gas refinement, and

water distribution

▪ICS/SCADA architectures use devices

(PLCs/RTUs), network protocols

(MODBUS/ PROFIBUS), and graphical

user interfaces for high-level supervisory

control

▪Cloud computing and IoT revolutions

have led ICS/SCADA connections to the

internet/cloud

▪Internet connection introduced

cybersecurity vulnerabilities and threats to

ICS/SCADA

* This paper was published in IEEE SMC TRANSACTIONS

▪ Requires comprehensive

overview of
■ System architecture ---

components and

connectivity

■ Assets/Services and

Protections

■ Vulnerabilities and

Threats/Attacks

▪ Constructed by a state

space representation and

exploration:
■ Identify dynamic

variables and their

evolution under atomic

attacks

■ Explore state-space to

list executions that

violate security property

of interest

■ Attack graph is union of

all such paths

▪ A2G2V runs iteratively to automatically
generate all attack paths (seqs of atomic
attack actions)

▪ Each iteration model-checks system model

and generates a new attack sequence in

form of a new counterexample

▪ To avoid repeat generation of same

counterexample, each previous

counterexample 𝐶𝐸𝑖 is disjuncted to

security property:

Φڀ𝑖 𝐶𝐸𝑖 ⇒ 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑒𝑥𝑎𝑚𝑝𝑙𝑒 ≔
¬Φٿ𝑖¬𝐶𝐸𝑖

▪ The algorithm terminates once all acyclic

attack paths have been generated.

▪The goal is to find all acyclic

attack paths that an attacker can

use to compromise the system

▪Acyclic counterexamples length

is upper-bounded by the “depth”

of the system model

▪Each iteration Jkind uses BMC to

limit the generated

counterexample length (𝐾)

We presented a first general model-based

automated attack graph generator and

visualizer algorithm and its C-based

implementation tool A2G2V, and also

illustrated it through three examples. The

key to automation is the employment of an

architectural description language to

capture the security-related details of a

networked system, an automated

encoding of the latest counterexample to

relax the current specification, and an

iterative adjustment of the search depth of

a bounded model-checker to identify all

the acyclic counterexamples. Our

algorithm formally models the system

using AADL, iteratively model-checks the

system with JKind model-checker to

generate attack paths, and combines the

attack paths into an attack-graph using

GraphViz

