A2G2V: Automatic Attack Graph Generation and Visualization and
Its Applications to Computer and SCADA Networks*

Alaa Al Ghazo!?, Ratnesh Kumar? [OWA STATE
ONIVERSITY UNIVERSITY

OF HARTFORD 1Dept. Electrical and Computer Engineering 2 Dept. Electrical And Computer Engineering
University of Hartford, West Hartford, CT 06117 lowa State University, Ames, |IA 50010

Abstract

Securing Cyber-Physical systems (CPS), and Internet connections,
of things (IoT) systems requires the identification of t‘“}'“et‘;“bﬂ“w? - AADL + annex — aadl file
atomic attack actions

S VACYAY,

A2G2V Algorithm

how interdependence among existing atomic ey pperty Model : Cﬂf:;j,‘;f{f;ﬂe
vulnerabilities may be exploited by an adversary to l (4P)
stitch together an attack that can compromise the

system. Therefore, accurate attack-graphs play a A2G2V runs Iiteratively to automatically [AGREE]

ianifi i i ! K=K-1 K=|4P|
5|gn|f|caqt role Iin systems sc_ecurlty. A manual generate all attack paths (seqs of atomic
construction of the attack-graphs Is tedious and error- I :
prone, this paper proposes a model-checking based attack actions) lus il l Enumerate al
Automated Attack-Graph Generator and Visualizer - : 4P| <K
: - m model /' N\
(A2G2V). The proposed A2G2V algorithm uses Each iteration model-checks syste ode
existing model-checking tools, an architecture and generates a new attack sequence in 4) [A e
description tool, and our own code to generate an ' c: NGV CD . i GBS
attack-graph that enumerates the set of all possible form of a new counterexample Graphv1z JKind ,
sequences in which atomic-level vulnerabilities can be _ _ (Gf"ﬁmf”f Is AP
exploited to compromise system security. The = To avoid repeat generation of same \ /‘_k /“'_ \ J e acyclic
architecture description tool captures a formal " | . :
representation of the networked system, its atomic couhterexampie, each previous l ekl
vulne-rabilities, their pre- and post- conditions, an_d counterexample CE; is disjuncted to
security property of interest. A model-checker is Attack -
employed to automatically identify an attack sequence security property: @
In form of a counterexample. Our own code integrated OV CE C lo = Graph
with the model-checker parses the counterexamples, (V; CE;) = Counterexample = i . :
encodes those for specification relaxation, and iterates P A; CE; The goal Is to find all acyclic
Visalization tool has also been incorporated with e o, cvelie attack paths that an attacker can
attack paths have been generated. -
A2G2V to generate a graphical representation of the P J use to compromise the system
generated attack-graph. The results are illustrated
through application to computer as well as control
(SCADA) networks Case StUdy li | | h
Acyc IC counterexamp eS engt
T IS upper-bounded by the “depth”
Bac kg round /f’* of the system model
- E Host 1 010030, T1=0, P10 1 OTi-L =L T 1> 1= L T03=0, T2=0, Tt -1 '
*|CS/SCADA Control and supervise all . — \ [
S - - ffirp_02 fhrp 12 fiip_11 firp 01 sho 01 firp 02
critical infrastructure, such as power grid, A . i - (D Wy Each iteration Jkind uses BMC to
B e -
nuclear_pla_nts,_on and gas refinement, and L= i - limit the generated
water distribution Atacks e e Ty -~
. . i oot Cmedaii ik counterexample length (K)
=|CS/SCADA architectures use devices Cox \\
(PLCs/RTUS), network protocols 71 T oy
(MODBUS/ PROFIBUS), and graphical
user interfaces for high-level supervisory S
control umim ary

*Cloud computing and 10T revolutions

W=2U=02=0 0= 1L

have led ICS/SCADA connections to the We presented a first general model-based
internet/cloud L b G automated attack graph generator and
=Internet connection introduced N wEEER O CelEb Ozt visualizer algorithm and its C-based
cybersecurity vulnerabilities and threats to = | s W b implementation tool A2G2V, and also
ICS/SCADA e 1] llustrated it thrpug_h three examples. The
T e o T T T T o key to automation is the employment of an
Attack-Graph . SR o D) architectural description language to
Amchar i font N N T capture the security-related details of a
— - T T2 T, TR T e T2 T TR T Tid, T, THeD, T, T netw Ork ed SySt em, an automat ed
E 1] i3 encoding of the latest counterexample to
- e relax the current specification, and an
sl G R Ir : iterative adjustment of the search depth of
b EL - . — - a bounded model-checker to identify all
= LR e R the acyclic counterexamples. Our
algorithm formally models the system
using AADL, iteratively model-checks the
Remote Station . .
Requires COmprehensive Constructed by a state Attacker system with JKind model-checker to
overview of space representation and g_\ generate atta}ck paths, and comblne_s the
= System architecture --- exploration: f ScDA scans — attack p_aths Into an attack-graph using
components and « Identify dynamic g s g vy By C | GraphViz
connectivity variables and their a0
= Assets/Services and evolution under atomic | [T
Protectlops? : attacks
- }r/rl::;]:tr;zltltgglisand = Explore state-space to Opersor

: I
EGGE

Ll 1

list executions that
violate security property
of Interest

= Attack graph IS union of pc1[prc2| PLc3 PLC4| PLCS : 221201220 -2, ” L-:|=1,|_11;1.L2=£-.
all such paths ‘ ' | 1 1 | =000 5=0 000 8=0 et

J 19 =0, 110=, L11=0
Ve ?J‘ :

T il'-"_

=0
M n

==

== 1
cl'.":.!:‘:g:rl:.r]

=
w " r|~|- "
L= =

_
B%

* This paper was published in IEEE SMC TRANSACTIONS

