Establishment of Enhanced Load Modeling by Correlating with Occupancy Information

Yachen Tang¹, Shuaidong Zhao², Chee-Wooi Ten³, Kuilin Zhang³, Logenthiran Thillainathan⁴ ¹GEIRI North America, San Jose, CA, 95134, USA ² National Grid, New York, NY, 07101 USA ³ Michigan Technological University, Houghton, MI, 49931 USA ⁴ University of Washington–Tacoma, WA 98402 USA

1 BACKGROUND

- Load consumption is time-varying due to human behaviors, different load models \bullet may be found in different time periods.
- Conventional load modeling methods using measurement data in a certain period \bullet may not be able to capture the time-varying load behaviors that may be affected by the real environment, especially by an irregular movement of human activities.
- Under normal circumstances, the power consumption in a load area is expected to \bullet

change at different time frames that are influenced by their existence closer to the metering points.

3 HEURISTIC REGRESSION MODEL

Algorithm 1 Heuristic Regression Algorithm

OP Pairs (i) Conversion

and Data Verification

Part D

Initialization:

5: else

Section III

S: A set of OP paired points based on O_t and P_t . S': A test set for cross-validation. R: A training set to construct a regression model. $f_h(\cdot)$: Iteration function of heuristic regression. $\widetilde{M}^{r}(R, t) =$ CM_m : A set of candidate models, where m is the index for candidate models, $m = 1, 2, \cdots$ ν : Test criteria to validate a regression model. 11: end if n: Number of elements in R. n_{\min} : Minimum number of elements in R can partition set in the heuristic regression algorithm. λ , ρ : Adjustment parameters. 15: end if Input: O_t, P_t 1: Construct S. Iteration Process: Extract S' from S and left R. 2: if $f_h(R, CM_m, \nu)$ satisfy ν then 3: $\widetilde{M}^r(R,t) \leftarrow f_h(R,CM_m,\nu);$ 19: else 20: $R \leftarrow S$; 4: return $\widetilde{M}^r(R,t)$; 21: $f_h(R, CM_m, \nu)$

The heuristic regression algorithm builds models based on:

while $n \ge n_{min}$ do

- $R_{\text{Part1}} \leftarrow R(1, 2, \cdots, \lambda),$ $R_{\text{Part2}} \leftarrow R(\lambda + 1, \cdots, n).$
- Do $f_h(R_{\text{Part1}}, CM_m, \nu), f_h(R_{\text{Part2}}, CM_m, \nu)$

10: end while

- 12: if No $M^r(R,t)$ generated. then
- 13: Reduce n_{\min} by ρ ;
- 14: Do $f_h(R, CM_m, \nu)$
- Cross-Validation: $\widetilde{M}^r(R, t)$
- 16: Using S' to evaluate cross-validation.
- 17: if Average cross-validation is reasonable then
- 18: return $\widetilde{M}^{r}(R, t)$.

- 22: end if

ERROR RATE ANALYSIS OF THE TEST LUMPED LOADS IN A CONCENTRATED INTERVAL.

Name	OCC. (#)	Time Index	Power Consumption (kW)	Error Rate (%)
Metered	629	49	566.9	-
2D-Hybrid	629	49	581.809	2.63
3D-Model	629	49	578.011	1.96
ARMA	629	49	548.79	3.19
GPR	629	49	621.36	9.6
* OCC. represents the number of occupants.				

6 CONCLUSION

- The proposed finite mixtures of regression models for load model are adjusted by correlating with data available from smart meters, on-site reading, derivation of billing kWh information, or analog and binary measurements.
- The estimated occupancy can be gathered from cellular devices.

Published in IEEE Transactions on

Smart Grid, 2019 (early access)

