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➢ Cyber-physical smart grid mainly consists of generation, transmission, distribution 

systems communicating over a vast network in the cyberspace.

➢ The smart grid faces growing cyber-physical attack threats aimed at the critical systems 

and processes communicating over the complex cyber-infrastructure.

➢ Machine learning (ML)-based detection and classification have been increasingly 

effective and adopted against sophisticated attacks [1]-[3].

➢ Limitation of ML-based methods: Classic machine learning methods may not perform 

well once the data distribution has changed after training.

Cyber-Physical Security and Intrusion Detection for the Smart Grid

➢ The Dataset is from a hardware-in-the-loop testbed by 

University of Alabama in Huntsville and the Oak Ridge 

National Lab (ORNL) [5], [6].

Dataset 

Classification Performance

➢ All baseline classifiers can benefit significantly from the domain-adversarial training and 

demonstrate robust performance against unseen types and different locations of threats. 

➢ For future work we will extend the knowledge transfer ability among:
❑ Events, e.g. normal operations, planned maintenance, system faults, extreme weather damage, 

and intentional attacks; 

❑ Scenarios, e.g., heterogeneous manufacturers, protocols, standards, topologies, and wired/ 

wireless configurations.
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Conclusions

Domain Adversarial Neural Network for Robust Intrusion Detection

➢ Domain Adversarial Neural Network [4] is one of the state-of-the-art transfer learning  

methods, which leverages the adversarial training to help neural network find a mapping 

of data from two domains into same space with similar distribution. Then we can apply 

the trained source domain classifier on target domain. 

➢ Overview of the DANN based framework:

➢ Objective Function:

Combining the losses of event misclassification and domain separation.

➢ We create several cases where there is unseen attack in testing set or same attack with 

different locations.  

Experiments Description
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Cases Methods AdaBoost kNN SVM
Random

Forest
CART ANN

1

Original 72.0% 77.6% 57.9% 51.4% 53.2% 83.0%

Domain-Adversarial 86.8% 86.0% 82.9% 88.2% 76.3% 84.5%

Improvement +  14.8% + 8.5% + 25.0% + 36.8% + 23.1% + 1.5%

2

Original 77.3% 82.7% 71.0% 84.5% 76.7% 86.5%

Domain-Adversarial 94.2% 90.4% 85.5% 95.2% 79.2% 87.8%

Improvement + 16.9% + 7.8% + 14.5% + 10.7% + 2.5% + 1.3%

3

Original 73.0% 75.1% 64.8% 76.0% 61.3% 81.7%

Domain-Adversarial 83.6% 82.2% 80.9% 84.5% 75.7% 83.6%

Improvement + 10.6% + 7.1% + 16.1% + 8.5% + 14.4% + 1.9%

4

Original 71.2% 80.5% 66.7% 83.0% 69.5% 85.9%

Domain-Adversarial 89.3% 88.2% 85.3% 90.0% 79.6% 87.6%

Improvement + 18.1% + 7.7% + 18.6% + 7.0% + 10.1% + 1.6%

• Transfer to new attacks: • Transfer to different locations:

Cases Threat in Source Domain Threat(s) in Target Domain Transfer Between

1 DI RTCI Different types of attack 

(measurement to command)2 DI DI and RTCI

3 RTCI DI Different types of attack 

(command to measurement) 4 RTCI DI and RTCI

5 RTCI-15 (RelayR1) RTCI-16 (RelayR2) Different location of same 

attack6 RTCI-17 (Relay R3) RTCI-18 (Relay R4)

Case 5:

Case 6:


