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Approximately 40% of the world’s population lives within 
100 km of the coast1. These 2.4 billion people exert immense 
pressure on the ecology of coastal ecosystems, perhaps most 

dramatically by altering the availability of nitrogen (N)2–4, phospho-
rus (P)5,6 and silica (Si)7,8. Excess nutrient loading to coastal systems 
has led to a series of deleterious consequences (for example, eutro-
phication5,6, low oxygen conditions9 and reduced productivity of 
valuable fisheries6,10). The negative impacts of excess nutrients have 
been exacerbated by the decimation of coastal shellfish populations 
through overharvest11, pollution12 and disease13.

Historically, oysters were found in large populations in many 
coastal systems, and sustainably supported human populations 
for millennia14. Today, over 85% of reefs have been lost globally15, 
and less than 1% of wild populations remain in many locations16. 
Returning oysters to human-dominated coastal systems may 
help negate some deleterious anthropogenic impacts and achieve 
Sustainable Development Goal 14 of the United Nations, “To con-
serve and sustainably use the oceans, seas and marine resources 
for sustainable development”17. Specifically, rebuilding large and 
well-managed oyster populations can promote conservation and 
sustainable use of the seas by creating new habitat and maintain-
ing productivity, cleaning water through removal of suspended par-
ticulates and excess nutrients18,19 and providing a source of animal 
protein for those living in coastal communities with limited access 
to livestock protein sources, at a low greenhouse gas (GHG) cost20. 
Additionally, development of the oyster aquaculture industry pro-
vides economic benefits for small-scale fishers and coastal commu-
nities. Introduction or re-introduction of oysters to coastal systems 
may also be associated with negative ecological consequences (for 
example, competition for phytoplankton with other filter feeders, 
introduction of disease), particularly if a non-native species is used 
in restoration or aquaculture21–23.

In this Analysis, we examine the role oysters play in regulating 
coastal biogeochemical cycling. In coastal ecosystems, N and P 
availability is controlled by external (for example, sewage discharge) 
and internal (for example, recycling of nutrients from the sediments 

to the water column) sources24. Oysters enhance recycling of nutri-
ents by stimulating sediment decomposition processes following 
deposition of faeces and pseudofaeces (collectively ‘biodeposits’)18. 
Biodeposition can also reduce eutrophication by stimulating N loss 
through denitrification (the microbial conversion of biologically 
reactive N to non-reactive dinitrogen (N2) gas)25. Oysters them-
selves alter nutrient cycling by excreting N and P, and denitrification 
occurs in their digestive system26.

Since the 1990s there have been large efforts to restore oyster 
habitat27 and develop the oyster aquaculture industry for economic 
benefit and to regain lost ecosystem services. For example, New 
York City is working to return one billion oysters to its waters by 
2035 (https://billionoysterproject.org/), and oyster aquaculture 
is practiced on every continent except Antarctica. In 2016, global  
harvest of oysters raised in aquaculture exceeded 5,438 million 
tonnes, an 8% increase since 201428, and there is still tremendous 
potential for expansion29. So far, studies of the biogeochemical impact 
of oysters have focused on denitrification or nutrient regeneration 
at a single oyster farm or reef, making extrapolation to larger scales  
difficult. Here we used a meta-analysis approach to quantify the role 
oysters play in regulating coastal biogeochemical cycles at a global 
scale. Specifically, we focused on oyster-driven: regeneration of N, P 
and Si, N removal via denitrification and GHG emissions. We then 
compare the biogeochemical impact of different oyster habitats and 
species. Finally, we suggest future studies that will advance the field 
and clarify uncertainties identified in this meta-analysis.

Results and discussion
Our meta-analysis considered 1,012 studies and after screening 
included 45 (Supplementary Fig. 1). Included studies spanned 5 
continents and 7 species of oyster, and most (n = 28) were from 
the Atlantic coast of North America (Fig. 1). In total, 17 studies 
reported fluxes from oysters20,26,30–44, with 626 individual flux mea-
surements, and 31 studies (refs. 20,36,40,45–71; and S. G. Ayvazian et al., 
manuscript in preparation) reported fluxes from sediments, provid-
ing 4,328 individual flux measurements. Below, all effect sizes for 
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sediment fluxes are reported as mean estimated Hedges’s g ± 95% 
confidence interval (CI) and a P value for significance. For con-
text: small effect, g = 0–0.2; medium effect, g = 0.2–0.5; and strong 
effect, g > 0.5 (ref. 72). For fluxes from oysters, we report the mean ± 
s.e. (µmol ind−1 h−1) for market size Crassostrea virginica. As oyster 
fluxes are not compared with a control, no g can be calculated.

Oyster regulation of nutrient recycling. Both the magnitude and 
ratio of oyster-mediated nutrient regeneration are necessary con-
siderations when discussing how oysters regulate coastal nutrient 
availability. Enhanced nutrient regeneration maintains a productive 
ecosystem, but changes in the availability of N relative to P and Si 
or ammonium (NHþ

4
I

) relative to combined nitrate (NO�
3

I
) + nitrite 

(NO�
2

I
), NOx, can lead to a phytoplankton community dominated by 

dinoflagellates and cyanobacteria9,73,74, groups often associated with 
harmful algal blooms and less efficient transfer of energy across tro-
phic levels.

Sediments beneath oysters return significantly more NHþ
4

I
 to the 

water column than bare sediments (g = 0.750 ± 0.377 (P < 0.001), 
n = 25; Fig. 2). In contrast, oysters have a highly variable effect on 
sediment NOx fluxes, and one that is not significant across studies 
(g = 0.406 ± 1.577 (P = 0.583), n = 12; Fig. 2). NO�

3
I

 fluxes were also 
statistically unchanged in the presence of oysters (g = 0.012 ± 0.478 
(P = 0.956), n = 9). No conclusions could be drawn for oyster 
effect on NO�

2
I

 release due to small sample size (g = 0.784 ± 0.927 
(P = 0.059), n = 2), but these limited data suggest that it may be 
enhanced in oyster habitats. Oysters also have a strong effect on sed-
iment phosphate (PO3�

4
I

) regeneration (g = 0.561 ± 0.319 (P = 0.003), 
n = 12; Fig. 2). Oysters may have a net positive effect on sediment Si 
flux (g = 0.375 ± 0.974 (P = 0.123), n = 2), but again the data are too 
limited to draw a definitive conclusion.

We can consider the ratio of the calculated g values for two sedi-
ment nutrient fluxes to determine how oysters may change water 
column nutrient availability. For example, diatoms require an N:Si 
ratio ≤1 to dominate. A g(N):g(Si) ratio equal to 1 would indicate 
that oysters stimulate sediment regeneration of N and Si at the same 
rate, and do not change the ratio of sediment N and Si regeneration. 
If g(N):g(Si) > 1 then oysters drive greater N than Si regeneration 
relative to bare sediments, and if g(N): g(Si) < 1, then Si is regen-
erated more rapidly than N. Oysters only slightly change the ratio 
of sediment N and P regeneration (g(NHþ

4
I

 + NOx):g(PO3�
4

I
) = 1.31), 

and probably do not drive either nutrient to become limiting to 
production. However, oysters may drive greater regeneration of N 
relative to Si (g(NHþ

4
I

 + NOx):g(Si) = 2.17), though again only two 

studies compared sediment Si fluxes between bare sediment and 
sediment beneath oysters. In areas with large oyster populations, 
sediments will probably regenerate at least twice as much NHþ

4
I

 as 
NOx (g(NHþ

4
I

):g(NOx) = 2.38). It appears oysters could potentially 
lead to shifts in phytoplankton community structure that preferen-
tially use NHþ

4
I

 to NOx, such as dinoflagellates and cyanobacteria73,75.
Both oyster reefs (g = 0.684 ± 0.428 (P = 0.002), n = 12) and 

aquaculture (g = 0.742 ± 0.482 (P = 0.003), n = 11) stimulate sedi-
ment NHþ

4
I

 fluxes, with no statistical difference between the two 
habitat types (P = 0.860). Similarly, NOx fluxes were statistically 
the same (P = 0.706) between reefs (g = 0.673 ± 3.043 (P = 0.665), 
n = 6) and aquaculture (g = 0.077 ± 0.571 (P = 0.791), n = 4). NO�

3
I

 
fluxes did not differ (P = 0.063) between habitat types, despite 
the appearance of NO�

3
I

 uptake by sediments beneath aquacul-
ture (g = −0.307 ± 0.616 (P = 0.328), n = 5) and release from sedi-
ments adjacent to reefs (g = 0.316 ± 0.230 (P = 0.007) n = 4). Too 
few studies reported NO�

2
I

 fluxes to allow for statistical compari-
son. PO3�

4
I

 fluxes were also no different (P = 0.863) from sediments 
beneath reefs (g = 0.616 ± 0.677 (P = 0.075), n = 4) and aquaculture 
(g = 0.550 ± 0.314 (P < 0.001), n = 8).

Oysters themselves recycle significant quantities of NHþ
4

I
 

(5.73 ± 0.91 µmol individual (indiv.)−1 h−1) and PO3�
4

I
 (0.82 ±  

0.1 µmol indiv.−1 h−1) to the water column. NOx fluxes were much 
more variable (2.64 ± 5.74 µmol indiv.−1 h−1), with one study report-
ing high NOx emission42 and another reporting nearly equiva-
lent NOx consumption38. NO�

3
I

 fluxes were only reported in two 
studies that met our criteria but were slightly lower (0.50 ± 0.92 
µmol indiv.−1 h−1) than NOx. Three studies reported NO�

2
I

 fluxes, and 
they were lower (0.11 ± 0.02 µmol indiv.−1 h−1) than the sum of NOx 
and NO�

3
I

 fluxes. We could not locate any studies that report oyster 
Si excretion. Other grazing organisms excrete Si76, so it is possible 
oysters may too. Unlike sediment nutrient regeneration, N and P 
excretion from oysters probably drives N to become limiting in the 
context of the Redfield ratio (16 N:1 P), with an N:P molar ratio of 
6.99 NHþ

4
I

:PO3�
4

I
.

It is clear oyster habitats drive substantial nutrient recycling, 
though they may increase NHþ

4
I

:NOx with potentially negative 
consequences. There is a notable body of literature focused on 
top-down regulation of phytoplankton biomass and community by 
oysters, but less attention has been paid to how oysters may change 
phytoplankton community structure from the bottom up, despite 
evidence for stimulation of productivity using regenerated nutri-
ents77. Future research should address this so we can better under-
stand how larger oyster populations may change the ecology of 
coastal ecosystems.

Removal of excess nitrogen by oysters via denitrification. 
Stimulation of sediment denitrification and denitrification in oysters 
can permanently remove excess N from coastal systems, reducing the 
impact of eutrophication. There are two commonly used methods  
for measuring rates of denitrification, the N2/Ar (di-nitrogen gas/
argon) technique78 and the isotope pairing technique (IPT)79. The 
N2/Ar technique measures net exchange of N2 between the sedi-
ment and the water column, and the resulting fluxes are either net 
positive (that is, denitrification) or net negative (that is, nitrogen 
fixation). The IPT requires the addition of a tracer and a series of 
methodological assumptions to calculate sediment denitrification, 
and IPT rates are generally lower than those measured with the  
N2/Ar technique80.

When we examined denitrification rates measured using the N2/
Ar technique, we found that oysters have a strong positive effect 
on sediment denitrification (g = 0.682 ± 0.276 (P < 0.001), n = 19; 
Fig. 3). The effect of oysters on sediment denitrification is greater 
when measured using the N2/Ar method (g = 0.682 ± 0.284) rela-
tive to the IPT (g = 0.239 ± 0.745 (P = 0.463), n = 7), probably due 
to under estimation of denitrification using the IPT81. While the 

Fig. 1 | Location of studies used in this meta-analysis. Map created by 
Emily Moothart using ArcGIS software with data collected during the 
literature review.
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magnitude of the effect of oysters on net N2 fluxes was higher in 
reef habitats (g = 0.792 ± 0.199 (P < 0.001), n = 11) than aquaculture 
(g = 0.514 ± 0.220 (P < 0.001), n = 6), there was no statistical differ-
ence between the two habitats (P = 0.223). A possible explanation 
for this discrepancy is that some studies that measured denitrifi-
cation in reefs occasionally included the oysters in the incubation 
chamber. As oysters themselves produce N2 (refs. 26,36,38,39,41,42), this 
would probably increase the measured net N2 flux.

Relative to sediment denitrification measurements made using 
the N2/Ar technique (403 individual measurements of net denitrifi-
cation in sediment beneath oysters), there are only a few measure-
ments of net N2 from oysters themselves (n = 37). Regardless, it is 
clear that denitrification proceeds within oysters, with an average 
denitrification rate from oysters of 4.78 ± 2.46 µmol indiv.−1 h−1. In 
dense populations, denitrification in oysters could be an important 
pathway for N removal from coastal ecosystems26, perhaps more 
than doubling total removal of excess N.

Despite a large number of studies that quantified denitrification 
from sediments in oyster habitats, every study that used the N2/Ar 
method was conducted on either the Atlantic or the Gulf coast of the 
United States, and used the oyster native to this region (C. virginica). 
The only study conducted elsewhere used the IPT method40. While 
it is unlikely that other oyster species will have different effects from 
C. virginica, it is necessary to collect similar measurements in other 
locations and with other oyster species.

It is important to consider the simultaneous removal and  
recycling of N in oyster habitats in an ecosystem context. Greater 
N release from oyster habitats may at first seem to suggest that  

oysters worsen water quality, but this may not be the case as any  
N oysters excrete or that is regenerated from sediments beneath  
oysters was previously held in phytoplankton and detritus pro-
cessed by the oysters. Simply, oysters generally do not add new  
nutrients to the system, and recycled nutrients cannot support 
more phytoplankton than would be supported by external nutri-
ent loading to the system18. Instead, oysters promote a second  
round of primary production and efficient re-use of nutrients 
already in the system, while removing some excess N (Fig. 4). 
Specifically, any increase in water column primary productivity 
probably increases deposition of organic matter to sediments. In 
turn, because sediment denitrification is positively correlated with 
organic matter, N removal is enhanced (Fig. 4)82–84. Simultaneous 
promotion of N recycling and removal by oysters may not reduce 
the trophic status of a coastal system (and may in fact increase it 
through enhanced primary production and carbon fixation), but 
the presence of oysters in the system may help to reduce the effects 
associated with cultural eutrophication, such as high phytoplankton 
biomass, reductions in harvestable fish and shellfish and decreased 
water clarity.

GHG release from oyster habitats. Oyster biodeposition may pro-
mote release of carbon dioxide (CO2), methane (CH4) and nitrous 
oxide (N2O) from sediments. Oysters can also release these gases 
during respiration, digestion and from the metabolism of the bio-
film living on their shell. If oysters promote the production of these 
GHGs, it may offset benefits associated with nutrient recycling and 
denitrification.
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Fig. 2 | Effect size of oysters on nutrient fluxes. Effect size (Hedges’s g, 95% CI, and random effect meta-analysis model P value) of oysters on rates of 
sediment regeneration of the nutrients NHþ

4
I

, NOx and PO3�
4

I
 from aquaculture studies (circles), reef studies (squares) and mesocosm studies (triangles). 

Each point represents the calculated Hedges’s g for a given study and the error bars represent the 95% CI. Effect size describes the magnitude of increase 
(g > 0) or decrease (g < 0) of a flux beneath oysters relative to bare sediment. All points to the right of the solid line indicate a net positive effect, and 
points to the left of the solid line indicate a net negative effect. The dashed line indicates the mean effect size (g) of all studies together.
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Very few studies have reported the impact of oysters on GHG 
fluxes. These limited data demonstrate high variability between 
studies, and no conclusions could be made for the effect of  
oysters on sediment CO2 (g = 0.620 ± 1.194 (P = 0.155), n = 3; 
Fig. 5), CH4 (g = 0.432 ± 1.592 (P = 0.364), n = 3) or N2O fluxes 
(g = −0.771 ± 2.969 (P = 0.469), n = 4). There was not enough data 
to compare whether oyster reefs or aquaculture have a greater 
impact on sediment GHG fluxes. Quantifying how oysters may 
change sediment GHG production is an important step as aquacul-
ture continues to expand and restoration projects are planned and 
completed.

Only three studies reported CO2 and CH4 fluxes from sediments 
beneath oysters and a control site, and those studies were conducted 
in two locations. Two were conducted at the same location in 
Ireland47,69 and the other on the Atlantic coast of North America20. 
The two studies in Ireland were conducted by building oyster reefs 
then destructively sampling them a few months later, effectively 
creating a perturbation experiment. Ray et al.20 measured sediment 
GHG fluxes at an oyster farm along a 7 yr chronosequence and  
demonstrated an initial stimulation in sediment CO2 and CH4 
release after the installation of oyster aquaculture, followed by 
a return to baseline conditions. Together, these results suggest  
that oysters may stimulate sediment GHG release, but for only a 
brief period.

Oysters themselves release N2O (0.00027 ± 0.00054 µmol indi
v.−1 h−1) and CH4 (0.0057 ± 0.00085 µmol indiv.− h−1). Oyster N2O 
release is dictated by the availability of dissolved N in the water 
column, with higher rates of production when dissolved inorganic 
nitrogen (nitrate + nitrite + ammonium; DIN) concentrations are 
high and N2O consumption in the absence of DIN43. There are at 
least two, not mutually exclusive, possibilities as to how N2O pro-
duction associated with large oyster populations will interact with 
enhanced nutrient recycling and denitrification. Enhanced regen-
eration of dissolved NHþ

4
I

 from sediments followed by transfor-
mation to NOx via water column nitrification may lead to N2O 
release. Alternatively, as DIN loading to coastal systems is reduced 
or removed via denitrification, there will be less N2O production 
by oysters. Two of four studies reported enhanced uptake of N2O 
in sediments beneath oyster aquaculture, which generally occurs 
in estuarine sediments when nitrate is limiting to denitrification. 
If site-specific conditions influence how oysters alter sediment 
N2O fluxes, smart installation of oyster restoration and aquaculture 
could be an important strategy to help reduce estuarine N2O emis-
sions, particularly in systems anthropogenically enriched with N. It 
is unclear what controls oyster CH4 production and consumption. 
Oyster respiration of CO2 varies by size, water temperature and food 
availability, though when estimating the GHG footprint of animals 
in food production systems CO2 release is typically ignored as it is 
a return of photosynthetically fixed carbon to the atmosphere85,86. 
Oysters also release some CO2 to the atmosphere during precipita-
tion of calcium carbonate in shell formation87,88.

Jackson et al.42 showed a 1:1 relationship between dissolved 
inorganic carbon (DIC) fluxes in oyster-only incubations relative 
to oyster and sediment incubations, indicating that the majority 
of CO2 release in oyster reefs comes from the oysters themselves. 
Oysters may also influence the carbon (C) budget over space and 
time. Primary production and CO2 sequestration may be higher 
downstream of oyster habitats than upstream, driven by enhanced 
light and nutrient availability89 that could offset oyster associated 
CO2 release. As oyster reefs accrete over time, they switch from a 
net source of C to the atmosphere, driven by respiration and shell 
formation, to a net sink as organic material accumulates in the reef 
habitat and is buried87. It is necessary to consider these spatial and 
temporal factors alongside direct measurements of CO2 flux from 
oyster habitats.

Comparison between oyster species. In some regions, native oys-
ter species are used in restoration and aquaculture (for example,  
C. virginica on the Atlantic coast of the United States), and the biogeo-
chemical changes associated with expanding this population may be 
considered beneficial. In other areas, non-native oysters have either 
invaded or been introduced. For example, Crassostrea gigas has 
largely replaced Ostrea edulis populations in Europe, both in natu-
ral habitats and in oyster farms90. O. edulis also threatens Saccostrea 
glomerata populations in Australia91. Non-native introductions have 
been associated with negative consequences, such as reduced eco-
system carrying capacity and alteration of food web structure90,92. It 
is less clear how non-native oysters may alter biogeochemical func-
tion relative to the native species because of a paucity of data. Here 
we were able to compare the biogeochemical impacts of C. gigas 
with C. virginica on only sediment NHþ

4
I

 and PO3�
4

I
 fluxes as there 

were not enough studies that met our criteria for other fluxes or spe-
cies. Nevertheless, this preliminary analysis affords some insight. 
We found that sediment NHþ

4
I

 fluxes were higher (P = 0.749) under 
both C. gigas (g = 0.836 ± 0.295 (P < 0.001), n = 5) and C. virginica 
habitats (g = 0.742 ± 0.497 (P = 0.003), n = 19). C. gigas appears to 
enhance sediment PO3�

4
I

 fluxes (g = 0.847 ± 0.124 (P < 0.001), n = 3) 
more than C. virginica (g = 0.451 ± 0.473 (P = 0.062), n = 7), though 
the two species were not significantly different in regard to their 
effect on sediment PO3�

4
I

 release (P = 0.113).
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Fig. 3 | Effect size of oysters on N2 flux. Effect size (Hedges’s g, 95% CI and 
random effect meta-analysis model P value) of oysters on rates of sediment 
denitrification (N2 flux) from aquaculture studies (circles), reef studies 
(squares) and mesocosm studies (triangles). Details as in Fig. 2.
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There is also limited information on direct fluxes from oysters 
apart from C. virginica (Table 1). For this reason, we could not con-
duct statistical comparisons, though qualitatively it appears that 
most fluxes were of a similar range across species. There is a clear 
need for more studies of the impact of oysters on sediment biogeo-
chemical fluxes as well as direct fluxes from oyster species besides  
C. virginica. With the limited evidence available, we cautiously sug-
gest similar effects of oysters on coastal biogeochemistry across 
species, consistent with a recent study that reported no signifi-
cant difference in GHG production by native (C. virginica) and 
non-native (O. edulis) species in the northeastern United States44.

Similar biogeochemistry in oyster reefs and aquaculture. Oyster 
reefs and aquaculture had similar effects on sediment NHþ

4
I

 and 
PO3�

4
I

 recycling, as well as denitrification. Here we show that, while 
not identical, oyster aquaculture may have similar value in recover-
ing ecosystem services associated with biogeochemical cycling to 
oyster reefs. Additionally, oyster reefs and aquaculture provide simi-
lar quality habitat93–95 and both may help to protect shorelines from 
storm surge96,97. Considering these benefits, we cautiously suggest 
that financial investment in native oyster aquaculture may provide 
similar benefits to oyster reefs, while also expanding production 

of a sustainable food resource and enhancing local economies28,98. 
A recent study suggests oceans can be restored by 205027 and 
includes oyster reef restoration as a major step in that effort. Several  
roadblocks to oyster reef restoration were noted, including poor 
management of fisheries on remaining reefs and the economic  
cost of restoration. We propose that promoting oyster aquaculture 
may allow for these two roadblocks to be side stepped while still 
achieving similar restoration goals and benefits.

Human demand for animal protein is increasing99,100. Oyster 
aquaculture provides a viable alternative source of animal pro-
tein with the added benefit of promoting coastal productivity and 
does not require the additional exploitation of limited resources. 
Additionally, like other bivalves, oysters have adapted to live in estu-
arine systems where they experience diurnal, seasonal and annual 
patterns of temperature, salinity, pH and oxygen fluctuations, 
potentially making adult oysters more resilient to the impacts of a 
changing climate. Further, oysters are a low GHG emitting protein 
source and even a small change in their consumption could lead to 
a significant reduction in GHG emissions20.

An important next step in understanding the effect of oysters 
on coastal biogeochemistry is the development of predictive models 
that use local environmental characteristics, such as temperature, 
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salinity, water column dissolved nutrient concentrations and/or 
sediment physical and chemical properties. To do this, future studies  
must thoroughly report environmental data associated with flux 
measurements and publish full datasets alongside manuscripts  
and theses.

Methods
Literature search. We aggregated studies measuring oyster fluxes and fluxes from 
sediments beneath oysters and a control site from peer-reviewed studies and 
non-reviewed literature. Peer-reviewed study identification was finalized on 23 
September 2019 using Web of Science (webofknowledge.com) and the following 
searches and terms: search (1) (oyster) AND (sediment) AND (nitrogen OR 
denitrification OR phosphorus OR silica OR methane OR nitrous oxide OR carbon 
dioxide); search (2) (oyster) AND (nitrogen OR denitrification OR phosphorus OR 
silica OR methane OR nitrous oxide OR carbon dioxide). Together, these searches 
yielded 998 results (Supplementary Fig. 1). In addition to the initial literature 
search, we added published journal articles, dissertations, theses and journal 
articles in review that we were aware of (n = 14) that did not appear in the Web of 
Science search, for a total of 1,012 studies.

Study selection criteria. We applied two screening steps to select studies for 
inclusion in our analysis. In the first step, we read the abstract of each study. If the 
abstract did not include a flux measurement from oysters or sediment beneath 
oysters, or indicate that such a measurement might be found in the manuscript, the 
study was rejected for further analysis. Next, we read all studies that passed the first 
screening step. If the study did not measure a net flux from adult oysters, report 
fluxes from both control sediment and sediment beneath or directly adjacent to 
oysters or report sample sizes, standard deviation or standard error, we excluded 
it. Studies that manually added organic material or biodeposits to sediments were 
excluded. If the same dataset was reported in multiple studies, only one version of 
that dataset was included (the earliest paper that reported the data). We also excluded 
published abstracts for conference talks, and studies not published in English.

In some cases, studies reported sample size but mean values and standard 
deviation or error had to be estimated from figures in the paper. These studies 
were included in the analysis, and the missing values were estimated by extracting 
them from plots and images embedded in the manuscript using WebPlotDigitizer 
Version 3.9 software. When the error bar did not pass the edge of the bar (or did 
not exist), error was calculated as 0, but an s.d. value of 1 was used to calculate g 
values in the meta-analysis. When sample size was reported as a range, we used the 
median possible sample size (that is, if the study reported n = 3–4, we assigned n a 
value of 3.5). Following the second extraction step, 45 studies met our criteria for 
inclusion in the analysis.

Sediment flux data analysis. When studies reported s.e. for sediment fluxes, 
we converted it to s.d., as s.d. is needed for calculating Hedges’s g (equation (1)). 
We converted all flux rates to either µmol g dry tissue weight−1 h−1 (oysters) or 
µmol m−2 h−1 (sediments). If rates were reported seasonally or monthly but no study 
mean was reported, we manually calculated a pooled study mean (Χpooled; equation 
(2)) and variance (s.d.pooled; equation (3)), where a and b represent rates reported 
different seasons or months. In studies that compared two habitat types with one 
control site, we used the same control site for both habitat types. Two studies 
reported the sample size as “n = 3 or 4” for each sampling month. In this case, we 
assigned an n value of 3.5, and used that while combining monthly mean and error. 
In all cases, we considered each sediment flux as an independent sample.

Next we calculated Hedges’s g effect size (equation (4)) and variance (equations 
(2) and (3); same method as for pooling means and variance within a study, but in 
this case the mean of sediments beneath oysters (XE) and control sediments (XC) 
for whole studies were pooled, as were all variances) using a fixed-effects model 
approach in the metafor package101 in R statistical software version 3.6.0, following 
similar methods to Harrer et al.102 and Anton et al.103.

The J value in equation (4) controls bias associated with different sample 
sizes between studies, and J is calculated in equation (5), where NE and NC are 
the experimental and control sample sizes, respectively. When interpreting g, the 
value reflects the effect size of the experimental treatment (in this case, presence 
or absence of oysters on sediment net N2 flux) in terms of number and direction 
of standard deviations the experimental treatment is from the control. A g value 
between 0–0.2 is typically considered a small effect, 0.2–0.5 a medium effect, and 
>0.5 is considered a strong effect72.

s:d: ¼ s:e: ´
ffiffiffi
n

p
ð1Þ

Xpooled ¼ Xa ´ nað Þ þ Xb ´ nbð Þð Þ= na þ nbð Þ ð2Þ

s:d:pooled ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
na � 1ð Þ ´ s:d:að Þ2þ nb � 1ð Þ ´ s:d:bð Þ2

� 
= na þ nb � 2ð Þ

q
ð3Þ

g ¼ XE � XCð Þ ´ Jð Þ=s:d:pooled ð4Þ

J ¼ 1� 3= 4 ´ NE þ NC � 2ð Þ � 1ð Þð Þ ð5Þ

To compare the influence of oysters on sediment fluxes between oyster 
reefs and oyster aquaculture, we used a random-effects meta-analysis model via 
the dmetar package104. In this model, we used the Sidik–Jonkman method for 
determining τ2 (the variance of the distribution of the true study effects) and the 
Hartung–Knapp adjustment102. We repeated this approach to compare sediment 
fluxes in oyster habitats with C. gigas and C. virginica.

Regarding denitrification, we excluded all studies that used acetylene 
techniques as acetylene is known to alter sediment microbial community function 
and provide inaccurate measurements105,106. While only net N2 fluxes from 
sediments and oysters matter in an ecosystem context, we also accepted studies 
that used the isotope pairing technique (IPT)79 to compare this direct measurement 
with a measurement of the net N2 flux (N2/Ar technique)78. Studies using the IPT 
were not included in the total estimate of oyster effects on sediment denitrification 
or comparison between habitat types.

Sediment flux publication bias. We followed the same methods used by Anton 
et al.103 to test for publication bias among sediment flux studies that may distort 
the results of the meta-analysis. We evaluated bias using Egger’s test, which 
estimates a regression using standard error of study specific effect sizes and is 
considered significant when the model intercept is statistically different from 
zero102. Additionally, we identified outlier studies that may exert substantial 
influence on the direction of the meta-analysis as those where the upper bound of 
the study 95% CI was lower than the lower bound of the pooled 95% CI (that is, an 
extremely small effect), or the lower bound of the study 95% CI was higher than 
the upper bound of the pooled 95% CI (that is, an extremely large effect)102. Both 
tests are available in the dmetar package104. When Egger’s test indicated significant 
publication bias (P ≤ 0.05) for models that included possible outlier studies in the 
meta-analysis, we removed them and reported results from the newer, outlier-free 
test. We also excluded significant outliers from our habitat comparison. We had to 
remove only one outlier from the N2/Ar meta-analysis (Supplementary Table 12), 
indicating a generally robust dataset free of publication bias.

Oyster data analysis. Oyster fluxes were reported in various units. We elected to 
convert all fluxes to µmol indiv.−1 h−1, as some studies reported this rate without 
information about oyster tissue mass. For studies that reported flux as µmol g−1 h−1, 
we assigned a value of 2.93 g indiv.−1 to convert the rates, as this is the dry tissue 
mass of commercial size oysters where most of the measurements included in 
this meta-analysis were made (Atlantic coast of the United States). We opted to 
report rates in units of μmol indiv.−1 h−1 so that we could maximize the amount of 

Table 1 | Mean (± s.e.) flux of dissolved nutrients and gases from various oyster species

Species N2 flux  NHþ
4

I
 flux NOx flux  NO�

3
I

 flux  NO�
2

I
 flux  PO3�

4
I

 flux N2O flux CH4 flux

Crassostrea gigas ND 2.81 ± 0.42 0.20 ± 0.05 ND 0.08 ± 0.01 0.87 ± 0.09 ND ND

Crassostrea virginica 4.78 ± 2.46 9.44 ± 2.56 2.89 ± 6.33 0.80 ± 1.46 0.11 ± 0.03 1.33 ± 0.67 0.11 ± 0.76 2.93 ± 1.23

Ostrea chilensis ND 0.89 ± 0.20 ND ND ND ND ND ND

Ostrea edulis ND ND ND ND ND ND 0.47 ± 0.04 0.21 ± 0.97

Saccostrea glomerata ND 5.65 ± 0.10 ND −0.03 ± 0.01 ND 0.38 ± 0.06 67.66 ± 16.46 ND

All species 4.78 ± 2.46 5.73 ± 0.91 2.64 ± 5.74 0.50 ± 0.92 0.11 ± 0.02 0.82 ± 0.10 0.27 ± 0.54 1.84 ± 0.85

All values reported in µmol ind−1 h−1 except N2O and CH4 fluxes which are in nmol ind−1 h−1. N2 fluxes only report values measured using the N2/Ar method. All rates were collected from previous studies and 
are available in the published dataset accompanying this manuscript. ND indicates no published rates met our study selection criteria.
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data included in this study and because reporting on a spatial scale (for example, 
μmol m−2 h−1) is less descriptive than reporting on an individual basis for several 
reasons. For example, there is and can be high variance in oyster stocking density 
in reefs and aquaculture dependent on habitat, oyster size, food availability, farm 
management practices and so on. Additionally, the vertical structure of the reef or 
oyster aquaculture gear (for example, cages in deep water that are several metres 
high can hold several bags of oysters) will have a different oyster density (and 
flux m−2) from gear in shallow water with only one bag of oysters. However, this 
choice also probably introduces some bias as oyster weight and life stage vary 
across reef and aquaculture communities. To help reduce this bias we specifically 
excluded juvenile and larval oysters from this meta-analysis. After converting flux 
rates to μmol indiv.−1 h−1, we calculated pooled means and variance across studies 
using equations (2) and (3). We report all oyster flux values as mean ± s.e. We did 
not perform publication bias analyses on fluxes from oysters alone, as these studies 
only report rates and do not compare oyster fluxes with anything.

Data availability
All data used in this study is available in the Figshare repository under the access 
number https://doi.org/10.6084/m9.figshare.12488753.

Code availability
The R script used in this meta-analysis is available in the 
GitHub community repository (https://github.com/nray17/
Meta-analysis-oyster-impacts-on-biogeochemistry).
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