2022 Bacteria Data - Shellfish Tributary and Narrow River Sites: Fecal coliform

A number of groups of bacteria species are used to indicate the presense of human sewage and associated pathogens, or disease causing organisms in water. Fecal coliform are one group, and its monitoring is required under the National Shellfish Sanitation Program for shellfish waters and as an indicator of overall water quality. Thus RIDEM assesses fecal coliform levels in marine waters or waters that discharge directly to marine waters.

While URIWW's Analytical Laboratories are State certified, Watershed Watch data is intended for screening purposes only. Our data help target areas of concerns and track potential sources of bacterial contamination. Samples may have been collected over a several days for each collection period, so may reflect dry versus wet weather or rain event values. Please contact Watershed Watch for specific sample dates.

Any result above the state standard is considered unsafe, and swimmers should refrain from swimming until results return to acceptable levels, or at least for several days after heavy rain.

RI Department of Environmental Management fecal coliform standards:

Shellfish Waters - Geometric mean not to exceed 14 fecal coliform per 100 mL.

USEPA regulations require tributaries to meet receiving waters standards at the point where they enter.

Shellfish Waters Tributaries Fecal Coliform Data (see "Tidal-enterococci" or "Rivers-Bacteria" for enterococci data)

Watershed	MONITORING LOCATION	MAY	JUNE	JULY	AUG.	SEPT.	OCT.	GEOMEAN		
Code		Most Probable Number of Fecal coliform per 100 mL								
SK	Seapowet Marsh (#3)	<10	41	164	160	30	10	32		
CC	Almy Pond Inflow	-	Lab error	609	238	-	324	381		
CC	Almy Pond - North	-	Lab error	4	100	-	53	20		
CC	Almy Pond	-	Lab error	21	228	-	25	69		
CC	Almy Pond Outflow	-	Lab error	341	Dry	-	448	391		
NA	Buckeye Brk @ Lakeshore Dr (culvert)	-	-	-	-	-	-	-		
NA	Buckeye Brook @ Rodney Rd	4	122	<10	-	-	-	8		
GB	GB #5 - Hardig Upstream	8	205	225	-	-	-	72		
GB	GB #7 - Southern Creek	63	285	2755	-	-	-	367		
GB	STB - Greenwich Cove	10	<10	<10	<10	31	<10	<10		
NA	STB - GB Sally Rock	<10	<10	<10	<10	<10	<10	<10		
GB	STB - Warwick Cove	31	<10	<10	10	216	<10	<10		
NA	STB - Greenwich Bay Mouth	<10	<10	<10	<10	<10	<10	<10		
NA	STB - Providence River off STB	<10	<10	<10	<10	435	10	<10		
Н	HW#4 Davis Memorial	lab error	361	43	748	39	-	146		
Н	HW #5 - Sandhill Brk (Saw Mill Inlet)	67	98	16	620	51	31	68		
NA	Jamestown - Zeek's Creek	<10	31	42	197	364	<10	39		
NA	Jamestown - Fox Hill Marsh	<10	10	<10	20	52	10	<10		
WD	Pawcatuck River - North of WWTP	63	193	355	<10	Lab error	-	163		
WD	Pawcatuck River - South of WWTP	31	120	160	195	Lab error	-	104		
WD	Pawcatuck River - Mastuxet Brook	20	53	120	84	Lab error	-	57		
WD	Pawcatuck River - Mouth	10	<10	31	148	Lab error	-	15		
NA	Wickford Harbor - Main St Dock	10	<10	<10	178	Lab error	53	10		
NA	Wickford Cove West of Loop Dr	53	86	31	504	Lab error	53	82		
NA	Wickford Cove East of Loop Dr	10	52	53	158	Lab error	42	45		
NA	Woonas. R @ Waterplace Park	148	565	84	15531	908	<10	630		

Click here for Fishers Island, Clean Up Sound & Harbors, Napatree Point, and Little Narragansett Bay Sites Data Click here for Salt Ponds, Here for Bristol Harbor and Here for Block Island Bacteria Data

URI Watershed Watch Data - https://web.uri.edu/watershedwatch/

2022 Bacteria Data - Shellfish Tributary and Narrow River Sites: Fecal coliform

Narrow River Watch Sites	(click here for NR enterococci data)
---------------------------------	--------------------------------------

Watershed	MONITORING LOCATION	MAY	JUNE	JULY	AUG.	SEPT.	OCT.	GEOMEAN	
Code		Most Probable Number of Fecal coliform per 100 mL							
PE	NR 01- Gilbert Stuart	651	4	<10	20	109	4	17	
PE	NR 02 - Upper Pond	10	<10	20	31	31	10	11	
PE	NR 03 - Lower Pond A	<10	Late delivery	10	<10	10	<10	<10	
PE	NR 04 - Lower Pond B	<10	10	10	120	<10	42	<10	
PE	NR 13 - Near Lakeside Rd.	<10	30	<10	31	64	20	10	
PE	NR 05 - Lacey Bridge	64	20	52	64	246	<10	32	
PE	NR 06 - Mettatuxet Beach	<10	42	87	-	<10	<10	<10	
PE	NR 07 - End of Narrows	<10	99	20	109	87	53	32	
PE	NR 11 - Mettatuxet Brook	12	31	4	404	86	101	42	
PE	NR 08 - Middlebridge	10	306	75	246	<10	20	32	
PE	NR 12 - Mumford Brook	NA	63	<10	3030	20	4358	111	
PE	NR 24 - Starr Drive	NA	87	<10	10	2247	-	37	
PE	NR 10 - Sprague Bridge	<10	10	31	327	1989	42	45	

RI Department of Environmental Management Shellfish Standards: Not to exceed 14 fecal coliform per 100 mL.

See our factsheet on bacteria to learn more about monitoring bacteria and how we can all help to reduce bacterial input into our local water resources is available at http://cels.uri.edu/docslink/ww/water-quality-factsheets/Bacteria.pdf. See the RI Department of Health (http://www.health.ri.gov/beaches/) for additional information about beach monitoring and state standards. RIDEM has information on state efforts to restore waters impaired by bacteria and other pollutants at http://www.dem.ri.gov/programs/water/quality/.

Sea level rise from climate change makes it harder for marshes to stay healthy. This-layer deposition of dredge materials are being applied to Narrow River marshes to try to restore resilency. (Image from https://www.ser-rrc.org/project/usa-rhode-island-narrow-river-estuary-resiliency-restoration/)