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Chapter 1

Introduction

These notes present and explore experimental analysis of dynamical systems. The first draft of the

notes was developed by JPC and later modified and enlarged by DC. The material covered in here

is at the graduate level and assumes certain amount of familiarity with basic calculus and linear

algebra. Therefore, the details of some methods and concepts covered in undergraduate engineering

and mathematics courses will not be provided. We start by describing what we mean by dynamical

systems.

1.1 Dynamical Systems

Empirically, any collection of interacting objects that changes over time is a dynamical system, if we

believe there is some “structure” to that change. Most generally, by “structure” we mean:

1. There is a phase space (or state space) S such that “points” or “elements” x ∈ S define the

current situation in the system (i.e., its “state”).

• S may be a discrete set (e.g., symbols in an alphabet) but more typically, S is a vector

space (e.g., x ≡ x ∈ Rn) or a manifold (a “surface” that locally looks like Rm)

• S can be finite dimensional or infinite dimensional (for the latter, consider any continuous

field)

2. There is some notion of time, t. Time can be continuous (t ∈ R, e.g.) or discrete (t ∈

{t1, t2, t3, . . .}).1

3. There is an evolution law that acts on S to take the current state into future states.

1It may be the case that ∆tn = tn+1 − tn ∕= ∆tm for n ∕= m!

9
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• For a continuous time system, the evolution law will be a system of differential equations

(in theory)

ẋ = f(x, t) (x ∈ S, t ∈ R) (1.1)

Note: time dependence can be stochastic (random) and f may be a partial differential

operator if Eq. (1.1) is a partial differential equation.

• For discrete time systems, it will be a map

xn+1 = f(xn, n) (xn ∈ S, n ∈ Z) (1.2)

Note: tn can be mapped on n.

Thus, empirically, the notion of a dynamical system is a hypoth-

esis on the object (or collection of objects) that you are observing.

Indeed the most fundamental type of experiment aims to learn about items 1 and 3 above (item

2 is usually clear from context):

• What is S? In particular, what is its dimension?

• What can we say about the evolution law? Is it linear or nonlinear? Is it deterministic or

stochastic?

The three hypotheses listed above are the foundation of a dynamical systems per-

spective (DSP). Concepts like “stability,” “chaos,” “fractals,” “attractors,” etc. are

consequences of this point of view, but not essential to it!

Main consequences of the dynamical systems perspective are:

1. Trajectories of the system (i.e., “solutions” to Eq. (1.1) or Eq. (1.2)) lie on (or near with small

noise) curves in S

2. Curves and surfaces left invariant by the action of the system play an important role in the

dynamics

3. Asymptotic behavior (stability) can be precisely defined using a notion of distance (‖x− y‖)

between points x, y ∈ S

In short, the DSP converts the study of time evolution into the study of geometrical properties

(at least to some extent).

1.2 Some Examples of Dynamical Systems

In this section we present several sample dynamical systems and discuss what type of questions will

DSP be used to answer.
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motor driver

optical
sensors

u,v

m1

m7

m6

m5
m4

m3

m2

m9

m8

Figure 1.1: Schematic drawing of a mass-spring-model

1.2.1 Linear Mass-Spring System

Imagine that we have a collection of nine masses (mi, i = 1, . . . , 9) connected by springs and excited

by some motor driver as shown in Fig. 1.1. All masses are constrained to move in a plane and we

can measure the vertical and horizontal displacements of mass m5 by means of optical sensors.

The dynamics of this system can be modeled by a system of linear ordinary differential equations,

if we assume that the excitation amplitude and mass motions are sufficiently small:

ẋ = A(t)x+ b(t) ,

u = g(x) ,
(1.3)

where A(t) ∈ R36×36 is usually called a state transitions matrix and its time dependence indicates

parametric forcing, b ∈ R36 is an external forcing function, x = [x1, y1, x2, y2, . . . , ẋ1, ẏ1, . . .]
T ∈ R36

is a state variable, g : R36 → R2 is the observation function, generating observations u = (x5, y5)
T

in this particular case. Experimentally, we only have observations from the optical sensors sampled

at some discrete time steps:

!

" u1 u2 u3 · · ·

v1 v2 v3 · · ·

#

$ (1.4)
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Permanent Magnets

Function
Generator

Ampli!er

Shaker

Strain Gauge

Beam

x

u(x,t)

Base Motion

Figure 1.2: Schematic drawing of Moon-Holmes oscillator

Then the question is that if we can determine the mapping from one observation to another:

%

& un+1

vn+1

'

( ≜ un+1 = C

!

))))))"

un

un−1

...

un−m

#

******$
+OT (1.5)

where C ∈ R2×(m+1), and OT ∈ R2 indicates other possible terms such as bias. Other questions

might be: what is the value for m? Can it be just 0? Is the dimensionality of C (m+ 1) indicative

of the dimensionality of S? What can we say about S and its evolution law?

1.2.2 Moon-Holmes Oscillator

Let us consider the classic nonlinear dynamics experiments first investigated by Moon and Holmes [70]

shown in Fig. 1.2. The apparatus consists of a cantilever beam fixed into a horizontally moving frame,

where the beam’s free end is buckled by a two-well potential (see Fig. 1.3) realized by two permanent

earth magnets. The frame is driven by an electromagnetic shaker that can provide harmonic force

excitation. From physics, we expect the partial differential equation (PDE) in u(x, t) ∈ S to model

the transverse oscillations of the beam. Therefore, our system is infinite dimensional (u is a scalar

field variable).

The dynamics of this system is measured using a strain gauge attached to the beam near its

clamped end. The gauge provides strain amplified voltage s(t) or {s1, s2, s3, . . .}, a scalar signal

or time series. The objectives then could be: What is the actual form of the double well? What

parameters determine the variation in dynamical behavior? Can we infer the dynamical properties

of u such as its effective dimensionality, the corresponding predictive model, etc.
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Figure 1.3: Double-well potential near the free end the the Moon beam

1.2.3 Chua-Matsumoto Circuit

Chua-Matsumoto circuit [66] is one of the simple electronic circuits that exhibit chaotic behavior.

A version of the circuit is shown in Fig. 1.4, where the variables used in the following model are

indicated near the components (in capital letters):

ẋ = α(y − x− f(x)) (1.6)

ẏ = x− y + z (1.7)

ż = −βy (1.8)

where the function f(x) describes the behavior of the nonlinear negative resistor realized in the

right part of the circuit, and parameters α and β can be altered by varying particular values of the

circuit components R and C1. In this circuit the dashed rectangle encompasses elements that form

Figure 1.4: A version of the Chua-Matsumoto circuit

a nonlinear negative resistor RNL,
2 which can be represented by the graph on Fig. 1.5.

2Usually V = RI, or voltage equals resistance times current, where R > 0.
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V

I

RNL

Figure 1.5: The current-voltage characteristic of the Chua-Matsumoto nonlinear resistor RNL

1.2.4 Shooting an Arrow at a Target

Now let us consider a task of shooting an arrow at a target illustrated in Fig. 1.6. Here the objective

of the task is to hit a bullseye. After each try we observe the error e in targeting and adjust

our arrow release angle, tension in the string, or other targeting mechanisms. Thus we observe a

sequence of {e1, e2, e3, . . .}, and ask a basic question: Is there a “first principles” model that can

describe the targeting dynamics (i.e., learning dynamics)? Or more simply is there some general

functional dependance between successive errors in targeting, en+1 = f(en, n)? Further, we can

investigate which parameters need more strict control for accurate targeting, and which are not that

critical to control.

hit

target

e error

Figure 1.6: A schematic of shooting an arrow at a target

1.2.5 Fly Population Dynamics

One other interesting example of a nonlinear map model is the fly population dynamics model [10].

For example, consider a population of flies that lives in a confined space (e.g., a jar) and we control

the amount or rate of the food supply. If we denote the population or number of n-th generation of

flies as xn, then a linear model of the population dynamics can be expressed as:

xn+1 = axn , (1.9)
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where the parameter a depends, for example, on the available food supply. However, we see the

problem of the linear model Eq. (1.9): if a > 0, then xn → ∞ as n → ∞ (unbounded growth); and

if a < 0, then xn → 0 as n → 0 (total extinction). Thus, for a linear model, we have no nonzero

steady state population of flies!

To look for a nonzero steady state solution one may start to consider introducing nonlinearity

into Eq. (1.9), e.g.:

xn+1 = axn + bx2
n , (1.10)

where the parameter b can be used to control the nonlinear cost of population growth. Or in general,

we may look for a more appropriate model xn+1 = f(xn), where the form of f can be ascertained

from the experimental observations or other physical/biological arguments.

There are many other examples of dynamical systems of interest such as commodity price dy-

namics, global warming, or protein folding.

1.3 Experimental Observation and Measurement Function

The difference between discrete and continuous systems is not as strong as it seems at first. Let us

consider a continuous dynamical system:

ẋ = f(x, t) (1.11)

with a solution starting from an initial condition x(t0) = x0:

x(t) = X(t; t0,x0) (1.12)

then let us denote x1 = X(t1; t0,x0), x2 = X(t2; t0,x0), and

xn+1 = X(tn+1; t0,x0) ≜ F(xn, n). (1.13)

or, thinking in terms of a numerical algorithm:

xn+1 = xn + f(xn, tn)∆tn, (1.14)

which is Euler step iteration. In this course, we will tend to think of all systems as “discrete” at the

level of observations.

As we saw in the examples we do not in general observe x ∈ S directly. Instead, we usually have:

xn+1 = f(xn, n) , xn ∈ S ,

un+1 = g(xn+1) , (measurement system)
(1.15)

where un does not even have the same dimension as xn. Graphically we can picture g mapping as

shown in Fig. 1.7. We usually like g to be linear (i.e. un+1 = Cun), but at minimum we need it to

be one-to-one.
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Figure 1.7: Mapping from the phase space to the measurement space

1.4 Experimental Data Analysis and Noise

Experimental data always contains some form of noise. Even the cleanest data sets have digitization

noise. Additive noise can enter as process noise p(n):

xn+1 = f(xn, n) + p(n) (1.16)

or as measurement noise q(n):

un+1 = g(xn+1) + q(n) (1.17)

The challenge then is to learn as much about the system of equations Eq. (1.16) as we can given

only the measurement time series {un}Nn=0. We do this with two general types of data analysis:

• Characterization:

– What does the system do? How does it behave in general?

– What is its “structure”?

• Prediction:

– What will the system do in the future?

– What is a good model for it?

Problems

In this class we will be using MATLAB extensively. We will start by familiarizing ourselves to

simulations of continuous and discrete systems. Please refer to ordinary differential equations section

in MATLAB documentation for simulating odes (https://www.mathworks.com/moler/odes.pdf).

Specifically, how to choose an ODE solver in MATLAB and what options are available.

https://www.mathworks.com/moler/odes.pdf
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Problem 1.1

Simulate free response of damped harmonic oscillator

ẍ+ 2ζẋ+ x = 0

for different values of damping ration ζ and initial conditions. Plot the response x(t) and ẋ(t) versus

time t and the corresponding trajectories in the phase space for underdamped, critically damped,

and overdamped systems.

Do the same for the harmonically forced system:

ẍ+ 2ζẋ+ x = f cosωt

for some choice of f and ω ∕= 1 and plot the solutions including transient response and some part of

the steady state.

Problem 1.2

Simulate two-well Duffing oscillator

ẍ+ 0.25 ẋ+ x(x2 − 1) = 0.3 cos t

using MATLAB’s ode45 algorithm and using initial conditions x(0) = −0.67079530230 and ẋ(0) =

−0.36933661878 over the time interval t ∈ [0, 100]. Sample the trajectory with the uniform sampling

time interval ts = 0.1. Now assume that our measurement from this system is ui = xi, and do the

following:

• Plot the original systems phase space trajectory, by plotting xi versus ẋi.

• Now plot our measurements versus their time-delayed version: xi versus xi+12.

How do these two plot compare? Can you say that our measurement can be used to reconstruct the

original system’s trajectory?
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Chapter 2

Probability, Estimators, and

Stationarity

Consider a signal generated by a dynamical process, x(t) ∈ R, t ∈ R. Considering x(t) as a function

of time t, we are operating in the time domain. A fundamental way to characterize the dynamics

using the time domain data is in terms of probability. Here, we assume the existence of a probability

density p(x) such that

Prob{a ≤ x ≤ b} =

+ b

a

p(x) dx , (2.1)

with a constraint that
,∞
−∞ p(x) dx = 1 (refer to Fig. 2.1 for illustration).

Figure 2.1: A generic sample of x(t) signal and corresponding probability density function p(x)

Remark: In these notes probability distribution will be called

P (x) =

+ x

−∞
p(s)ds (2.2)

so p(x) = dP (x)/dx. However, often p(x) is called a “distribution,” too, in which case

P (x) will be called the cumulative distribution.

Thinking of x(t) in terms of probability density or distribution is a point of view that considers it

as a random process—but, it does not imply anything about the actual process generating it, which

may indeed be deterministic.

19
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2.1 Description of Probability

Given p(x), we define the expected value of any function of x, f(x), as

E [f(x)] ≜
+ ∞

−∞
f(x) p(x) dx . (2.3)

2.1.1 Mean or First Moment of p(x)

In the absence of other information, E[f(x)] is a good guess at the value of f(x). A special case is

when f(x) ≡ x, so for it we define the mean value of x or the first moment of p(x):

µ = E[x] =

+ ∞

−∞
x p(x) dx . (2.4)

Remark 1: Other possible “good measures” for f(x) = x might be

• the median x = µ1/2, defined by
, µ1/2

−∞ x p(x) dx =
,∞
µ1/2

x p(x) dx, or

• the mode x = µmax, defined by p(µmax) ≥ p(x) ∀x.

Remark 2: For the Gaussian (Normal) density function:

p(x) =
1√
2πσ

exp

-
−1

2

.
x− µ

σ

/2
0

(2.5)

µ = µ1/2 = µmax. In general this is not true, unless p(x) is symmetric with respect to

x = µ.

2.1.2 Variance or Second Central Moment of p(x)

Another important expected value is for f(x) = (x − µ)2, which is called variance of x or a second

central momentum of p(x):

σ2 ≜ E
1
(x− µ)2

2
=

+ ∞

−∞
(x− µ)2 p(x) dx . (2.6)

The square root of variance, or σ, is called standard deviation. σ2 measures the “spread” of the

random process about its mean, µ.1 Please also note that:

σ2 =

+ ∞

−∞
(x2 − 2µx+ µ2) p(x) dx (2.7)

= E
1
x2 − 2µx+ µ2

2
(2.8)

= E
1
x2

2
− 2µE[x] + µ2E[1] (2.9)

= E
1
x2

2
− 2µ2 + µ2 (2.10)

= E
1
x2

2
− (E[x])

2
, (2.11)

where E[1] and E
1
x2

2
are the zeroth and the second moments of p(x), respectively.

1The variance is also the covariance of x with itself (auto-covariance in Chapter 3).
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2.1.3 Higher Order Expected Values

Other important and frequently used expected values are skewness:

α3 = γ1 =
E
1
(x− µ)3

2

(E [(x− µ)2])
3/2

, (2.12)

which is based on the third central moment and measures asymmetry of the density function, and

kurtosis:

α4 = β2 =
E
1
(x− µ)4

2

(E [(x− µ)2])
2 , (2.13)

which is based on the fourth central moment and measures peakedness of the density function.

In addition we have kurtosis excess γ2 = β2 − 3. For a Gaussian distribution/density functions

γ1 = γ2 = 0.

2.2 Estimators

µ, σ2, γ1, β2 and other moment related quantities are properties of p(x) and, indeed, define p(x) via

characteristic function2. However, we usually do not know probability distribution p(x). What we

usually do have are samples of x(t):

{x(t1), x(t2), x(t3), . . .} ≡ {x1, x2, x3, . . .} . (2.14)

Thus the question is, given the finite sequence {xi}Ni=1 what are the best estimates of the above

described statistics?

2.2.1 Mean Estimator

Let us begin with the best estimate of the mean. Let 3µ be the estimate of µ. Then the error in the

estimate is:

e =

N4

i=1

(xi − 3µ)2 , (2.15)

and we seek 3µ that minimizes e:

e =

N4

i=1

5
x2
i − 2xi 3µ+ 3µ2

6
=

N4

i=1

x2
i − 23µ

N4

i=1

xi +N3µ2 . (2.16)

Thus minimization yields:

de

d3µ = 0 = −2

N4

i=1

xi + 2N3µ , (2.17)

which gives the following

3µ =
1

N

N4

i=1

xi , (2.18)

where 3µ is the sample mean or an estimator of µ.

2refer to the stochastic systems or random processes textbooks

https://en.wikipedia.org/wiki/Characteristic_function_(probability_theory)
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Remark 1: An estimator 3a is consistent if

lim
N→∞

3a = a . (2.19)

For 3µ = 1
N

7
xi → µ as N → ∞ by the Law of Large Numbers (or Chebishev Inequality).

Remark 2: An estimator 3a is unbiased if

E [3a] = a . (2.20)

For 3µ = 1
N

7
xi, E[3µ] = 1

N

7
E[xi] =

1
N (Nµ) = µ, thus it is unbiased.

2.2.2 Central Limit Theorem

Gaussian (Normal) densities, Eq. (2.5), play an important role in experimental measurements be-

cause of the central limit theorem (CLT).

CLT: If 3µ is the sample mean of {xi}Ni=1 from any probability density with mean µ and

variance σ2, then the normalized random variable

y =

7N
i=1 xi −Nµ

σ
√
N

=
3µ− µ

σ/
√
N

(2.21)

has probability density3

p(y) → N (0, 1) (2.22)

as N → ∞, where N is the Normal (i.e., Gaussian) density with zero mean and unit

variance.

Remark:

p(y) ∼ 1√
2π

exp

.
−1

2
y2
/

=
1√

2π(σ/
√
N)

exp

-
−1

2

.
3µ− µ

σ/
√
N

/2
0

(2.23)

The CLT says that the distribution of estimates 3µ → Gaussian no matter what the original parent

distribution is, and that the “mean of the means” E[3µ] = µ, with σ!µ = σ/
√
N . Thus, σ!µ → 0 as

N → ∞, too.

2.2.3 Variance, Skewness, and Kurtosis Estimators

The obvious guess for the variance σ2 estimator, given the logic of 3µ, would be:

3σ2 =
1

N

N4

i=1

(xi − 3µ)2 =
1

N

N4

i=1

5
x2
i − 2xi 3µ+ 3µ2

6
=

1

N

N4

i=1

x2
i − 3µ2 . (2.24)

3y is a random variable since !µ is a random variable itself, which varies for different sample sets.
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However,

E
1
3σ2

2
=

1

N

N4

i=1

E
1
x2
i

2
− E

1
3µ2
2

=
1

N

N4

i=1

E
1
x2

2
− E

1
3µ2
2

= E
1
x2

2
− E

1
3µ2
2

= E
1
x2

2
−E[x]2

8 9: ;
σ2

+E [3µ]2 − E
1
3µ2
2

8 9: ;
−σ2

!µ

= σ2 − σ2
!µ = σ2 − σ2

N
using CLT .

(2.25)

where we have used the facts that E
1
x2
i

2
= E

1
x2

2
, and E[x]2 = E [3µ]2 since 3µ is unbiased. Therefore,

E
1
3σ2

2
= N−1

N σ2 ∕= σ2 and Eq. (2.25) is a biased estimator. However, it is clear that the following is

unbiased sample variance:

3σ2 =
1

N − 1

N4

i=1

(xi − 3µ)2 . (2.26)

The following estimators for skewness and kurtosis are also unbiased:

3γ1 =
k3

k
3/2
2

, 3β2 =
k4
k22

, (2.27)

where

k2 = 3σ2,

k3 =
N

(N − 1)(N − 2)

N4

i=1

(xi − 3µ)3 ,

k4 =
N [(N + 1)

7N
i=1 (xi − 3µ)4 − 3(N − 1)2k2]

(N − 1)(N − 2)(N − 3)
.

(2.28)

2.3 Stationarity

Intuitively, stationarity means no change over time, or properties are constant over time. Specifically:

SS: A process x(t) is strictly stationary if

p(x(t1), x(t2), . . . , x(tN )) = p(x(t1 + T ), x(t2 + T ), . . . , x(tN + T )),

where {t1, t2, . . . , tN} is an arbitrary set of sample times and T is an arbitrary time shift.

Here, p is a joint probability distribution:

Prob {a1 ≤ x1 ≤ b1, a2 ≤ x2 ≤ b2, . . . , aN ≤ xN ≤ bN}

=

+ b1

a1

+ b2

a2

· · ·
+ bN

aN

p(x1, x2, . . . , xN ) dxN · · · dx2 dx1 . (2.29)

Remark: SS is a very strong assumption. It implies, among other things, that all

moments are constant.
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WSS: A process x(t) is wide sense (weakly) stationary if:

1. E[x(t1)] = E[x(t2)] = µ ∀t1, t2

2. E[x(t1)x(t2)] = E[x(t1)x(t1 + τ)] ≜ R(τ), where τ = t2 − t1, it is t1 independent,

and R(τ) is called the autocorrelation.

3. R(0) = E[x2] < ∞, (i.e., x(t) is mean square integrable or has bounded “power”)

Remark 1: WSS contains only the second order statistics and is adequate for linear

statistics, i.e. the investigation of linear relationships between properties of the system

at two different times.4

Remark 2: Heuristically speaking, a stationary signal comes from a steady state motion.

A bit more precisely, it is governed by an invariant measure on an attractor.

The difficulty in getting a handle on the concept of stationarity is that it is a hypothesis that is

difficult to test. It is also highly context dependent and depends on what the sample functions of a

random process are in the probability space.

Consider the following examples

1. x(t) = a sin t+ n(t), where n(t) is Gaussian white noise. Examine Fig. 2.2, where 100 sample

functions are plotted on top of each other. The whole function is not stationary since the mean

of x(t) changes with time. However, a sinT + n(t) is stationary for any fixed T .

Figure 2.2: a sin t+ n(t) for 100 different sample functions plotted together

2. x(t) = a sin(t+ t0) is stationary for t0 random (arbitrary) initial time or phase (Fig. 2.3).

3. Now lets go back to x(t) = a sin t+n(t) case. Here, averages over time scale∆T1 < 1 period will

not be stationary. However, averages over ∆T2 ≫ 1 period will be (approximately) stationary

(Fig. 2.4). It is hard to figure out if this is the same idea of stationarity.

4One still might use “linear statistics” even if the process generating x(t) is nonlinear (e.g., random number

generator).
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a

¡a

t

a

¡a

p(x)

x(t)

Figure 2.3: a sin(t+ t0) for 3 different t0 random initial time

4. Usually transient processes are not stationary, but if we let the transients to die out we get

approximate stationarity of steady state. For example, a motion of particle in a double-well

potential (refer to Fig. 2.5) with dissipation can be described by:

ẍ+ γẋ+ x(x2 − 1) = 0. (2.30)

Now let x(t) = X(t, x0), where the initial condition x0 is randomly selected from the basin of

attraction B1 for x = −1 equilibrium point. Two different sample functions (solutions to two

different initial conditions: (2.2, 0) red line and (0,−1) blue line) are shown in Fig. 2.5. Here,

it is clear that the process is not stationary. However, we can wait until “transients die off”

and then we get approximate stationarity.

Simple Stationarity Test

A simple test for the stationarity of a scalar time series {xn}Nn=1 is the examination of moving

averages with different window lengths ∆t = tw containing M ≪ N samples, refer to Fig. 2.6. For

the data points in each sliding time window estimate sample mean µi and its corresponding standard

deviation σ!µ,i = 3σi/
√
N . If the sample means 3µi stay mainly inside the ± one standard deviation

σ!µ,i of each other, we can say that our time series is approximately stationary. If, on the other hand,

a

¡a

t

x(t)

¢T1
¢T2

¼

Figure 2.4: Different time scale for x(t) = a sin t+ n(t) signal
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)

approximatly stationary
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Figure 2.5: Top left plot represents a two-well potential V (x) = −x2

2 + x4

4 , the bottom left plot shows

the basins of attraction for the equilibrium points x = ±1, and the right plot shows two sample

function from the B1 basin of attraction for x = −1 equilibrium.

sample means show significant variation in time than our time series, it is not stationary. For the

illustration of this concept please refer to the right plots in Fig. 2.6. Please note that our results

will depend on the choice of time window tw as was illustrated in the third example of the previous

section.

0 5 10 15 20

0.8

1

1.2

Approximatly Stationary

0 5 10 15 20
0.5

1

1.5

Not Stationary

Figure 2.6: Moving averages with different window length tw (left plot), and simple stationarity test

(right plots)

2.4 Ergodicity

General “signal” x(t) is a sample function of a random process. Thus every trial will generate a new

function. In general, we have been considering two types of averaging: ensemble averaging and time

averaging.
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Ensemble average is the average of a quantity over all realizations (or trials) of a random variable.

For example, if x(t) is a Gaussian random variable, p(x(t)) for each fixed t is Gaussian. If it is a

stationary random process, then p(x(t1)) = p(x(t2)). Now let us look at the mean value of our

random process for some fixed time tj :

3µj ≜
1

NT

NT4

i=1

xi(tj) , (2.31)

where tj is fixed, and we have total of NT trials of our random process. In other words the 3µj is an

estimate for

µj = E [x(tj)] =

+ ∞

−∞
x(tj) p(x(tj)) dx(tj) . (2.32)

Thus, the ensemble average is the expected value (or an estimate of) a random process for a particular

fixed time. Now a good question is: does 3µj = 3µk for j ∕= k? The answer is yes for a stationary

process.

Time average is the average using a single sample function over some time interval. For example,

given any function f ,

f̄ = lim
T→∞

1

T

+ T/2

−T/2

f(x(t)) dt (2.33)

In particular, for the time mean value estimates:

µ̄ =
1

T

+ T

0

x(t)dt, or µ̄ =
1

Ns

Ns4

i=1

x(ti) , (2.34)

where Ns is the number of time samples of x(t).

Definition: We say that a random process is ergodic if ensemble averages are equivalent

to time averages. More precisely, given f the stationary process is ergodic if 3µf = µ̄f , or

+ ∞

−∞
f(x(t)) p(x(t)) dx(t) = lim

T→∞

1

T

+ T/2

−T/2

f(x(t)) dt . (2.35)

Please note that in the above equation on the left hand side the t is fixed and we have an ensemble

average, and on the right hand side we have a time average of a single sample function (see Fig. 2.7).

Random processes can be ergodic for some f and not for others. For example, consider x(t) =

A sin(t+B) random process, where A and B are Gaussian random variables. Then, this process is

ergodic in the mean (f(x) = x), but not ergodic in the power (f(x) = x2).
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Ensemble Average Time Average

Figure 2.7: Ensemble and time averages
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Problems

Problem 2.1

In Matlab, generate M trials of random processes with the forms

1. x(t) = cos(t) + n(t);

2. x(t) = cos(t+ θ) + n(t); and

3. x(t) = A cos(t+ θ) + n(t),

where 0 ≤ t ≤ T for some sample time T , n(t) is a normally-distributed (Gaussian) random process

with zero mean and variance σ, θ is a uniformly-distributed constant random variable on [0; 2π],

and A is a normally-distributed constant with zero mean and unit variance. In each case, generate

uniformly-sampled time series {x1;x2; . . . ;xN} where xi = x(ti).

Use the above-generated time series to examine the stationarity and ergodicity of the different

processes. Experiment with different values of M , N , T , and σ to make sure you get good results.

Discuss your findings.

Note: Think carefully about your sampling time interval and the length of the time series

(relationship between N and T ).

Problem 2.2

Generate one long time series of the random process (1) in Exercise 1. Estimate the mean of the

process many times from different subsets of the time series, and show that the distribution of 3µx is

approximately Gaussian with mean and variance, as predicted by the Central Limit Theorem.

Note: the way in which you make the samples used for each estimate can have a large impact

on your results!
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Chapter 3

Correlation and Auto-Correlation

Given two random variables x(t) and y(t)

E [x(t1)y(t2)] =

+ +∞

−∞

+ +∞

−∞
x(t1)y(t2)p(x(t1), y(t2)) dx(t1)dy(t2) (3.1)

is called cross correlation Rxy(t1, t2) = R (x(t1), y(t2)) between x(t1) and y(t2), ∀ t1, t2 fixed.1 If

the generating processes are stationary and t1 ≡ t, t2 ≡ t+ τ

E [x(t)y(t+ τ)] = Rxy(τ)

= E [x(t− τ)y(t)]

= E [y(t)x(t− τ)]

= Ryx(−τ) .

(3.2)

But, in general, for a nonstationary processes Rxy(τ) ∕= Ryx(−τ)! If, in addition, both processes are

statistically independent, then Rxy(τ) = Ryx(τ) = Rxy(−τ).

Given two sample sets {xi(t)}Ni=1 and {yi(t+ τ)}Ni=1, we estimate cross correlation Rxy(τ) as

3Rxy(τ, t) =
1

N

N4

i=1

xi(t)yi(t+ τ) . (3.3)

If the generating processes are stationary then the correlation is independent of t and we can write

3Rxy(τ) =
1

N

N4

i=1

xiyi , (3.4)

where xi and yi are assumed to be sampled some fixed τ time apart. If we subtract off the means

from these variables, then

Cxy(τ, t) = E [(x(t)− µx)(y(t+ τ)− µy)]

= E [(x(t)y(t+ τ)− µxy(t+ τ)− µyx(t) + µxµy)]

= Rxy(τ, t)− µxµy

(3.5)

1Cross correlation is a function of two variables and represents a surface.

31
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Figure 3.1: Highly correlated data (a) and uncorrelated data (b)

is called the cross-covariance, which—for stationary processes—can be estimated from the above

sample sets as:

3Cxy(τ) =
1

N − 1

N4

i=1

(xi − 3µx) (yi − 3µy)

= 3Rxy(τ)− 3µx3µy, ,

(3.6)

where, again, xi and yi are assumed to be sampled some fixed τ time apart. If we normalize

cross-covariance Cxy by σx and σy we get the correlation coefficient:2

ρxy(τ) =
Cxy(τ)

σxσy
, (3.7)

which means that −1 ≤ ρxy ≤ 1. We say that x and y are (linearly) uncorrelated if ρxy = Cxy = 0

(see Fig. 3.1(b)). Perfectly correlated (i.e., identical) processes have ρxy = ±1 (see Fig. 3.1(a)). For

mean zero processes Rxy = Cxy.

Special case of the cross-correlation is when x = y and Rxx is called an autocorrelation. For a

stationary process

Rxx(τ) = E[x(t)x(t+ τ)]

= E[x(t− τ)x(t)]

= E[x(t)x(t− τ)]

= Rxx(−τ) .

(3.8)

Thus, the autocorrelation is always symmetric. For a purely random signal, Rxx(τ) ∼= 0 if τ ∕= 0.

However, in general for random signals we see autocorrelation similar to the one shown in Fig. 3.2.

The first zero crossing of Rxx is the correlation time, τc. The idea is that for τ > τc, x(t) and x(t+τ)

act like independent variables.

2The terminology use here and in the literature is a little confusing: the cross-correlation of the centered random

variables is called the cross-covariance, and the normalized cross-covariance is called the correlation coefficient.
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Figure 3.2: Correlation coefficient ρxx(τ) versus delay τ for a colored random processes described by

xn+1 = (2− (π/10)2 − ρ)xn + (ρ− 1)xn−1 + ηn, where ηn is white noise and ρ = [0.02, 0.05, 0.2, 0.5].

Each case is labeled as AR(ρ). In addition, autocorrelations of x time series from Duffing (ẍ +

0.2 ẋ− x+ x3 = 0.33 cos t) and y time series from Lorenz (ẋ = − 8
3x+ yz, ẏ = −10 (y − z) , and ż =

−xy + 28y − z) oscillators are plotted.

In many cases we deal with a collection of “signals” x1(t), x2(t), . . . xn(t), for which they can

be collected in a vector-valued signal x(t) ∈ Rn. Now if we are given a vector-valued time series

{x(k)}Nk=1, where x(k) = x(tk), it can be arranged into a coordinate matrix X ∈ RN×n as:

X =

!

))))))"

x
(1)
1 x

(1)
2 · · · x

(1)
n

x
(2)
1 x

(2)
2 · · · x

(2)
n

...
...

...
...

x
(N)
1 x

(N)
2 · · · x

(N)
n

#

******$
(3.9)

Now we can define a cross-correlation matrix for X as

3R =
1

N
XTX, or 3Rij =

1

N

N4

k=1

x
(k)
i x

(k)
j . (3.10)

Similarly, the corresponding cross-covariance matrix is

3C =
1

N − 1
X̄T X̄, or 3Cij =

1

N − 1

N4

k=1

(x
(k)
i − 3µi)(x

(k)
j − 3µj) =

<
=

>
3σ2
i , i = j

3cij , i ∕= j
, (3.11)

where X̄ has zero mean columns.

Now, if we have a two-dimensional random variable with scalar components x and y, then our
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cross-covariance matrix will be two dimensional:

C ∼=

!

" σ2
x cxy

cyx σ2
y

#

$ , (3.12)

and if x and y are (linearly) uncorrelated, we have

C ∼=

!

" σ2
x 0

0 σ2
y

#

$ , (3.13)

Problems

Problem 3.1

[Linear Prediction] Suppose we wish to predict the values of a variable Y by observing (recording)

the values of another variable X. In particular, the available data (see Fig. 3.3) suggests that a good

prediction model for Y is the linear function

Yp ≜ αX + β.

Figure 3.3: Pairwise observations on (X,Y ) constitute a scatter diagram and straight line approxi-

mates the relationship between the X and Y .

Now although Y can be related to X, the values it takes on may be influenced by other sources

that do not affect X. Thus, in general, |ρXY | ∕= 1 and we expect that there will be an error between

the predicted value of Y , that is, Yp and the value that Y actually assumes. Our task is to adjust

the coefficients α and β in order to minimize the mean-square error

ε ≜ E[(Y − Yp)
2].

In other words, to come up with optimum linear prediction or linear regression. Do the following:

• Find expressions that need to be satisfied to minimize ε with respect to α and β.

• Solve this expressions for estimated α̂ and β̂.
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• Write the expression for the best predictor and the corresponding εmin.

• What happens if ρXY = 0? In this case, what is the best predictor for Y and how does it

relate to X?

• How can we use the correlation coefficient to establish the relationship between two variables?

Problem 3.2

Generate the data for the systems shown in Fig. 3.2. That is, generate 40,000 point records for each

of these:

1. Colored random processes described by xn+1 = (2 − ω2
n − ρ)xn + (ρ − 1)xn−1 + ηn, where

ωn = 2π/20 (rad/s), ηn is Gaussian noise with unit variance (use randn function), and for

ρ = [0.02, 0.05, 0.2, 0.5] values. For the initialization use x1 = 0 and x2 = 0.

2. x time series from the Duffing’s oscillator

ẍ+ 0.2 ẋ− x+ x3 = 0.33 cos t ,

starting from x(0) = −0.6973 and ẋ(0) = 0.0729 with 0.1 sampling time.

3. y time series from the Lorenz oscillator

ẋ = −8

3
x+ yz, ẏ = −10 (y − z) , and ż = −xy + 28y − z ,

staring from x(0) = 20, y(0) = 5, and z(0) = −5 initial condition and with 0.02 sampling time.

Now calculate and plot:

1. Autocorrelations for all the time series just as shown in Fig. 3.2

2. Cross-covariances between the Duffing and Lorenz time series, and between AR(0.2) and

AR(0.5) time series.

3. Cross-covariances between the Duffing and AR(0.5), and Lorentz and AR(0.5) time series.

What can you infer from all these plots?
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Chapter 4

Fourier Analysis and Power

Spectral Density

4.1 Fourier Series and Transforms

Recall Fourier series for periodic functions

x(t) =
1

2
a0 +

∞4

n=1

?
an cos

2πnt

T
+ bn sin

2πnt

T

@
(4.1)

for x(t+ T ) = x(t), where

a0 =
2

T

+ T

0

x(t) dt
Aa0
2

= x̄
B

an =
2

T

+ T

0

x(t) cosnωt dt

.
ω =

2π

T

/

bn =
2

T

+ T

0

x(t) sinnωt dt .

(4.2)

Dirichlet Theorem: For x(t) periodic on 0 ≤ t < T , if x(t) is bounded, has a finite number

of maxima, minima, and discontinuities, then the Fourier Series Eq. (4.1) converges ∀t to
1
2 [x(t

+) + x(t−)].

Complex form of Eq. (4.1) is better for experimental applications. Using Euler’s (or de Moivre’s)

formulas we get:

cosωt =
1

2

5
eiωt + e−iωt

6

sinωt =
1

2i

5
eiωt − e−iωt

6
.

(4.3)

Using above Eq. (4.1) can be rewritten as:

x(t) =

∞4

−∞
Xn e

inωt , (4.4)

37

https://en.wikipedia.org/wiki/Dirichlet_conditions
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where

X0 =
a0
2

X±n =
1

2
(an ∓ ibn) .

(4.5)

Please also note that Xn = X∗
−n. Therefore:

Xn =
1

T

+ T

0

x(t) e−inωt dt =
1

T

+ T/2

−T/2

x(t) e−inωt dt . (4.6)

If “signal” x(t) is not periodic, we let fn = n
T (i.e., in Eq. (4.6) nω = 2πfn). Now, we define a

function X(f) by X(fn) = TXn (i.e., Xn = X(fn)/T ) to get the following:

x(t) =

∞4

−∞
Xn e

inωt =

∞4

n=−∞

1

T
X(fn) e

i2πfnt =

∞4

n=−∞
X(fn) e

i2πfnt∆fn , (4.7)

where we used the fact that ∆fn = fn+1 − fn = n+1
T − n

T = 1
T . Therefore, in the limit as T → ∞

and ∆fn → 0 in Eq. (4.7), we get our signal in the time domain as

x(t) =

+ ∞

−∞
X(f) ei2πft df . (4.8)

Now, assuming that everything converges and using Eq. (4.6) we get the corresponding frequency

domain expression

X(f) =

+ ∞

−∞
x(t) e−i2πft dt . (4.9)

Therefore, x(t) ↔ X(f) are Fourier Transform pair, where x(t) is in time domain and X(f) is in

frequency domain.

4.1.1 Several Important Properties of Fourier Transforms

We denote a Fourier transform (FT) as X(f) = F(x(t)) and x(t) = F−1(X(f)). Now, we can write

several of the properties of FT:

1. Linearity: F [αx(t) + βy(t)] = αX(f) + βY (f)

2. Duality: x(t) ↔ X(f) ⇒ X(t) ↔ x(−f)

3. Conjugation: x(t) ↔ X(f) ⇒ x∗(t) ↔ X∗(−f).

Therefore, for real signal x(t), X(f) = X∗(−f). This instead gives:

|X(f)|2 = X(f)X∗(f) = X ∗ (−f)X(−f) = |X(−f)|2 , (4.10)

i.e., for real x(t), |X(f)| is symmetric.

4. Convolution:

F
?+ ∞

−∞
x(τ)y(t− τ) dτ

@
= X(f)Y (f) ≜ F [x ∗ y] ,
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where x ∗ y indicates time convolution between x(t) and y(t). In addition,

F [xy] =

+ ∞

−∞
X(φ)Y (f − φ) dφ ≜ X ∗ Y ,

where X ∗ Y indicates frequency convolution between X(f) and Y (f) (also, X ∗ Y = Y ∗X).

5. Differentiation:

F
?
dkx

dtk

@
= (i2πf)kX(f) ,

6. Time Scaling and Shifting:

x(at+ b) ↔ e2πif
b
a

|a| X

.
f

a

/
.

Theorem: Provided x(t) ∈ L1 (i.e.,
,∞
−∞ |x(t)|dt < ∞ and x(t) has a finite number of

maxima, minima, and discontinuities) X(f) exists, and

x(t) =

<
=

>
F−1 [X(f)] for x continuous at t ,

1
2 [x(t

+) + x(t−)] for x discontinuous at t .

.

There is a problem with the above theorem if we consider the following:

+ ∞

−∞
| sin t| dt = ∞ ,

which can be fixed using theory of generalized functions (or distributions), duality and other basic

properties.

4.1.2 Basic Fourier Transform Pairs

1. Delta (δ) “function”: This actually is a generalized function or distribution defined as:

+ ∞

−∞
δ(t)dt = 1 . (4.11)

Now, by definition of δ(t), ∆(f) =
,∞
−∞ e−2πiftδ(t − t0)dt = e−2πift0 , also called “sifting

property.” Note that ∆ is a complex constant with |∆| = 1. Therefore:

δ(t− t0) ↔ e−2πift0 , (4.12)

and in particular, δ(t) ↔ 1. Therefore, by duality property

e−2πif0t ↔ δ(f − f0) , (4.13)

and in particular, 1 ↔ δ(f).

https://en.wikipedia.org/wiki/Generalized_function
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Figure 4.1: Signal modulation in the frequency domain

2. Trigonometric functions:

cos(2πf0t) =
1

2

5
e2πif0t + e−2πif0t

6
, (4.14)

so

F [cos(2πf0t)] =
δ(f − f0) + δ(f + f0)

2
. (4.15)

Similarly,

F [sin(2πf0t)] =
δ(f − f0)− δ(f + f0)

2i
. (4.16)

3. Modulated trigonometric functions: As an example consider x(t) cos(2πfct) ↔ X(f) ∗

C(f), where fc is called carrier frequency and C(f) is given by Eq. (4.15). Then,

x(t) cos(2πfct) ↔
+ ∞

−∞
X(s)

δ(f − fc − s) + δ(f + fc − s)

2
ds , (4.17)

where on the right hand side we have a convolution integral, which gives:

x(t) cos(2πfct) ↔
X(f − fc) +X(f + fc)

2
. (4.18)

Therefore, if we already know X(f), modulation scales and shifts it to ±fc as shown in Fig. 4.1.

4.2 Power Spectral Density

The autocorrelation of a real, stationary signal x(t) is defined by Eq. (3.8) as Rx(τ) = E[x(t)x(t+τ)],

where we replaced double x in the subscript with just single x (i.e., Rxx(τ) = Rx(τ)). Power Spectral

Density (PSD), Sx(f), can be defined as a Fourier transform of Rx(τ):

Sx(f) =

+ ∞

−∞
Rx(τ) e

−i2πft dτ . (4.19)

The question is: what is the PSD? What does it mean? What is a “spectral density,” and why is

Sx called a power spectral density?

To answer this question, recall that

X(f) =

+ ∞

−∞
x(t) e−i2πft dt . (4.20)
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To avoid convergence problems, we consider only a version of the signal observed over a finite-time

T ,1 xT = x(t)wT (t), where

wT =

<
=

>
1 for 0 ≤ |t| ≤ T/2 ,

0 for ≤ |t| > T/2 .
(4.21)

Then xT has the Fourier transform

XT (f) =

+ ∞

−∞
xT (t) e

−i2πft dt , (4.22)

=

+ T/2

−T/2

x(t) e−i2πft dt , (4.23)

and so

XTX
∗
T =

-+ T/2

−T/2

x(t) e−i2πft dt

0-+ T/2

−T/2

x∗(s) ei2πfs ds

0
, (4.24)

=

+ T/2

−T/2

+ T/2

−T/2

x(t)x(s) e−i2πf(t−s) dtds , (4.25)

where the star denotes complex conjugation and for compactness the frequency argument of XT has

been suppressed. Taking the expectation of both sides of Eq. (4.26)2, we get

E [XTX
∗
T ] =

+ T/2

−T/2

+ T/2

−T/2

E [x(t)x(s)] e−i2πf(t−s) dtds . (4.26)

Letting s = t+ τ , one sees that E[x(t)x(s)] ≜ E[x(t)x(t+ τ)] = Rx(τ), and thus

E [XTX
∗
T ] =

+ T/2

−T/2

+ T/2

−T/2

Rx(τ) e
−i2πf(t−s) dtds . (4.27)

To actually evaluate the above integral, both variables of integration must be changed. Let

τ = f(t, s) = s− t (as already defined for Eq. (4.30)) (4.28)

η = g(t, s) = s+ t . (4.29)

Then, the integral of Eq. (4.30) is transformed (except for the limits of integration) using the change

of variables formula:3

+ T/2

−T/2

+ T/2

−T/2

Rx(τ) e
−i2πf(t−s) dtds =

+ ?

?

+ ?

?

Rx(τ) e
−i2πfτ |J |−1

dτdη , (4.30)

where |J | is the absolute value of the Jacobian for the change of variables Eq. (4.28) given by

J =

CCCCCC

df
dt

df
ds

dg
dt

dg
ds

CCCCCC
=

CCCCCC

−1 1

1 1

CCCCCC
= −2 . (4.31)

1This restriction is necessary because not all of our signals will be square integrable. However, they will be mean

square integrable, which is what we will take advantage of here.
2To understand what this means, remember that Eq. (5) holds for any x(t). So imagine computing Eq. (6) for

different x(t) obtained from different experiments on the same system (each one of these is called a sample function).

The expectation is over all possible sample functions. Since the exponential kernel inside the integral of Eq. (6) is

the same for each sample function, it can be pulled outside of the expectation.
3This is a basic result from multivariable calculus. See, for example, I.S. Sokolnikoff and R.M. Redheffer, Mathe-

matics of Physics and Modern Engineering, 2nd edition, McGraw- Hill, New York, 1966.
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Figure 4.2: The domain of integration (gray regions) for the Fourier transform of the autocorrelation

Eq. (7): (left) for the original variables, t and s; (right) for the transformed variables, η and τ ,

obtained by the change of variables Eq. (4.28). Notice that the square region on the left is not only

rotated (and flipped about the t axis), but its area is increased by a factor of |J | = 2. The circled

numbers show where the sides of the square on the left are mapped by the change of variables. The

lines into which the t and s axes are mapped are also shown.

To determine the limits of integration needed for the right hand side of Eq. (4.31), we need to

refer to Fig. 4.2, in which the domain of integration is plotted in both the original (t, s) variables and

the transformed (τ, η) variables. Since we wish to integrate on η first, we hold τ fixed. For τ > 0, a

vertical cut through the diamond-shaped region in Fig. 4.2 (right) shows that −T + τ ≤ η ≤ T − τ ,

whereas for τ < 0 one finds that −T − τ ≤ η ≤ T + τ . Putting this all together yields:

E [XTX
∗
T ] =

+ T

−T

+ T−|τ |

−(T−|τ |)
Rx(τ) e

−i2πfτ dηdτ = T

+ T

−T

?
1− |τ |

T

@
Rx(τ) e

−i2πfτ dτ . (4.32)

Finally, dividing both sides of Eq. (4.32) by T and taking the limit as T → ∞ gives

lim
T→∞

1

T
E [XTX

∗
T ] = lim

T→∞

+ T

−T

?
1− |τ |

T

@
Rx(τ) e

−i2πfτ dτ

= lim
T→∞

+ T

−T

Rx(τ) e
−i2πfτ dτ

=

+ ∞

−∞
Rx(τ) e

−i2πfτ dτ

= Sx(f) .

(4.33)

Thus, in summary, the above demonstrates that

Sx(f) = lim
T→∞

1

T
E
D
|XT (f)|2

E
. (4.34)

Recalling that XT (f) has units SU/Hz (where SU stands for “signal units,” i.e., whatever units the
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signal xT (t) has), it is clear that E
D
|XT (f)|2

E
has units (SU/Hz)2 . However, 1/T has units of Hz,

so that Eq. (4.33) shows that the PSD has units of (SU2)/Hz.4

Although it is not always literally true, in many cases the mean square of the signal is proportional

to the amount of power in the signal.5 The fact that Sx is therefore interpreted as having units of

“power” per unit frequency explains the name Power Spectral Density.

Notice that power at a frequency f0 that does not repeatedly reappear in xT (t) as T → ∞

will result in Sx(f0) → 0, because of the division by T in Eq. (4.34). In fact, based on this

idealized mathematical definition, any signal of finite duration (or, more generally, any mean square

integrable signal), will have power spectrum identical to zero! In practice, however, we do not

let T extend much past the support [Tmin, Tmax] of xT (t) (Tmin /max is the minimum (respectively,

maximum) T for which xT (t) = 0). Since all signals that we measure in the laboratory have the

form y(t) = x(t) + n(t), where n(t) is broadband noise, extending T to infinity for any signal with

finite support will end up giving Sx ≈ Sn.

We conclude by mentioning some important properties of Sx. First, since Sx is an average of the

magnitude squared of the Fourier transform, Sx(f) ∈ R and Sx(f) ≥ 0 for all f . A simple change

of variables in the definition Eq. (4.19) shows that Sx(f) = Sx(f).

Given the definition Eq. (4.19), we also have the dual relationship

Rx(τ) =

+ ∞

−∞
Sx(f) e

i2πfτ df . (4.35)

Setting τ = 0 in the above gives

Rx(0) = E
1
x(t)2

2
=

+ ∞

−∞
Sx(f) df , (4.36)

which, for a mean zero signal gives

σ2
x =

+ ∞

−∞
Sx(f) df , (4.37)

Finally, if we assume that x(t) is ergodic in the autocorrelation, that is, that

Rx(τ) = E[x(t)x(t+ τ)] = lim
T→∞

+ T/2

−T/2

x(t)x(t+ τ)dt ,

where the last equality holds for any sample function x(t), then Eq. (4.37) can be rewritten as

lim
T→∞

1

T

+ T/2

−T/2

x(t)2dt =

+ ∞

−∞
Sx(f) df . (4.38)

The above relationship is known as Parsevals Identity.

4Of course, the units can also be determined by examining the definition of Eq. (4.19).
5This comes primarily from the fact that, in electrical circuits, the power can be written in terms of the voltage as

V 2/Z , or in terms of the current as I2Z , where Z is the circuit impedance. Thus, for electrical signals, it is precisely

true that the mean square of the signal will be proportional to the power. Be forewarned, however, that the mean

square of the scaled signal, expressed in terms of the actual measured variable (such as displacement or acceleration),

will not in general be equal to the average mechanical power in the structure being measured.

https://en.wikipedia.org/wiki/Parseval%27s_identity
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This last identity makes it clear that, given any two frequencies f1 and f2, the quantity

+ f2

f1

Sx(f) df

represents the portion of the average signal power contained in signal frequencies between f1 and

f2, and hence Sx is indeed a “spectral density.”

4.3 Sample Power Spectra

1. White noise: Sxx(f) = 1, where we have power at all frequencies. The corresponding

autocorrelation is Rxx(τ) = δ(τ), see Fig. 4.3.

0
0

1

0
0

Figure 4.3: White noise signal has power at all frequencies and is uncorrelated for τ ∕= 0.

2. Band limited noise: Sxx(f) = W (f) =

<
=

>
1, 0 ≤ |f | ≤ fBW

0, otherwise

Rxx(τ) =

+ ∞

−∞
W (f)ei2πfτdf

=

+ fBW

−fBW

ei2πfτdf

=
1

2iπτ

1
ei2πfBW τ − e−i2πfBW τ

2

=
sin (2πfBW τ)

πτ
.

(4.39)

For the corresponding graphs refer to Fig. 4.4.

Problems

Problem 4.1

Create a sample {xn}1024+14
n=1

6 of uncorrelated Gaussian random variables (command randn in Mat-

lab). Now apply the moving average filter sn = 1/15
77

i=−7 xn+i to obtain 1024 correlated Gaussian

6we only need 1024 for the spectral analysis, additional 14 is to generate 1024 filtered time series
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Figure 4.4: Band limited noise has a correlation time of 1
2fBW

.

variates. Estimate the power spectrum (type > help pwelch in Matlab) for both data sequences

and observe the differences.

Problem 4.2

Create two time series: (1) {xn}4096n=1 of uncorrelated Uniform random variables (command rand in

Matlab), and (2) deterministic evolution of the Ulam map {yn}4096n=1 , which follows the rule y0 = 0.1

and yn+1 = 1 − 2y2n. The values of yn are measured through a nonlinear observation function

sn = arccos(−yn)/π. Compare the mean, variance and the power spectra of the two time series.
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Chapter 5

Experimental Fourier Transforms

5.1 Sampling and Aliasing

Given x(t), we observe only sampled data xs(t) = x(t)s(t;Ts) (Fig. 5.1), where s is called sampling

or “comb” function and can be described as

s(t;Ts) =

∞4

n=−∞
δ(t− nTs) , (5.1)

where Ts is sampling period and fs = 1/Ts is sampling frequency (Fig. 5.2).

0

Figure 5.1: We observe only sampled data of a continuous signal every sampling period of Ts

0

. . .. . .

Figure 5.2: Sampling or comb function s(t)

47
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Therefore, using the sifting property of the Dirac delta function, we get

xs(t) = x(t)

∞4

n=−∞
δ(t− nTs) =

∞4

n=−∞
x(nTs)δ(t− nTs) . (5.2)

To take the Fourier Transform of xs, it is useful to note that s(t;Ts) is periodic with period Ts.

Thus, the corresponding Fourier Series will be:

s(t;Ts) =

∞4

n=−∞
Xne

in 2π
Ts

t , (5.3)

where

Xn =
1

Ts

+ Ts/2

−Ts/2

- ∞4

n=−∞
δ(t− nTs)

0
e−in 2π

Ts
tdt =

1

Ts
e0 =

1

Ts
. (5.4)

So

s(t;Ts) =
1

Ts

∞4

n=−∞
ei2π

n
Ts

t . (5.5)

Now, from previously calculated δ function Fourier Transform pairs, we get

S(f) =
1

Ts

∞4

n=−∞
δ

.
f − n

Ts

/
. (5.6)

Therefore, since xs(t) = x(t)s(t;Ts), by convolution we get

F [xs] = Xs(f) = X(f) ∗ S(f) , (5.7)

that is

Xs(f) =
1

Ts

∞4

n=−∞

+ ∞

−∞
X(s)δ

.
f − n

Ts
− s

/
ds , (5.8)

or

Xs(f) =
1

Ts

∞4

n=−∞
X

.
f − n

Ts

/
. (5.9)

That is, sampling results in an ∞ number of periodically spaced copies of the true X(f). Now, we

see that if fs < 2fBW , we will get spectral overlap or aliasing: high frequencies are “folded” onto

lower ones. This leads to the Nyquist sampling criterion: fs ≥ 2fBW for accurate frequency domain

estimates with sampled data (see Fig. 5.3). Shannon [83] was the one who credited Nyquist when

he stated his theorem:

Figure 5.3: (a) true Fourier transform, and (b) Fourier transform of sampled data
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Shannon’s Sampling Theorem: If a function x(t) contains no frequencies higher than

fBW hertz, it is completely determined by giving its ordinates at a series of points spaced

Ts =
1

2fBW
seconds apart.

This means that the time series can be completely reconstructed from its Fourier transform if the

Nyquist Criteria is satisfied.

Remark 1: In practice, we may need fs = 3FBW or even 4fBW to avoid aliasing.

Remark 2: Also, we usually use an anti-aliasing (low-pass) analog filter, such as shown in Fig. 5.4,

which is meant as an example only. If fc ≈ fBW , sample at 4fc = 4fBW and discard bottom one-half

of the Fourier transform data.

-50

0

Figure 5.4: Example of analog low-pass filter frequency response function (FRF) magnitude versus

frequency

5.2 Windowing

Another artifact of data collection is that we take only a finite time record of our data (see Fig. 5.5).

Mathematically we can express this as we are sampling the following signal xw(t) = x(t)w(t), where

w(t) is a data collection window function. If our data collection window w(t) is a rectangular window

function, we get what is shown in Fig. 5.6.

Figure 5.5: We only take a finite time record of data during the data collection window
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Figure 5.6: Rectangular window function w(t) and the resultant observed signal

Now, we know how to find the Fourier transform of a rectangular window:

W (f) =

+ ∞

−∞
w(t)e−2πiftdt =

+ a

−a

e−2πiftdt

=
1

2πif

5
e2πifa − e−2πifa

6
=

sin 2πfa

πf
= 2a sinc(2πfa) ,

(5.10)

where the sinc function has the form shown in Fig. 5.7.

-5/(2a) -2/a -3/(2a) -1/a -1/(2a) 0 1/(2a) 1/a 3/(2a) 2/a 5/(2a)

0

2 a

Figure 5.7: Fourier transform of w(t) in Fig. 5.6

As an example of the effect of the window, let x(t) = cos 2πf0t, then using convolution property

we have the following:

Xw(f) = X(f) ∗W (f)

=

+ ∞

−∞

1

2
[δ (f + f0 − s) + δ (f − f0 − s)]

sin 2πsa

πs
ds

=
1

2

?
sin (2π(f + f0)a)

π(f + f0)
+

sin (2π(f − f0)a)

π(f − f0)

@
(5.11)

The results of this transform are shown in Fig. 5.8, which shows that windowing causes spectral

leackage into neighboring frequencies.

The solution to spectral leakage is to use different window functions. Some of the widely used

window functions are shown in Fig. 5.9.
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Figure 5.8: True Fourier transforms X(f) = F (cos 2πf0t) (a) and windowed Fourier transform

Xw(f) = F (w(t) cos 2πf0t) (b) showing spectral leakage
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Figure 5.9: Some of the windows from the window design tool of MATLAB

.
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5.3 Discrete Fourier Transfrom

Continuous Fourier transfrom was defined in Eq. (4.7):

X(f) =

+ ∞

−∞
x(t) e−i2πft dt . (5.12)

However, we only measure over a finite time T , with equally-spaced samples with ∆t ≡ ∆ = T
N ,

where N is the number of samples (see Fig. 5.10). Therefore,

Figure 5.10: We observe only sampled data of a continuous signal every sampling period of Ts

X(f) ≈
+ T

0

x(t) e−i2πft dt ≈
N−14

n=0

xne
−i2πf(n∆)∆ , (5.13)

where we ignore the fact that X(f) is no longer “true” F(x(t)), and xn ≡ x(tn) = x(n∆). Now, let

f = m
T ≡ fm and X(fm) = ∆Xm (∆ scaling is needed to have correct units), then we get

Xm =
1

∆

N−14

n=0

xn e
−i2πm

T (n∆)∆ =

N−14

n=0

xne
−i2π∆

T (mn) . (5.14)

However, ∆ = T
N , so ∆

T = 1
N . Then,

Xm =

N−14

n=0

xn e
−i2πmn

N , (5.15)

which is discrete Fourier transform or DFT.

We cannot possibly get x(t) or X(f) for t or f between the tn = n∆ (i.e., n∆ < t < (n + 1)∆)

or m∆f < f < (m + 1)∆f (∆f = m+1
T − m

T = 1
T ), respectively. However, given {xn}N−1

n=0 we get

{Xm}N−1
m=0, and

xn =
1

N

N−14

m=0

Xm e
i2πnm

N , (5.16)

which is called inverse discrete Fourier transfor (IDFT) and discrete values are transformed exactly.

We can prove the above as follows. Given

Xm =

N−14

p=0

xp e
−i2πmp

N . (5.17)
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we can write:

xn =
1

N

N−14

m=0

F
N−14

p=0

xp e
−i2πmp

N

G
ei2π

nm
N ,

=
1

N

N−14

p=0

xp

F
N−14

m=0

ei2π
m(n−p)

N

G
,

%

&
N−14

m=0

ei2π
m(n−p)

N =

<
=

>
0 for n ∕= p ,

N for n = p .

'

(

=
1

N
xnN = xn .

(5.18)

In conclusion, the discrete and inverse discrete Fourier transforms are exact transforms.

5.3.1 Notes on Fast Fourier Transforms

Fast Fourier Transform (FFT) is a fast algorithm for DFT (see, e.q., Numerical Recipes). It has the

following requirements and parameters:

• Time records of N points, ∆t between points must satisfy 1
∆t ≥ 2fBW of signal.

• Simplest and fastest implementation is when N = 2m, so data records (buffer) are usually 2m

(the DP 420 has 4K or 4096 point buffer).

• We get N
2 lines in the frequency domain. Heuristically, the N real data points give N

2 complex

(amplitude and phase) data points in the frequency domain.

• ∆f in the FFT is 1
T of data record. Thus, fmax = N

2 ∆f = N
2T . However, T = N∆t and, thus,

fmax = 1
2∆t =

fs
2 .
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Problems

Problem 5.1

Consider the driven, two-well Duffing’s oscillator

ẍ+ εγẋ− x+ x3 = εF cos(ωt)

which can be written in state variable form as

ẋ = v

v̇ = x− x3 + ε(−γv + Fcos(ωt)).

In the above expressions, γ is the linear (viscous) damping coefficient, F is the forcing amplitude,

and ω is the forcing frequency.1

Develop a MATLAB code to simulate this system. You need to be able to generate uniformly

sampled time series of any length, with any sampling time ts (recall that the sampling frequency is

fs = 1/ts, and be very careful when choosing your sampling time).

Experiment with the simulations, and by varying the system parameters and examples of:

1. a periodic, approximately simple harmonic response;

2. a periodic response that is not simple harmonic; and

3. a chaotic (i.e. aperiodic) response.

Plot the steady state results in the time domain and in the x–v phase plane. To help you get

started, reasonable values for the parameters to use in the simulations are ε = 0.1, γ ∈ [0.7; 2.0],

ω ∈ [0.9; 1, 1], F ∈ [1.5; 2.8].

Problem 5.2

Using the time series {xi} generated in Exercise 1, make an observable via {yi} = {xi + ni},

where the ni are independent identically-distributed (IID) mean zero Gaussian random variable

with variance σ2 (be careful when choosing your parameters—we want to approximate real-life

situations). Find the digital Power Spectral Density (PSD) for the three types of response found

in Exercise 1, using the MATLAB functions pwelch or periodogram (e.g., at MATLAB prompt

type “≫ help pwelch”). By experimentation, examine the effect of σ, ts, the number of points

11The parameter ε is included here only for convenience when comparing our results to certain theoretical treat-

ments. In particular, the damping and forcing are scaled by ε to indicate that the oscillator can be thought of as

a perturbation of of a conservative system, with the conservative system corresponding to the case ε = 0. See, for

example, Guckenheimer and Holmes (1983).
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used in the FFT, and windowing (including no window, which is called rectwin in MATLAB). A

good window to use is the Hanning, however you can experiment to see the differences. Type help

window at the command line for more information. Plot your results using a semilog or Decibel (dB)

scale. Discuss your results: what do you see?

References

John Guckenheimer and Philip Holmes (1983) Nonlinear Oscillations, Dynamical Systems, and

Bifurcations of Vector Fields, Springer-Verlag, New York. See in particular Ch. 4.5, Eq. (4.5.18).
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Chapter 6

Bifurcations and Poincaré Maps

In this chapter, purely nonlinear phenomenon of bifurcations will be considered. Mathematically,

bifurcation theory studies the changes in the qualitative or topological structure of the solutions of

a family of differential equations. We can say that bifurcation occurs in a dynamical system when a

small smooth change of a (bifurcation) parameter causes a sudden ‘qualitative’ or topological change

in the dynamical system’s behavior.

6.1 Stability of Equilibrium Points

In nonlinear systems, the transition from stable to unstable behavior is of practical concern, since

it can happen due to perturbations (global change), or due to the smooth drift in parameters (local

bifurcations). During bifurcation one or both of these are possible: (1) one set of solutions can loose

stability, while others can become stable; and (2) some solutions can appear or disappear suddenly.

To understand bifurcations, we need to understand the stability of fixed points and steady states.

We first start by considering stability of the static equilibrium points. Consider a two-well Duffing

equation:

ẍ+ ẋ− x+ x3 = 0 . (6.1)

In static equilibrium both velocity and the acceleration are set to zero (ẍ = ẋ = 0), thus

− x+ x3 = 0 , (6.2)

which has three solutions x = 0, and x = ±1.

To examine the stability of these equilibrium points, we study the behavior of small perturbations

(|δ| ≪ 1) about the equilibrium point:

x = xe + δ , ⇒ ẋ = δ̇ and ẍ = δ̈ . (6.3)

57
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Then, our equation can be rewritten in terms of δ as:

δ̈ + δ̇ − δ + δ3 + 3x2
eδ + 3xeδ

2 = 0 . (6.4)

Now ignoring the terms of O(δ2) or higher, we get:

δ̈ + δ̇ + (3x2
e − 1)δ = 0 . (6.5)

Please note, this is equivalent to the Taylor series expansion of Eq. (6.1) about the equilibrium point.

Now we can see that for xe = 0, we have a negative stiffness and thus the solutions to Eq. (6.5)

would experience exponentially growing (or unstable) motion. In contrast, the solutions for xe = ±1

would experience decaying (or stable) motion. Therefore, we have observed how this nonlinear

system behaves locally in the vicinity of equilibrium points. In general, we want to use this local

behavior to gain insight into full nonlinear behavior.

6.1.1 Classification of Linear Two-Dimensional Flows

Generically, single-degree-of-freedom oscillator can be linearized about the equilibrium point by the

following two-dimensional flow:

ẋ = ax+ bv ,

v̇ = cx+ dv .
(6.6)

For an invariant solution to Eq. (6.6) we are looking for straight line trajectories on a plane:

x(t) = eλtξ , (6.7)

where x(t) = [x(t), v(t)]T is our state vector, ξ is some fixed vector (determining the direction of

the invariant trajectory or eigenvector), and λ is the corresponding growth rate or eigenvalue. To

find these variables, we substitute Eq. (6.7) into Eq. (6.6) (i.e., ẋ = Ax), where

A =

!

" a b

c d

#

$ , (6.8)

which results into λeλtξ = eλtAξ. Now, cancelling eλt on both sides results in the following eigen-

value problem:

Aξ = λξ , (6.9)

or

(A− λI)ξ = 0 . (6.10)

To satisfy the above equation for a nontrivial ξ, we need det(A− λI) = 0, or

det

%

& a− λ b

c d− λ

'

( = 0 , (6.11)
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which gives us the characteristic equation:

λ2 − τλ+∆ = 0 , (6.12)

where τ = trace(A) = a+ d and ∆ = det(A) = ad− bc. Therefore,

λ1,2 =
τ ±

√
τ2 − 4∆

2
. (6.13)

Thus, the eigenvalues, also called characteristic exponents or CEs, depend only on the trace and

determinant of A.

For λ1 ∕= λ2, we can find linearly independent ξ1 and ξ2 that span the whole phase (state) plane.

Thus, any initial condition can be written as:

x0 = c1ξ1 + c2ξ2 , (6.14)

which can be used to write the solution corresponding to that initial condition as a linear combination

of solutions to ẋ = Ax:

x(t) = c1e
λ1tξ1 + c2e

λ2tξ2 . (6.15)

Therefore, by the existence and uniqueness property this is the only solution.

The type of the solution depends on the values of τ and τ2 − 4∆, and we have the following

possibilities:

1. ∆ < 0, results in two real eigenvalues, with one positive and one negative. This characterizes

a saddle point equilibrium that has one unstable eigendirection for λ > 0 and one stable

eigendirection for λ < 0.

2. ∆ > 0 and τ2 < 4∆, results in two complex conjugate eigenvalues, for which we could have

three cases:

(a) If τ < 0 we have a stable spiral solution;

(b) If τ > 0 we have a unstable spiral solution; and

(c) If τ = 0 we have a center solution.

3. ∆ > 0 and τ2 > 4∆, results in two real eigenvalues:

(a) For τ < 0, both are negative and we have a stable node; and

(b) For τ > 0, both are positive and we have a unstable node.

4. ∆ = 0, we have λ1 = 0 and λ2 = τ , which gives a non-isolated fixed point or an equilibrium

line span by ξ1 is either attracting (τ < 0) or repelling (τ > 0).

5. τ2 = 4∆, we have repeated eigenvalues that give degenerate nodes. In special cases, when the

matrix A is diagonal (i.e., a = d and b = c = 0), we can also get stars.

For the illustration of all possible phase portraits, please see the Fig. 6.1.
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Figure 6.1: Types of two-dimensional static equilibria

6.1.2 Connection to Potential Energy

For one-degree-of-freedom system with a potential function V = V (x), equilibrium points are located

at the extrema of the potential determined by solving the following

dV

dx
= 0 . (6.16)

In general, we can expand the potential into Taylor series near the equilibrium point x = xe + δ:

V (δ) = V (xe) +

✚
✚
✚
✚✚❃

0
dV

dx

CCCC
x=x0

δ +
1

2!

d2V

dx2

CCCC
x=x0

δ2 +O(δ3)

= V (xe) +
1

2

d2V

dx2

CCCC
x=x0

δ2 +O(δ3) ,

(6.17)

where V (xe) is an arbitrary construct and can be set to zero. Then, we can write:

V (δ) =
1

2

d2V

dx2

CCCC
x=x0

δ2 . (6.18)

Thus, if d2V
dx2

CCC
x=x0

> 0 we have a local minimum, of d2V
dx2

CCC
x=x0

< 0 local maximum, and if d2V
dx2

CCC
x=x0

=

0 we need to go to higher-order approximation (e.g, we may have a purely cubic potential near the

equilibrium which would correspond to a semi-stable cusp fixed point).

Now, we can use the following theorem to specify when the equilibrium is stable.
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Figure 6.2: Potential energy extrema at an equilibrium points

Lagrange’s Theorem: An equilibrium state at which the total potential energy is an

isolated minimum (maximum) is necessarily stable (unstable).

In summary, referring to Fig. 6.2 we can say: if a potential energy has a local minimum at an

equilibrium point, it is stable; if the potential has a local maximum at an equilibrium, it is unstable;

and if the potential has a cusp point, we have a semi-stable equilibrium.

6.2 Bifurcations

To illustrate what are bifurcations, let us consider an example of Duffing Oscillator:

ẍ+ γẋ− βx+ x3 = F cosωt . (6.19)

Generally, we start the analysis by determining the static equilibria of the unforced system

(F = 0). In static equilibrium both velocity and the acceleration are set to zero (ẍ = ẋ = 0), thus

− βx+ x3 = 0 , (6.20)

which has three possible solutions x = 0, and x = ±
√
β if β ≥ 0. As we vary β from −∞ to ∞,

our system goes from one real solution (x = 0 for β < 0), to three equilibrium solutions as β passes

through 0. This type of change in the possible solutions is called a “pitchfork bifurcation.” Please

note that x = 0 stable spiral solution becomes unstable spiral as β passes through 0 from negative

β to positive β values. Therefore, bifurcations are also associated with changes in the stability. The

illustration of this bifurcation is shown in Fig. 6.3.

6.2.1 Classification of Instability

The nature of the loss of stability relates to how the eigenvalues (i.e., CEs) exit the negative real half-

plane as a single bifurcation (or control) parameter is changed, which also determines the bifurcation

type. For example, if a real eigenvalue changes its sign (i.e., ∆ < 0 → ∆ > 0) we go from saddle

type fixed point to a node type of fixed point. This type of bifurcation is called saddle-node, fold,

or divergence bifurcation, see Fig. 6.4(a). In mechanical or engineered systems this corresponds
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Figure 6.3: Pitchfork bifurcation. Blue curves indicate stable equilibrium solutions and the red

dashed line indicates the unstable equilibrium solution.

to buckling (stiffness goes to zero and then becomes negative). In contrast, if the real part of the

complex conjugate eigenvalues change sign (i.e., τ < 0 → τ > 0) we effectively change the sign of

damping. This type of bifurcation is called Hopf, see Fig. 6.4(b), and common mechanical systems

examples are flatter or vortex induced vibrations.

Figure 6.4: CE behavior during the loss of stability due to saddle-node (a) and Hopf (b) bifurcations

6.3 Stability and Bifurcation of Cycles

We start by considering the Logistic map equation:

xn+1 = µxn(1− xn) . (6.21)

Equilibria or “fixed points” for the map are actually periodic orbits since xn+1 = xn defines the fixed

point. To find fixed points of the map, set xn ≡ x for “period 1” or P-1 fixed point to get:

x = µx(1− x) , (6.22)

or

x(1− µ) = −µx2 . (6.23)
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So x = 0, and x = µ−1
µ if µ ∕= 0, are the P-1 orbits or fixed points.

To evaluate the stability near x = µ−1
µ , let xn = µ−1

µ +un, where un ≪ 1 is a small perturbation

from the fixed point. Thus, the Logistic map can be written as:

µ− 1

µ
+ un+1 = µ

.
µ− 1

µ
+ un

/.
1− µ− 1

µ
− un

/
, (6.24)

or

un+1 = (2− µ)un − µu2
n . (6.25)

Remembering that we have only small perturbations, we get

un+1
∼= (2− µ)un . (6.26)

For stability we want |un| bounded ∀n, and for asymptotic stability, |un| → 0 as n → ∞. Therefore,

we require |2− µ| ≤ 1, or −1 ≤ 2− µ ≤ 1. Thus, for stability we need:

1 ≤ µ ≤ 3 . (6.27)

Please note, that when µ = 1, x = µ−1
µ “collides” with x = 0 solution. Also, 2 − µ switches sign

at µ = 2 as shown in Fig. 6.5(a). Then the approach to the steady state P-1 orbit will have either

monotonic as in Fig. 6.5(b) or oscillatory as in Fig. 6.5(c) character.

1 2 3 4

-1

0

1

0 5 10 15 20
0

0 5 10 15 20
0.5

Figure 6.5: In the stability region for x = µ−1
µ equlibrium, 2 − µ switches sign at µ = 2 (a), for

1 < µ < 2 we have a monotonic approach to equilibrium (b), and for 2 < µ < 3 we have an oscillatory

approach to equilibrium (b).

Now the question is what happens when µ = 3? To answer this, consider a “period 2” (P-2)

fixed point xn+2 = xn:

xn+2 = µxn+1(1− xn+1) = µ2xn(1− xn) (1− µxn(1− xn)) . (6.28)

We seek the solution for xn+2 = xn ≡ x:

x = µ2x(1− x) (1− µx(1− x)) . (6.29)

The roots to the above equation are the roots for the P-1 fixed points (as P-1 orbits are also a P-2

fixed points) plus

xa,b =
1

2
+

1

2µ
± 1

2µ

H
µ2 − 2µ− 3 . (6.30)
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For roots xa,b to exist, we need to satisfy the following condition

µ2 − 2µ− 3 ≥ 0 ,

which is only satisfied for µ ≤ −1 and µ ≥ 3. Therefore, at µ = 3, the P-1 fixed point x = µ−1
µ

becomes unstable and xa,b become stable (which we have not shown here). Bifurcation points like

this (see Fig. 6.6, when stable P-1 fixed point looses stability and P-2 orbits become stable, are

called period-doubling bifurcation points.

0 5 10 15 20 0 5 10 15 200 5 10 15 20

Figure 6.6: Sample P-1 orbit for 2 < µ < 3 (a), and P-2 orbit for µ = 3.1 (b).

Doing all this, we are trying to make a point that with maps we can study bifurcations of periodic

motions (and even nonperiodic or chaotic motions) since they (i.e., periodic orbits) “look like” static

equilibria.

6.4 Dynamic Bifurcations in Continuous Systems

Study of stability of continuous dynamical systems can be converted into study of stability of maps

using idea of Poincaré Map. We start exploring this idea by considering an example of dynamical

system:

ẋ = f(x) , (6.31)

where x ∈ R3. A solution starting from some initial condition x(0) = x0 can be written in the

following form:

x(t) = X(x0, t) = Xt(x0) . (6.32)

For a fixed time t = τ , Xτ (x) : R3 → R3. This can be used to develop a corresponding map equation:

xn+1 = Xτ (xn) , (6.33)

where xn+1 = x(nτ). Then, if the original continuous system has a P-1 solution with a period of

τ = T (i.e., X(x0, t) = X(x0, t+ T )), we can write:

xn+1 = XT (xn) = xn . (6.34)
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(a) (b)

Figure 6.7: Poincaré section or surface of section (a), and its simple example with g(x) = x1 = 0

and h(x) = x2 > 0 (b).

Alternatively we can define a surface or manifold in R3 using:

Σ = {x |g(x) = 0, h(x) > 0} , (6.35)

where we require that f(x) ⊥ Σ, ∀x ∈ Σ, and f · ∇g > 0, ∀x ∈ Σ. The first condition requires

that trajectories pierce Σ manifold perpendicular to its surface, and the second condition requires

to count only points that are generated by trajectories going through Σ surface from only one side.

Simplest case for g and h functions is:

g(x) = x1 = 0 and h(x) = x2 > 0 . (6.36)

Therefore, the Poincar section Σ is a half-plane x1 = 0, x2 > 0. The point is that Σ is transverse to

the flow XT .

Given Σ, uniqueness of solution to ODE defines a map form:

xn+1 = Xτn(xn) ≜ P(xn) , (6.37)

where xn ∈ Σ and τn is defined by first t such that xn+1 ∈ Σ. Therefore, P : Σ → Σ is the Poincaré

map as shown in Fig. 14.2(a). Now, we can ask a question: what does a fixed point of P, x∗ = P(x∗),

mean? Let us look at Fig. 14.2(b), where we can see that if x∗ = P(x∗), x∗ is the intersection of a

P-1 orbit with Σ. Thus, each fixed point of P corresponds to a unique periodic orbit.

Remark: In equation

xn+1 = P(xn) = Xτn(xn) , (6.38)

the τn, which are the times between visits to Σ need not be equal. In other words, the discrete-time

map defined by P can be asynchronous.



66 CHAPTER 6. BIFURCATIONS AND POINCARÉ MAPS

(a) (b)

Figure 6.8: Poincaré map P : Σ → Σ (a), and its P-1 fixed point x∗ = P(x∗) or P-1 orbit (b).

6.4.1 Periodic Vector Fields

Consider a driven oscillator:

ẋ = f(x, t) , (6.39)

where f(x, t + T ) = f(x, t) and T = 2π/ω (i.e., ω is the forcing frequency). If x ∈ R2, then phase

space S = R2×S1 (i.e., direct product of a plane and a circle). For this particular case, a commonly

used definition of Poincaré section is:

Σ =

I
(x, t)

CCCC t mod
2π

ω
= ϕ

J
. (6.40)

This is called a stroboscopic Poincaré section. Figs. 6.9 and 6.10 show how data is sampled every

T = 2π/ω time period at a constant forcing phase ϕ.

Remark: In numerical simulations, the easiest way to do this is to set time step:

∆t =
2π

ωn
, (6.41)

for n ∈ Z. Then every n steps gives x ∈ Σ. Furthermore, in this way you get n different Σ’s, which

could be useful for animating the Poincaré section dynamics.

6.4.2 Stability and Bifurcation of Periodic Orbits

For linear systems, we have a Floquet Theory to study local stability based on Monodromy Matrix

Eigenvalues of the global solution for linear ordinary differential equations with periodically time-

varying coefficients. With Poincaré section we can develop similar procedure for evaluating stability

of close orbits for nonlinear dynamical systems. For a P-k periodic orbit we have Pk(x∗) = x∗. The

corresponding solution to our original dynamical system Eq. (6.39) can be expressed as:

x(t,x∗) = Xt(x
∗) . (6.42)

https://en.wikipedia.org/wiki/Floquet_theory
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Figure 6.9: Sampling for a stroboscopic Poincaré Section, where f(t) = f cos 2π
T t, and x(t) is one of

the coordinates of the response.

Now we introduce a small perturbation to the initial condition x0 = x∗ + η0 (‖η0‖ ≪ 1), then we

can use xn = x∗ + ηn in xn+1 = P(xn) to get:

x∗ + ηn+1 = P(x∗ + ηn) = P(x∗) +DP(x∗)ηn +O(‖ηn‖
2
) , (6.43)

Figure 6.10: Stroboscopic sampling in the phase space R2 × S1, where the black circle represents

time as a forcing phase and blue curve is the trajectory.
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Figure 6.11: Instabilities arise as CMs leave the unit circle during saddle-node (a), period-doubling

(b), and Neimark (c) bifurcations.

where DP(x∗) is a Jacobian of the Poincaré map evaluate at x∗. Then,

ηn+1 ≈ DP(x∗)ηn . (6.44)

Now the fixed point x∗ is stable if ηn → 0 as n → ∞, which is equivalent to requiring that the

magnitude of all the eigenvalues—called characteristic multipliers (CMs)—of the Jacobian are less

than unity.

For a two-dimensional Poincaré section, the Poincaré map near the x∗ Eq. (6.44) can be linearized

as:

ηn+1 = aηn + bµn

µn+1 = cηn + dµn

(6.45)

or

ηn+1 = Aηn . (6.46)

where A = DP(x∗), and its eigenvalues are also CMs. If one of CMs is on the unit circle fixed point

is termed hyperbolic. CMs are related to characteristic exponents (CEs) from the ODE solution

as CM = eCE. Bifurcations of cycles happen when the CMs cross the unit circle. Some of the

examples of bifurcations are shown in Fig. 6.11: (a) saddle-node or jump bifurcation where cycle

looses stability and settles to another periodic solution; (b) period-doubling bifurcation when P-k

becomes P-2k and eventually (as k → ∞) leads to chaos; and (c) Neimark bifurcation which is not

common in mechanical systems.
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Problems

Problem 6.1

[Bifurcation Diagram for Logistics Map] Consider a logistics map equation:

xn+1 = Axn(1− xn) . (6.47)

Run the simulations with the initial condition X0 = 0.1, for different values of A starting from

A = 2.9 and going up to A = 4. Make increments in A small enough, e.g., ∆A < 0.01 (e.g.,

∆A = 0.001). For each magnitude of A record long time series and retain only the last 1,000 (or

more, e.g., 4,000) points representing its steady state response. Now plot the bifurcation diagram,

by plotting all the response points versus the corresponding value of A. What can you see in the

diagram?

Problem 6.2

Numerically integrate the Lorenz system described in Problem 3.2 and perform a Poincaré section.

Namely, record (x, z) every time the y-coordinate equals zero and its derivative is negative. You can

accomplish by providing options to ode45 MATLAB program by first setting it through options

= odeset(’Events’,@events);, where events is the function that specifies the when to sample

the flow (i.e., you need to specify y = 0 and ẏ < 0 conditions). I would suggest reading ODE

Event Location on Mathworks site and following their example. Once you have the points, plot the

Poincaré section by plotting z vs x as points.

Problem 6.3

Numerically integrate the Lorenz system described in Problem 3.2 and collect all the maxima of y

variable. Again, you can use events to accomplish this, or use findpeaks command in MATLAB

on y time series that is sampled sufficiently. Plot the series of the maxima Yn versus Yn+1 and

compare it to the attractor of Problem 6.2.

https://www.mathworks.com/help/matlab/math/ode-event-location.html
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Chapter 7

Delay Coordinate Embedding

Up to this point, we have known our state space explicitly. But what if we do not know it? How

can we then study the dynamics in phase space? A typical case is when our data is a scalar time

series (e.g., temperature measured at uniform time intervals in a specific geographic point). Let us

consider a continuous time systems with true state u ∈ S, where S is our phase space.1 Then our

measured signal is

xn ≜ x (u(tn)) + ηn , (7.1)

where ηn is measurement noise. If we have uniform time sampling ∆t (which is a generic case),

tn = n∆t. Thus, we usually have a time series

{xn}Nn=1 = {x1, x2, x3, . . . , xN} . (7.2)

F (t)

u(t)

Figure 7.1: Driven pendulum

Example 1: Driven Pendulum

We consider a driven pendulum in Fig. 7.1, described by the following equation:

ü+ γu̇+ sinu = F cosωt , (7.3)

1In general, S is not even known precisely.
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or

u̇ = v ,

v̇ = −γv − sinu+ F cos θ ,

θ̇ = ω ,

(7.4)

or

u̇ = f(u) , (7.5)

where u = [u, v, θ]T ∈ S1 ×R1 × S1. Now let us assume that we measure only the first coordinate u

as

x = h (Π1(u)) = cu , (7.6)

where h : S → S is the angular position sensor function, Π1 : S × R × S → S is the projection onto

the first coordinate u ∈ S, and c is the linear sensitivity (c = h′(u∗)).

In this example we know S, and the question is if we can reconstruct the dynamics in the phase

space and estimate all the relevant system parameters by just having time series of x.

Example 2: Kicked Elastica

As an another example we consider an experimental system [25] shown in Fig. 7.2. Here, we have

u(s, t)

← elastic rod

← permanent magnets

← strain gauge

← kicker magnet

Figure 7.2: Kicked elastica

a cantilevered elastic rod with a permanent magnet mounted at its free end. The kicker magnet

located near the free end of the rod applies transverse load to the rod tip as it passes over it. The

rod displacement can be expressed in terms of its normal modes as

u(s, t) =

∞4

n=1

qn(t)ϕ(s) , (7.7)

where ϕn : [0, L] → R are normal modes of the system satisfying the boundary conditions, and

the qn(t) are the corresponding time coordinates. The corresponding velocity is v = u̇. Therefore,
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u = [u, v]T ∈ S is the ∞-dimensional function space. We measure strain x(t) at s = s∗. The strain

x ∝ κ(s∗) ≈ cu′′(s∗), where κ is the curvature of the rod and the approximation is valid for small u

and u′. The question here would be can we use measure strain time series {x}Nn=1 to reconstruct the

observed dynamics of the elastic rod. Namely, can we determine the number of the active modes

and their contribution to the response at various value of the supply voltage to the kicker magnet?

Can we develop a bifurcation diagram while varying supply voltage to the kicker magnet? etc.

Example 3: Walking Human

We have seen many examples of the studies on humans kinematics [80, 85] shown in Fig. 7.3, where

their gait dynamics are recorded using goniometers (for joint angles) or other instruments (such as

video based motion capture). Here, the state of human locomotion u ∈ S is unknown. We do not

even know what is our phase space S, which might be collection of joint angles, their velocities, plus

many unknown variables. We would usually measure some joint angle x = c θ, where θ is the true

joint angle, or track motion using video based system, etc.

Figure 7.3: Examples of studies relating to tracking and identifying human kinematics: elite cyclist

on the left [85] and soldier walking on the right [80].

A pertinent question, when we do not know S: is it reasonable to believe that one even exists?

Additionally, can we use the measured kinematic variable to track and predict other physiological

processes like muscle fatigue or oxygen consumption?
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7.1 Delay Reconstruction

Given the scalar measurement {xn}Nn=1, we can attempt to form a multi-dimensional observable

using delay reconstruction. That is, given {x1, x2, . . .}, we define:

xn = [xn, xn−τ , . . . , xn−(d−2)τ , xn−(d−1)τ ]
T ∈ Rd×1, (7.8)

where τ is the lag or delay time (τ∆t) and d is the embedding dimension. A simple illustration of

three-dimensional reconstruction is shown in Fig. 7.4.

Figure 7.4: Illustration of delay reconstruction of scalar time series into a three-dimensional phase

space trajectory using τ delay time

Why do we think that the delay reconstruction might work? Consider

xn = [xn, xn−τ , . . . , xn−(d−2)τ , xn−(d−1)τ ]
T ∈ Rd×1,

= [x(u(tn)), x(u(tn−τ )), . . . , x(u(tn−(d−2)τ )), x(u(tn−(d−1)τ ))]
T ∈ Rd×1 .

(7.9)

If our time series are from a deterministic system then u(tn − τ) = F(u(tn)).
2 Thus,

u(tn − 2τ) = F(u(tn − τ)) = F(F(u(tn))) = F2(u(tn)) ,

u(tn − (d− 1)τ) = Fd(u(tn)) ,
(7.10)

and

xn = G(u(tn)) ≡ G(un) . (7.11)

2Think of u(tn) as an initial condition and integrate backwards.
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Or, at least, we might hope to be able to do so. To have any hope of this working, we need to get

the dimension d and delay τ right.

In summary, as shown in Fig. 7.5, our deterministic trajectory ϕt(u0) : S → S evolves on a

manifold A ⊂ S, with dim A = k. We are looking for a delay reconstruction Φ : S → Rd, which

is a composition of the measurement x : S → R and the embedding procedure e : R → Rd. The

delay embedding will map u0 through x0 = Φ(u0) to x0, and the embedding will have a trajectory

ϕ̂t(x0).

Figure 7.5: Illustration of delay coordinate reconstruction embedding procedure

The big question is: when will this process work properly? We would like all the topological

properties to be preserved (i.e., dimension and type of orbit), as well as key dynamical properties

like stability, and more generally we would like ϕ̂t to be “like” ϕt.

The big answer developed by Whitney, Takes, Sauer, at al. is:

Embedding Theorem: Consider an invariant manifold A ⊂ S with capacity (i.e., box

counting) dimension DF . Then almost everya smoothb x : S → R and delay time τ , the

delay map Φ(x,ϕ, τ) : S → Rd with d > 2DF is an embedding of A into Rd if:

1. There are no periodic orbits with period at τ or 2τ (in A).

2. There are only finite number of periodic orbits with period nτ (2 ≤ n ≤ d).

3. There are a finite number of equilibria.

ai.e., with probability 1.
bThat is, x ∈ C1

This is the fractal delay embedding theorem by Sauer, Yorke, and Casdagli (1991) [11]. To understand

this theorem, we need to clarify some terms.

Definition: An embedding is a map F of A manifold that is a C1 diffeomorphism (one-to-

one, onto, and invertible) for which the Jacobian DF has full rank everywhere in A.

http://www.scholarpedia.org/article/Attractor_reconstruction
https://en.wikipedia.org/wiki/Diffeomorphism
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Schematic of an embedding is shown in Fig. 7.6. Please note that manifold A can be distorted by

the embedding F.

Figure 7.6: Schematic of an embedding

We still need to understand what the capacity dimension DF is, which we will address in Di-

mension Theory chapter. However, right now we can consider a case when DF = D a “normal”

integer dimension. Then the requirement that d > 2D (or d ≥ 2D + 1) can be understood with the

cartoons shown in Fig. 7.7. In Fig. 7.7(a), when m < D, we clearly do not have large enough room

for the embedding. In Fig. 7.7(b), when m = D, we see that the mapping cannot be one-to-one

globally (though locally we are ok). In Fig. 7.7(c), when m = 2D, we might have an embedding F

if we are lucky (top case), but generically we cannot guarantee one-to-one mapping due to expected

intersections caused by projection (bottom case). In addition, there are infinite number of “nearby”

F that fail too. Finally, in Fig. 7.7(d), when d = 2D + 1, we have an embedding that is geometri-

cally ok and preserves the original trajectories dynamical characteristics. Cartoons in Fig. 7.7 are

actually describing the Whitney Embedding Theorem [27], which the previously discussed Embedding

Theorem generalizes to fractal dimensions.

7.1.1 Some Remarks

• In practice, we do not know DF—that is one thing we may be trying to find. So the question

is how to estimate d?

• The Delay-Embedding theorem says τ not important (except to avoid periodicities). In prac-

tice, this is not true: τ too small will collapse A onto hyper-diagonal of the embedding space

and loose “attractor” in noise. With chaos, if τ is too large, successive xn are approximately

uncorrelated and the deterministic structure of the attractor may be obscured.

https://en.wikipedia.org/wiki/Whitney_embedding_theorem
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Figure 7.7: Cartoon illustration of the Whitney Embedding Theorem

• Embedding Theorem is only the sufficient condition (d ≥ 2DF +1), but may not be necessary

and we may achieve embeddings at lower dimensions.

In summary, if the conditions of the Embedding Theorem are satisfied, we have the commutator

diagram shown in Fig. 7.8, where x is the measurement function and e is the delay-reconstruction

procedure. Thus, the true dynamics can be expressed as:

u(t) = ϕt(u0)

= Φ−1 ◦ ϕ̂t ◦ Φ(u0) ,
(7.12)

that is

ϕt = Φ−1 ◦ ϕ̂t ◦ Φ . (7.13)

Therefore, in this sense, the dynamics in Rd and A are equivalent. Further, if we study, estimate,

model ϕ̂t on Rd, we know important properties of ϕt on A.

S S

R

RdRd

R

ϕt

ϕ̂t

x

e

x

e

ΦΦ

Figure 7.8: Commutator Diagram for the Delay Embedding
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7.2 Phase Space Reconstruction

Two basic parameters need to be determined for delay coordinate embedding: delay time τ and

the embedding dimension d. The delay time should be large enough that each coordinate of the

reconstructed phase point is distinct and not redundant. Taking a too small delay results in delay

vectors close to the hyper-diagonal of the reconstructed phase space and any variations transverse

to it are not well defined. At the same time, for a chaotic response, the delay should small enough

that coordinates are not statistically independent of each other and the attractor geometry is not

complicated or obscured. For example, the ideal delay for a harmonic signal would be a quarter of

its period. This suggests that the first zero crossing of the auto-covariance is a good choice for the

delay (e.g., for a harmonic signal this happens at quarter of the period as shown in Fig. 7.9), but

for chaotic time series this would generally overestimate the needed delay since it cannot account

for nonlinear correlations.

Average mutual information (AMI), being a measure of nonlinear correlations, in the data pro-

vides another alternative. Its first minimum, when identifiable is usually a good estimate of optimal

delay as it identifies a delay at which a new coordinate provides maximal new information compared

to its delayed version while still being nonlinearly correlated to it. However, AMI estimates are very

sensitive to noise, which usually makes it impossible to identify the first minimum in AMI data even

if it exists. Another alternative is the use of characteristic length spectrum (CLS), which is highly

robust to noise. The simplest of all methods is to just look at the reconstructed phase portrait

and, when possible, identify the delay that provide a good cover of space without causing complex

geometry.

The selection of the embedding dimension can be guided by the embedding theorem, which

stipulated that any dimension higher than twice the capacity dimension of the attractor provides a

good embedding. However, we do not usually know system’s capacity dimension a priori, and need to

0 /2 3 /2 2
-1

0

1

-1 0 1
-1

0

1

Figure 7.9: Sinusoid and its autocorrelation show that optimal delay should be T/4 since it provides

for π/2 shift in phase.

https://en.wikipedia.org/wiki/Mutual_information
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A

A0

B

B0

C

C 0 D0

D

Figure 7.10: Basic idea of false nearest neighbors is illustrated by a three-dimensional closed curve

(blue line) and its two-dimensional projection (red line). The thin dotted lines show two-dimensional

projections onto other planes. The points that are false neighbors in the projection (A′ and B′) are

far apart in higher dimensions (A and B), while the true neighbors (C ′ and D′) remain close

neighbors (C and D).

estimate it using the measured data and the corresponding reconstructed trajectory. In addition, this

is only a sufficient condition and there may as well be perfectly good lower-dimensional embeddings.

The necessary condition on the minimally needed embedding dimension is usually provided by the

false nearest neighbor (FNN) method.

The idea behind the FNN method is simple (see Fig. 7.10): if two points in d dimensions are

true nearest neighbors to each other, then adding (d + 1)-th coordinate should not separate them

from each other. If, however, they were nearest neighbors only due to the projection from a higher

dimensional structure they will separate from each other in (d+1)-dimensional space and thus would

constitute false neighbors in d dimensions. The minimum embedding dimension is identified by by

the smallest dimension having zero fraction of the FNNs.

https://en.wikipedia.org/wiki/False_nearest_neighbor_algorithm
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Problems

Problem 7.1

Consider the Hénon map [45],

xn+1 = a− x2
n + byn , yn+1 = xn ,

which yields chaotic solutions for a = 1.4 and b = 0.3.

1. Using a typical sequence of xn, create different two dimensional phase portraits using delay

times τ = 1, 2, . . ..

2. Which picture gives the clearest information about the original system? Why?

3. Rewrite the map in delay coordinates with unit delay and interpret the results.



Chapter 8

Selecting Delay Time for Phase

Space Reconstruction

The estimation of optimal delay time can be approached from a purely geometrical perspective [56]

or by considering linear/nonlinear (auto)correlations in the time series [31, 32]. As discussed in

the previous section, there are primarily three methods for estimating the delay time using: (1)

visual inspection of the reconstructed phase portrait (see Fig. 8.1 for the illustrations); (2) the first

zero crossing of the autocorrelation function or correlation time τcorr (refer to Fig. 7.9); and (3)

the first minimum of the average mutual information. In some cases, selection of the optimal delay

time and embedding dimension cannot be decoupled (e.g., when mutual information changes with

the embedding dimension [38]). Some studies have advocated focusing on the so-called embedding

window (τe = (d − 1)τ) that describes the total time span covered by all coordinates in each of

the reconstructed phase-space points [7, 35, 63, 78]. Others use model-based parameter estima-
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x(
t+
τ)

-4 -2 0 2 4

-4

-2

0

2

4

x(t)
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Figure 8.1: Determining delay “by eye:” if points are bunched long the diagonal, then τ is too small

(a), if we see the dynamical structure and phase portrait looks “nice,” then τ is about right (b); and

if dynamical structure is obscured or “too complex,” then τ is too long (c).
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tion [9, 49, 60, 63, 84] to estimate both optimal delay and embedding dimension simultaneously.

More recently, the optimal short-term prediction metric (based on artificial neural network model)

was used for estimating both appropriate delays and embedding dimension [69]. A similar idea, in

conjunction with average mutual information for the delay estimation, was used in estimating embed-

ding dimension in Ref. [14]. Some of these methods are applicable in certain scenarios, others have

some deficiencies, as discussed in Refs. [2, 38, 53]. Others advocate choosing the lag conservatively

and then applying a spatial decorrelation transform [57] to allow for the even unfolding.

Before we discuss the nonlinear methodologies used in selecting delay time. We need to briefly

review concept of information entropy addressed in information theory. Entropy as viewed from the

information theory perspective is an average measure of information coming from a probabilistic or

stochastic data source. This view is connected to but is not the same as thermodynamic entropy (a

measure of disorder in a systems) in statistical mechanics.

8.1 Shannon Entropy

A measure of “disorder” or “uncertainty” in a system can also be called entropy from information

perspective. Given a set A with partition of “boxes” {Bi}Ni=1, as shown in Fig. 8.2 by partitioning

the x axis into equal-sized bins for one-dimensional data or as in Fig. 8.3 for a two-dimensional set,

Shannon Entropy is defined as:

H(A) = −〈log pi〉 = −
N4

i=1

pi log pi , (8.1)

where pi = Prob{x ∈ Bi}, ∀x ∈ A .1

Figure 8.2: A time series can be partitioned by segmenting x axis into equal-sized bins Bi

In a special case of “deterministic” dynamics on a partition, where pk = 1 and, thus, pi = 0 for

all i ∕= k (remember
7

i pi = 1). In addition we also have (see Fig. 8.5)2

lim
p→0

p ln p = lim
p→0

ln p

1/p
= lim

p→0

1/p

−1/p2
= lim

p→0
−p = lim

p→1
p ln p = 0 . (8.2)

1In terms of Shannon Information the partition is an “alphabet” and each box is a “letter” or “symbol.”
2This result is obtained using l’Hospital’s rule

https://en.wikipedia.org/wiki/Entropy_(information_theory)
https://en.wikipedia.org/wiki/Information_theory
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Figure 8.3: A set of points A in a Poincaré section covered by the boxes of size ε.

Figure 8.4: Deterministic dynamics on a partition Bi, where pk = 1

Therefore, for deterministic dynamics on a partition, H(A) = 0. In other words, if the uncertainty

in state is zero (only one box has p = 1), entropy is also zero. On the other hand, H achieves its

maximum when pi = pj = 1/N (please refer to Fig. 8.6 for a binary set example, when we only have

two boxes). Thus, maximum entropy is associated with maximum uncertainty in state (any box is

equally likely to be populated).

8.2 Mutual Information

The change in entropy of some process is usually called information. Thus, information of some

process can be thought as I = ∆H. Given a partition {Bi}mi=1 on A of process x we denote the

probability of each partition as:

p
(x)
i = Prob {x ∈ Bi} = p

(x)
i (x) (8.3)

and if we have another process y with partition {Ci}ni=1,

p
(y)
i = Prob {y ∈ Ci} = p

(y)
i (y) (8.4)

Now we also define a joint probability density:

p
(xy)
ij = Prob {x ∈ Bi, y ∈ Cj} ≜ p

(xy)
ij (x, y) (8.5)
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Figure 8.5: Plot of −p log p versus p

and the corresponding joint entropy is

Hxy = −
m4

i=1

n4

j=1

p
(xy)
ij log p

(xy)
ij (8.6)

If the two processes are independent, i.e.

p
(xy)
ij = p

(x)
i p

(y)
j (8.7)

then

Hxy = −
m4

i=1

n4

j=1

A
p
(xy)
ij log p

(x)
i + p

(xy)
ij log p

(y)
j

B

= −
m4

i=1

p
(x)
i log p

(x)
i −

n4

j=1

p
(y)
j log p

(y)
j

= Hx +Hy

(8.8)

where we have used the fact that
7

j p
(xy)
ij = p

(x)
i . Therefore, Shannon entropy is additive for x and

y independent. Now, we define the mutual information between x and y processes as

Ixy = Hx +Hy −Hxy

=

m4

i=1

n4

j=1

A
p
(xy)
ij log p

(xy)
ij − p

(xy)
ij log p

(x)
i − p

(xy)
ij log p

(y)
j

B

=

m4

i=1

n4

j=1

p
(xy)
ij

A
log p

(xy)
ij − log p

(x)
i − log p

(y)
j

B
,

(8.9)

and

Ixy =

m4

i=1

n4

j=1

p
(xy)
ij log

p
(xy)
ij

p
(x)
i p

(y)
j

. (8.10)
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Figure 8.6: Plot of H(A) = −p1 log p1 − p2 log p2 versus probabilities (p1 + p2 = 1)

Therefore, if p
(xy)
ij = p

(x)
i p

(y)
j , then Ixy = 0. That is, mutual information Ixy = 0 if x process is

completely independent of y, which is a much stronger than x and y being just uncorrelated.

Now consider a case when x = x(t) and y = x(t+τ). Then, for a stationary signal, p
(x)
i = p

(y)
i ≡ pi

and p
(xy)
ij = p

(x(t)x(t+τ))
ij ≡ pij(τ), so

I(τ) =

N4

i=1

N4

j=1

pij(τ) log
pij(τ)

pipj
. (8.11)

When we use log2 in I equation, then it is given in bits. In addition, we can simplify further using

the log property:

I(τ) =

N4

i=1

N4

j=1

pij(τ) (log pij(τ)− log pi − log pj) ,

=

N4

i=1

N4

j=1

pij(τ) log pij(τ)−
N4

i=1

pi log pi −
N4

j=1

pj log pj ,

(8.12)

or

I(τ) =

N4

i=1

N4

j=1

pij(τ) log pij(τ)− 2

N4

i=1

pi log pi . (8.13)

This is the form used in Ref. [53] for average mutual information.

Remarks

1. Ref. [53] claims that τ at which the first dI
dτ = 0 is a “good” delay. For I ≥ 0, I = 0 only if

x(t) and x(t+ τ) are perfectly independent . Therefore, x(t+ τ) adds maximal “information”

since it is totally “new” data. Thus, when I = 0 we have zero redundancy in x(t) and x(t+ τ)
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Figure 8.7: Average mutual information Ixx(τ) versus delay τ for a colored random processes

described by xn+1 = (2 − (π/10)2 − ρ)xn + (ρ − 1)xn−1 + ηn, where ηn is white noise and

ρ = [0.02, 0.05, 0.2, 0.5]. Each case is labeled as AR(ρ). In addition, autocorrelations of x time series

from Duffing (ẍ + 0.2 ẋ − x + x3 = 0.33 cos t) and y time series from Lorenz (ẋ = − 8
3x + yz, ẏ =

−10 (y − z) , and ż = −xy + 28y − z) oscillators are plotted.

variables—they are mutually independent. So, when dI
dτ = 0, information added is at a local

maximum and, thus, redundancy is at a local minimum. For illustration purposes we have

plotted in Fig. 8.7 average mutual information estimates for the time series shown in Fig. 3.2.

2. The minimum ( dIdτ = 0) may not exist, or may be hard to determine due to additive noise or

luck of sufficient data.

3. Remember that you cannot blindly trust the delay that the average mutual information gives.

Always look at you data and remember that the optimal delay will depend on the application.

For example, we can ask: what τ minimizes the variability in the estimate of some nonlinear

characteristics such as Lyapunov exponents and fractal dimensions?

4. On the other hand, Ixy can provide evidence of nonlinear coupling between two process x and

y that seem linearly uncorrelated. I(τ) could also indicate possible “dynamical structure” in

a time series.

Some Properties of Ixy

1. Ixy = Hx +Hy −Hxy = Iyx, or x and y give equal information about each other.
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2. Using the joint probability property p(x, y) = p(x|y)p(y), we get

Ixy =

m4

i=1

n4

j=1

p
(xy)
ij log

p
(xy)
ij

p
(x)
i p

(y)
j

,

=

m4

i=1

n4

j=1

p
(xy)
ij log

p
(x|y)
ij

p
(x)
i

=

m4

i=1

n4

j=1

p
(xy)
ij log

p
(y|x)
ij

p
(y)
i

,

=

m4

i=1

n4

j=1

p
(xy)
ij log p

(x|y)
ij −

m4

i=1

p
(x)
i log p

(x)
i .

(8.14)

Now, considering that

Hx|y = p
(xy)
ij log p

(x|y)
ij , (8.15)

we get that

Ixy = Hx −Hx|y = Hy −Hy|x , (8.16)

where the first equality reflects the uncertainty in x and the second the uncertainty in y.

Problems

Problem 8.1

Consider the y time series from the Lorenz oscillator:

ẋ = −8

3
x+ yz, ẏ = −10 (y − z) , and ż = −xy + 28y − z ,

staring from x(0) = 20, y(0) = 5, and z(0) = −5 initial condition and with 0.02 sampling time.

Estimate and plot the corresponding average mutual information and autocorrelation coefficient

versus the delay time. Estimate what should be the optimal delay time using both metrics. Now

plot the phase portraits of using various delays and identify the one that most resembles the original

phase portrait x versus y. Is there any difference between this reconstruction and the optimal delay

reconstructions? What happens if we increase the delay further? Is the first zero crossing of the

autocorrelation a good estimate for the delay?
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Chapter 9

Selecting Embedding Dimension

for Phase Space Reconstruction

Here, we focus on one of the popular methods used for estimating the minimally nessesary em-

bedding dimension called false nearest neighbors (FNN) [58]. There are other methods that utilize

convergence in the estimates of some nonlinear measures or metrics [8], but they are either more

complex or cumbersome in the applications. The idea behind the FNN [58] method is based on the

uniqueness property of a dynamical system’s phase-space trajectory as discussed at the beginning of

this chapter: the nearest neighbor (NN) of a point in a d-dimensional embedding is false if the pair

of points are close only due to the projection from a higher-dimensional (e.g., (d+ 1)-dimensional)

phase space. Thus, the FNN will separate if the data is embedded into a (d+1)-dimensional space,

while the true NNs will remain close. If one is able to detect all the FNN, then the minimally ness-

esary embedding dimension can be identified as the least dimension needed to achieve zero fraction

of the FNN.

There are three distinct variations of the FNN algorithm. We label them as: the original or

Kennel [58], improved [43], and reliable [57] algorithms. Variations of them are frequently used in

very diverse fields such as stock market price forecasting [55], astrophysics [42], engineering [94], and

biology [41]. The effect of additive noise in deterministic time series on the performance of these

algorithms will also be discussed.

It has become customary, in the nonlinear time series analysis, to compare the results one gets

from applying an algorithm to the data to the results obtained using surrogate data, which possesses

the same linear characteristics (i.e., power spectrum and probability density) as the original data.

There are many different methods to obtain a surrogate data [82], the simplest are only preserving

either probability density (by randomly reshuffling data points time sequence) or power spectrum

(by randomizing the phase of the Fourier transform and then converting it back to the time domain).

89
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The idea is that one cannot trust the results if they cannot be differentiated from the ones obtained

from the surrogate data. The estimating of minimally necessary embedding dimension requires the

surrogate analysis to make we are not using algorithm that would yield low-dimensional indication

for the noise. Instead of going through an exercise of frequency and time domain randomization

and normalization procedures [82], we will follow [57], where they used a much simpler strategy. For

each d-dimensional NN pair, the (d+ 1)-dimensional coordinate distance is estimated by randomly

selecting one of the coordinates from all the data. This is justifiable, if all the linear correlations are

absent from the components of the reconstructed phase space (the needed decorrelation coordinate

transformation is also discussed in Section 9.3.1), where the noise would appear to be effectively

white. The algorithms described in the following sections will be contrasted and compared to each

other using the normally and uniformly distributed white noise time series as well as the ones used

in Figs. 3.2 and 8.7.

9.1 The Original False Nearest Neighbor Algorithm

The original FNN method was proposed by Kennel et al. in 1992 [58]. Working in each d-dimensional

reconstructed phase space, for each point xi its NN xj(i) is identified as false if:

CCxi+dτ − xj(i)+dτ

CC > r
KKxi − xj(i)

KK , (9.1)

where r is an a priori fixed threshold value (typically chosen to be 10 in Ref. [58]).

To simplify notation and streamline discussion, we define the following variables:

δi ≜
CCxi+dτ − xj(i)+dτ

CC , and εi ≜
KKxi − xj(i)

KK . (9.2)

In what follows, we will also imply the functional dependence of index j on the index i (i.e., xj is

always the NN to xi using the appropriate NN metric). Then, the probability that any point xi and

its NN xj are FNN can be written as:

fnn(d; r) ≜ Prob {δi > r εi} , (9.3)

and we refer to it as the original fraction. Then, the idea is that the smallest dimension d for which

fnn(d; r) reaches zero is the minimally sufficient embedding dimension. The original fraction provides

misleading results for the white random and correlated stochastic time series for which it erroneously

shows low embedding dimensions and the surrogate analysis does not provide the differentiation [57].

In fact, results for uncorrelated random time series and for large amplitude autoregresive processes

are virtually identical and indicate the existence of a low-dimensional attractor. This is a problem

for noisy deterministic time series, since we cannot definitively attribute zero FNN to the actual

existence of a low-dimensional attractor.
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Hegger and Kantz [43] were first to clearly identify the shortcomings of this definition when

noisy deterministic data were considered. For uniformly distributed white noise, the original fraction

fnn(d; r) = 1− 2 〈εi〉 r+
L
ε2i
M
r2, where εi = εi(d) is the distance between the NNs in d dimensions.

For uncorrelated noise time series of size N , 〈εi〉 ≃ N−1/d. Therefore, this FNN fraction approaches

zero when 〈εi〉 ≃ r−1 or when N ≃ rd. To always differentiate noise (which is inherently infinite-

dimensional) from deterministic data (finite-dimensional), one always needs N ≥ rd to get the

nonzero original fraction for uncorrelated noise time series. Unfortunately, this is not always feasible

for experimental data.

To address this problem, in [58], the NNs were also counted as false if the distance in (d + 1)-

dimensions was greater than the a times σx of the data (e.g., a = 2 in [58]). Thus, the FNN condition

changed to:

f̂nn(d; r) ≜ Prob
N
(δi > r εi) ∨

5
δ2i + ε2i > a2σ2

x

6O
, (9.4)

which we call the Kennel fraction.
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Figure 9.1: Kennel fraction of FNN using Eq. (9.4) for Lorenz (a), Duffing (b), Normal (c), Uniform

(d), AR(0.02) (e), AR(0.05) (f), AR(0.2) (g), and AR(0.5) (h). The gradual decrease in the FNN

fraction is precipitated by incrementing r from zero to 20 by two. Lines with circles reflect the

corresponding surrogate data results.
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Figure 9.1 shows the results of this algorithm applied to our data sets. This solution seems to

improve performance for the white random time series by increasing the FNN fraction for higher

embedding dimensions. However, it exhibits a dip in the FNN fraction at lower dimensions (i.e., it

underestimates the FNN fraction for large r and low d). This dip is also present for the correlated

stochastic time series especially for ones with the larger stochastic components. However, the surro-

gates also show a similar dip and diverge from actual data after the minimum is reached. Even with

this divergence the correlated stochastic data is hard to interpret and this solution is inadequate [57].

This will also be problematic for noisy deterministic time series, since this dip cannot be uniquely

attributed to the existence of a low-dimensional attractor. In addition, [58] points out that this

solution may introduce false neighbors in large d for an insufficient amount of deterministic data.

9.2 The Improved Algorithm

In [43], it is supposed that if the distance between the NNs is larger than σx, these points cannot

be considered true NNs and should be discarded in computation. In this approach, the NNs for

which the d-dimensional distances are greater or equal to 1/r times σx are disregarded and the

original fraction is used for FNN. Unfortunately, for large values of d and r, this causes the number

of available points to decrease drastically to zero for both white random and correlated stochastic

data sets. The current algorithm for false NNs, as described in TISEAN package [44, 53] has the

following form:

f̃nn(d; r) ≜
7N−(d−1)τ

i=1 Θ (δi − rεi)Θ (σx − rεi)
7N−(d−1)τ

i=1 Θ (σx − rεi)
, (9.5)

where Θ is the Heavyside function and f̃nn is referred to as the TISEAN fraction. They claim that

this solution for white random data leads to 50–60% FNN for large N , independent of choice of d

and r. However, in our white random and dominantly stochastic test cases, the number of points

suitable for averaging drops to zero precipitously for large d values. In addition, it indicates low-

dimensional embedding for stochastic or random data and does not provide any differentiation with

the surrogate analysis.

9.3 The Reliable Algorithm

In [57], some of the ideas in [43] were further expanded and a new FNN algorithm was proposed

in conjunction with new and interesting false nearest strands (FNS) idea. These new FNN and

FNS methods were shown to be usable for noisy or stochastic time series. In [57] several important

improvements to the FNN algorithm were proposed: (1) only NNs that are temporarily uncorrelated

are considered to focus exclusively on spatial proximity; (2) instead of FNN, FNS were advocated to
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make sure only true NNs were considered in the calculations even for noisy data; and (3) a spatial

decorrelation transform was introduced to deal with linear correlation bias due to small delays.

9.3.1 Spatial Decorrelation

The spatial decorrelation step is aimed at negating the effect of the too-small delay used in the

reconstruction, which makes the FNN fraction small irrespective of the actual dynamics. In addition,

this step makes the method insensitive to the appropriate choice of the time delay, unless it is chosen

to be unreasonably large.

The basic idea of the decorrelation is to counteract the bunching of all reconstructed points

near a thin tube along the hyperdiagonal of a phase space. Given the original (d + 1)-dimensional

reconstructed phase-space trajectory Y ∈ R(d+1)×[N−τ(d+1)], where the i-th column is given by the

i-th delay vector xi ∈ Rd+1, Y is first transformed into its proper orthogonal space Ỹ using singular

value decomposition [36]:

Y = UCV T , ⇒ Ỹ = UTY , (9.6)

Then Ỹ is rotated in the phase space so that the first d-coordinates are only a function of the first

d coordinates of the original phase space Y . To accomplish this we take the last column of Ỹ ,

u ∈ Rd+1, and then the needed orthogonal transformation is given by the following Householder

matrix [36]:

Q = H (u− |u| ed+1) , (9.7)

where ed+1 is the unit vector in the (d + 1) direction. Then the decorrelated phase space is given

by:

Ȳ = QỸ . (9.8)

In our test samples, the choice of delay time is close to optimal and the use of decorrelation does

not provide any significant benefits, but in practice it can be a differentiating factor. Thus, we have

included this step in the results presented from now on.

9.3.2 Temporal Decorrelation

As opposed to the TISEAN fraction, Ref. [57] advocates to look at just the distance between the

(d+ 1)-th coordinates of the NNs. If we only consider the FNN- and not the FNS-based metric we

will get:

f̄nn(d; s) ≜ Prob {δi > sσx} , (9.9)

where, to identify true NNs for each point xi, its NN xj is determined such that:

j = argmin
j

‖xi − xj‖ , subject to |i− j| > w , (9.10)
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where w is a Theiler window [88, 89] used to remove temporal correlations. We call the metric

defined by Eq. (9.9) the reliable fraction. Ref. [57] discusses the appropriate choice of the Theiler

window and advocates to use two or three times the first minimum of average mutual information

as a good rule of thumb. Another alternative is to match the w time scale to the point at which the

average mutual information reaches its asymptotic zero value.

The results for Eqs. (9.9), and (9.10) using a Theiler window of four times the first minimum of

the average mutual information are shown in Fig. 9.2 (left plots). For the deterministic time series,

we observe an initial underestimation of the FNN fraction with the increase in s value. The fractions

reach zero for an appropriate embedding dimension and then show gradual increase for small s values

with the increase in d values. This gradual increase is more pronounced for the Duffing data and is

absent for larger s values. For the white random data sets the FNN fraction behaves as expected,

showing linear decrease as s is increased, while remaining constant for all values of d. For the

correlated stochastic data this metric is more interesting and shows trends intermediate between the

trends for the purely white random and deterministic data. Specifically, it can clearly be used with

large s values to differentiate small stochastic component from the larger deterministic data—plots

(e,f). The results for the surrogates are clearly separated from the actual data, especially for larger

s values, and remain constant for all d.
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Figure 9.2: Reliable FNN (left plots) and reliable FNS (right plots) fraction of Eq. (9.9) applied

to Lorenz (a), Duffing (b), Normal (c), Uniform (d), AR(0.02) (e), AR(0.05) (f), AR(0.2) (g), and

AR(0.5) (h). The gradual decrease in the FNN fraction is precipitated by incrementing s from zero

to two by 0.1. Lines with circles reflect the corresponding surrogate data results.
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9.3.3 False Nearest Strands

In the same paper [57], the shortcomings of the previous FNN methods for the deterministic data

contaminated by small random noise are also identified. In this case, the NNs identified through

the analysis may be proximal not due to the deterministic dynamics or the projections, but due

to noise. If the proportion of the misidentified NNs is large, then the algorithm will overestimate

the corresponding FNN fraction. To identify only true (in terms of deterministic dynamics and

projection only) NNs, they propose to consider NN strands (NNS). The following procedure is used

to identify NNS:

1. Identify NN xj(i) for each point xi given by Eq. (9.10).

2. If there is any pair of points (for a minimal k = k&) from a set of preceding NNs {xi−k,xj(i−k)}wk=1

such that j(i) = k&+j(i−k&), then [xi,xj(i)] are assigned to the strand containing [xi−k" ,xj(i−k")].

Otherwise, [xi,xj(i)] are assigned to a new pair of NN strands.

3. After examining all the data, Ns number of NNS are obtained, each containing a set of NN

points Sk (k = 1, . . . , Ns). Then the k-th strand is designated false if 〈δi〉k > sσx, where

〈δi〉k ≜ 〈δi〉i∈Sk
=

1

‖Sk‖
4

i∈Sk

δi . (9.11)

Alternatively we can define Reliable FNS Fraction as:

f̄ns(d; s) ≜ Prob {〈δi〉k > sσx} . (9.12)

The results of the FNS calculations for our test time series are shown in Fig. 9.2 (right plots).

The decrease in the FNS fraction with the increase in s is still present as reliable FNN. For the

deterministic data, some gradual increase in this fraction with the increase in d for small values of

s is also present. In addition, and in contrast with the reliable FNN fraction, this metric does not

converge to zero as fast and indicates larger minimal embedding dimension for the deterministic data.

The results for the white random data are still indistinguishable from the ones for the surrogate data.

However, the white random data trends show a gradual increase in the FNS fraction not observed

reliable FNN. For the correlated stochastic data sets, FNS trends are clearly delineated from the

surrogates for the low level of stochasticity, and show results similar to the white random data for

the larger stochastic components. To accurately estimate embedding dimension in deterministic

cases, one needs to set some threshold value for the FNS fraction since it does not reach zero as fast

as in the reliable FNN fraction. This task is made easier by the clear separation from the surrogates

FNS fraction, which stays relatively level with the increase in d. For the larger s values, the Duffing

FNS fraction also indicates lower than expected embedding dimension.

To see the advantage of these new metrics when dealing with noisy data, we apply them to

Duffing data with additive Gaussian noise as shown in Fig. 9.3. For the reliable FNN algorithm, the
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new fraction floor rises with the noise level, but it is still usable for small values of s and low 5%

noise level Fig. 9.3(a). At the same time, the surrogate’s FNN fraction stays constant with respect
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Figure 9.3: Reliable FNN (first column: a,c,e,g) and FNS (second column: b,d,f,h) algorithm applied

to Duffing data with 5% (a,b), 10% (c,d), 20% (e,f), and 40% (g,h) noise. The gradual decrease

in the fractions is precipitated by incrementing s from zero to two by 0.1. Lines with circles reflect

the corresponding surrogate data results.

to d and asymptotes down with the increase in s to approximately 50% fraction. The FNS data

looks better for the low noise levels Fig. 9.3(b,d) and exhibits similar surrogate behavior. Therefore,

it provides better separation between the surrogate and actual data FNS fractions compared to the

FNN fractions. One might be able to estimate embedding dimension for the low noise levels in

Fig. 9.3 if an appropriate threshold value is set. However, both reliable fractions cannot identify the

embedding dimension for the larger noise levels.

In what follows, we want to further expand on some ideas in [57] and propose an FNN algorithm

that is usable for noisy or stochastic time series with deterministic components. We begin with

exploring the nearest-neighbor statistics for deterministic, white random, and correlated stochastic

time series.



9.4. NEAREST-NEIGHBOR STATISTICS 97

9.4 Nearest-Neighbor Statistics

To investigate the problems outlined in the previous sections, we investigate NN statistics for our

test time series. First, consider the expected average nearest-neighbor distance 〈εi(d)〉 for white

random time series. Given a d-dimensional reconstruction of normally distributed random time

series, the distance between any two points will be distributed according to a χd (d-dimensional chi

distribution [39]). We also make the proposition that the expected value of the distance between the

NN points will be proportional to the mean of the corresponding χd distribution and to the average

density of points in d dimensions (
√
d/N)1/d. This will result in the following approximation:

〈εi(d)〉 ≃
√
2
Γ ((d+ 1)/2)

Γ (d/2)

F√
d

N

G1/d

, (9.13)

where Γ is the gamma function. Figure 9.4(a) shows the expected values of nearest-neighbor distances

versus the embedding dimension for all eight test time series, without accounting for temporarily

correlated NNs. The increase between the mean nearest-neighbor distance is more drastic for the

white random data than the deterministic time series, and Eq. (9.13) follows this increase for the

white random time series very closely.

The deterministic time series show more power-law type increase after the needed embedding

dimension is reached (d ∼ 3–4, in both case), and it has a considerably lower rate than for the

random data. The nearest-neighbor distance for deterministic data is expected to grow according

to local divergence rate eλmaxdτts , where λmax is maximal Lyapunov exponent, after the minimum

embedding dimension is reached. This can be expressed as:

〈εi〉 ≈ ε
5
eλmaxdτts − 1

6
, ∀d ≥ m, (9.14)

where ε is a constant reflecting the point density in the phase space. The parameters that follow

the observed curves closely are: ε = 0.0404± 0.0008 and λmaxτ ts = 0.0689± 0.0008 for the Lorenz
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Figure 9.4: Expected value of nearest-neighbor distances in d dimensions without (a) and with (b)

temporarily decorrelated NNs
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data, and ε = 0.5110± 0.0742 and λmaxτ ts = 0.0167± 0.0020 for the Duffing data. The exponential

growth in Eq. (9.14) is only expected until it reaches the attractor size at which point it will saturate.

Even if it is allowed to grow unimpeded it will only cross Eq. (9.13) somewhere d ∼ 60. Thus, when

dealing with low-dimensional deterministic systems (e.g., d < 40) their expected nearest-neighbor

distance will stay well below the distance expected for the white random data in the same dimension.

The correlated stochastic time series show behavior somewhere in the middle of the white random

and deterministic nearest-neighbor distance trends. They start close to the white random at low

dimensions and then diverge to smaller distances for the larger embedding dimensions.

The same plot was regenerated for the distance between temporarily decorrelated NNs as shown

in Fig. 9.4(b). The main observed differences are that the large stochastic component data now

closely follows the white random distances, while the small stochastic component data shows the

intermediate behavior. In addition, the deterministic data have more pronounced trends clearly

showing differences in the divergence rates. Fitting the Eq. (9.14) to these curves gives the fol-

lowing parameters: ε = 0.0333 ± 0.0007 and λmaxτ ts = 0.0790 ± 0.0008 for the Lorenz data, and

ε = 0.0425 ± 0.0020 and λmaxτ ts = 0.1212 ± 0.0021 for the Duffing data. Thus, we observe: (1)

temporal correlations considerably stint the divergence rates, especially for the Duffing data; and

(2) divergence exponents after removing temporal correlations for Lorenz (λmax ≈ 0.5) and Duff-

ing (λmax ≈ 0.1), while not being suitable for estimating maximal Lyapunov exponents, are close

to their expected values [86] (experimentally estimated largest Lyapunov exponents from data are

λ1 ≈ 0.825 for Lorenz and λ1 ≈ 0.134 for Duffing).

Now, let us consider the (d+1)-th coordinates of the NNs in d dimensions, which are still uncorre-

lated random numbers for the white random time series. Thus, the distance between these (d+1)-th

coordinates for normally distributed variables (xi ∼ N [0,σx]) follows a chi distribution [39]1, and

the corresponding expected value can be expressed as:

〈δi〉 = E[δi] =
2Γ(1)

Γ(1/2)
σx ≈ 1.1284σx . (9.15)

Now, it is easy to show that for the uniformly distributed variables (i.e., xi ∼ U [−a, b]), this expected

value becomes:

〈δi〉 =
2√
3
σx ≈ 1.1547σx . (9.16)

We conclude that for some general uncorrelated random time series the average distance between the

(d+1)-th coordinates is expected to be slightly greater than the corresponding σx (∼ 1.12–1.16σx).

A similar relationship is expected for the colored-noise time series if the delay used in the recon-

struction is greater than the correlation time. However, for a deterministic time series we expect this

(d + 1) component’s distance to be small for true NNs. The estimation results using our synthetic

1If xi ∼ N [0,σx], then xi − xj ∼ N [0, 2σx], and
|xi−xj |

2σx
∼ χ1.



9.4. NEAREST-NEIGHBOR STATISTICS 99

0 5 10 15 20
10-2

100

0 5 10 15 20
10-2

100

(b)(a)

Lorenz
Duffing
Normal
Uniform

AR(0.02)
AR(0.05)
AR(0.2)
AR(0.5)

Lorenz
Duffing
Normal
Uniform

AR(0.02)
AR(0.05)
AR(0.2)
AR(0.5)

Figure 9.5: Expected value of distances between the (d+1)-th coordinates of the NNs in d dimensions

without (a) and with (b) temporarily decorrelated NNs

time series without removing temporal correlations are shown in Fig. 9.5(a), where we plot the mean

value of this distance at each embedding dimension. As we can see, the analytical estimates are very

close to the numerical results for the white random data sets, which are clearly larger than the ones

for the deterministic time series.

For the correlated stochastic data we have an initial rapid drop in the mean (d+1) components’

distance followed by a slower gradual decrease. The initial drop is due to the deterministic corre-

lations in the data caused by small delay and is more pronounced for weakly stochastic sets. The

consequent slow decrease is due to the longer temporal correlations in the data, and it is more drastic

for the strongly stochastic sets. All the correlated stochastic trends seem to level our at about 30%

of σx. The (d+1)-th distances for the deterministic data start near 0.5 ∼ 0.6 FNN fraction and drop

down rapidly to near zero at the true minimal embedding dimension and then have slow gradual

increase Fig. 9.5(a). This gradual increase is caused by the maximal local divergence rate of the

nearby trajectories, and is expected to follow eλmaxdτts similar to Eq. (9.14).

The same plots were regenerated for the temporarily decorrelated nearest-neighbor statistics as

shown in Fig. 9.5(b). The decorrelation had big effect on the correlated stochastic data: they were

pushed up to the white random trends for the correlated data with larger stochastic components.

In contrast, the AR(0.02) and AR(0.05) cases show trends more similar to the deterministic data,

by exhibiting initial drops followed by the very slow increase. All the stochastic data stays above

0.45σx level and can be clearly differentiated from the deterministic data. The deterministic trends

did not change during the initial drop to zero. However, the following gradual increase has a more

pronounced character, especially for the Duffing data. This increase is more in line of expected

exponential divergence caused by the maximal Lyapunov exponent, and was not as pronounced

before due to temporarily correlated components staying close irrespective of embedding dimension.

The statistical analysis described in this section can be summarized as:

1. Temporal correlations significantly alter the observed results and need to be accounted for
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Figure 9.6: Expected NN distance 〈δi〉 versus the embedding dimension d for noisy Lorenz (a) and

Duffing (b) time-series

in accurate FNN analysis (removal of temporarily correlated points from the FNN analysis

increases the differentiating power of the NN statistics).

2. Of the considered temporarily decorrelated metrics, (d + 1)-th coordinate distance (δi)—as

shown in shown in Fig. 9.5(b)—provides the best indication of the minimal embedding dimen-

sion and superior separation between the deterministic and random/stochastic trends, which

remain constant with the increase in d. Thus, this metric can be used directly for estimating the

embedding dimension for the noise free deterministic data. However, for noise contaminated

deterministic data, it loses its ability to clearly identify the minimal embedding dimension as

shown in Fig. 9.6.

3. Both 〈εi〉 and 〈δi〉 for deterministic data show exponential growth after minimal embedding

dimension is reached. Thus, the original FNN fraction shown in Fig. 9.7 for both without

(a) and with (b) temporarily decorrelated NNs is a good differentiator of deterministic data

for low embedding dimensions. Setting a threshold value near 5 ∼ 10, this ratio with tem-
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Figure 9.7: Expected value of the Kennel ratio in d dimensions without (a) and with (b) temporarily

decorrelated NNs
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poral decorrelation provides accurate estimates of FNN for d < 10, and clear separation of

deterministic trends.

9.4.1 New Composite-Fraction-Based Metrics

Using the results of the statistical analysis described in Section 4, and combining them with the

original definition of FNN, the following FNN composite fraction can be advocated:

Rnn(d; r, s) ≜ Prob { (δi > r εi) ∨ (δi > sσx) } . (9.17)

This new ratio has two parameters: r is the same as for the original fraction, while s is the same

as for the reliable fraction. The first part is expected to serve as good indication of FNN for low d,

while the second provides good indication of minimal embedding dimension and best separation of

deterministic data from random/stochastic for larger d.

This composite metric still does not address the problem of NNs being close to each other due

to the presence of noise instead of either dynamics or projection. Therefore, we propose a procedure

similar to the FNS, where instead of looking up just one NN (NN) for each point xi, we look up

k NNs. Then, the true, temporarily uncorrelated NN (i.e. the one close only due to dynamics or

projection) is identified by evaluating the preceding and future l states of all k NNs. In particular,

we evaluate the average distances between the base strand and all k NN strands of length 2l + 1.

The strand with the smallest average distance from the base strand will contain the needed true

NN.

9.4.2 New Composite-Fraction-FNN Algorithm

The composite FNN procedure can be summarized as follows:

1. For each point xi, identify its temporarily uncorrelated k NNs

{xj(m)}km=1 =
N
xj(m) : |i− j(m)| > w, m = 1, . . . , k

O

just like in Eq. (9.10) to eliminate temporarily correlated NNs.

2. Then the true NN xj is identified as:

j(m) = argmin
m

7l
q=−l

KKxj(m)+q − xi+q

KK

(2l + 1)
KKxj(m) − xi

KK , (9.18)

and used in Eq. (9.17) to determine FNN fraction.

Equation (9.18) indicates that the composite fraction will also be a function of l and k parameters:

Rnn = Rnn(d; r, s, l, k) . (9.19)
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It is reasonable to set the value of l ≤ w/2 in Eq. (9.18) since we are focusing on temporal correlations.

The choice of k can be influenced by many factors, such as noise level, density of points in the

embedding, and sampling time. Here we only present results obtained with just one NN point

(k = 1 and l = 0) for noise free data. In addition, we use k = 10 and l = τ for data with additive

noise. However, we explicitly set these values in what follows and do not study their influence on the

quality of the results, which is left for future work. Therefore, Rnn = Rnn(d; r, s, τ, k) ≜ Rnn(d; r, s)

in what follows.
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Figure 9.8: Eq. (9.17) based composite fraction FNN algorithm with s = 0.5 (left plots) and with

r = 4 (right plots) for Lorenz (a), Duffing (b), Normal (c), Uniform (d), AR(0.02) (e), AR(0.05) (f),

AR(0.2) (g), and AR(0.5) (h). The gradual decrease in the fractions is precipitated by incrementing

r from zero to 20 by two and s from zero to two by 0.1. Lines with circles reflect the corresponding

surrogate data results.

The results using Eq. (9.17) are shown in Fig. 9.8 for fixed s = 0.5 (left plots) and for fixed

r = 4 (right plots) for all the test data. For the deterministic data, the algorithm works well for

r ≥ 4 and for all s > 0.2 values, while for the same r values it provides correct indication of high-

dimensional data for the white and correlated stochastic time series. In particular, the actual results

are indistinguishable from the surrogate analysis for the random data and the composite fraction

never drops below 50%. For correlated stochastic data with a smaller stochastic component, we

can clearly see that there is some deterministic component to the data, while for a large stochastic
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component, the results are very similar to the ones for the white noise. However, there still is the

small but clearly identifiable separation between the surrogate and correlated stochastic data. This

is especially evident for s = 0.5 plots, where for larger values of d there is a clear convergence in the

FNN composite fraction to the same constant value for the surrogates, and to different values for all

the correlated stochastic data sets. The separation of this surrogate FNN fraction from the actual

FNN fraction seems to scale with d and the relative magnitude of the deterministic component.

Therefore, we can use this separation between the actual and surrogate data composite fractions

as an indication of some deterministic trends in the stochastic data. However, this needs further

investigation for practical applicability in the analysis, with the purpose of relating the observed

differences with the surrogates to the relative strength of the deterministic components.

One may expect the removal of temporal correlations and the new definition of NN points to

positively alter the Kennel fraction results. However, the observed improvements were marginal: (1)

marginally better indication of minimal embedding dimension for the deterministic data; (2) removal

of artificial separation between the surrogates and actual data for the stochastic time series; and

(3) accentuation exponential divergence for the deterministic data for larger embedding dimensions.

Thus, the main deficiencies that were identified previously still remain.

9.4.3 New-Composite-Fraction-FNS Algorithm

We have also modified the FNS algorithm to use a new metric specified by Eq. (9.17). We use

exactly the same procedure as before, except instead of Eq. (9.12) we use:

Rns(d; r, s) ≜ Prob { 〈δi〉k > r 〈εi〉k ∨ 〈δi〉k > sσx } , (9.20)

where

〈εi〉k ≜ 〈εi〉i∈Sk
=

1

‖Sk‖
4

i∈Sk

εi . (9.21)

The results of calculation using Eq. (9.20) are shown in Fig. 9.9 for fixed s = 0.5 (left plots) and

for fixed r = 10 (right plots) for all the test data.

For all the simulations we have used w = τ . The differences with the new FNN are similar to

what was observed previously in the reliable algorithm. The decrease of the FNS composite fraction

to zero is slower and more gradual than for the FNN composite fraction for the deterministic data.

However, the FNS composite fraction shows a much clearer indication for d = 3 for the Lorenz

and d = 4 for the Duffing data as opposed to FNN, where we have to plot data on a log scale

to clearly see the minima at the same values. This algorithm can be clearly used to differentiate

the deterministic versus stochastic or random data using surrogate analysis. In addition, for the

smaller stochastic component data, the surrogate analysis also provides the needed indication of the

deterministic component. However, this indication is absent for the larger stochastic components

for which they are indistinguishable from the random data sets.
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Figure 9.9: Eq. (9.20) based composite fraction FNS algorithm with s = 0.5 (left plots) and with

r = 10 (right plots) applied to Lorenz (a), Duffing (b), Normal (c), Uniform (d), AR(0.02) (e),

AR(0.05) (f), AR(0.2) (g), and AR(0.5) (h). The gradual decrease in the fractions is precipitated

by incrementing s from zero to two by 0.1 and r from zero to 20 by two. Lines with circles reflect

the corresponding surrogate data results.

9.4.4 Noise Robustness of Composite Fraction Algorithms

To test the applicability of these new algorithms for the noisy deterministic time series we have

tested them on both Lorenz and Duffing data contaminated by additive noise as described before.

The composite FNN fraction results for noisy Lorenz and Duffing are shown in Fig. 9.10 for k = 1

NN (left plots) and for k = 10 NNs (right plots), respectively. For both cases, we set r = 10 and

s = 1. Plots demonstrate that using ten NNs in the algorithm considerably improves on results using

just one NN. Composite FNN fractions with ten NNs have a clear inflection point, or elbow, in their

trends at the appropriate minimal embedding dimension for low noise levels. Even for high noise

levels the estimates for Duffing are good and for Lorenz only overestimate the embedding dimension

by one.

New composite FNS plots for noisy Lorenz and Duffing data are shown in Fig. 9.11 left and

right plots, respectively. Compared to the composite FNN fraction plots, these do not show as clear

of an indication when the FNS composite fraction levels out or has a clear inflection point at the
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appropriate minimal embedding dimensions. Instead, it has a more gradual transition requiring

some careful thresholding to identify the appropriate minimal embedding dimensions. It should be

noted that these results are similar to the ones obtained for the stochastic time series with small

stochastic components. Therefore, we have to be careful when making any judgments about the

nature of additive noise versus systematic stochasticity. However, we can still clearly use these new

methods in both cases to identify the deterministic components in the data and their dimensionality.
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Figure 9.10: Eq. (9.19) based FNN algorithms with k = 1 (left plots) and k = 10 (right plots) for

Lorenz (first and third columns) and Duffing (second and fourth columns) and the surrogate data

with 5% (a,b), 10% (c,d), 20% (e,f), 40% (g,h) additive noise levels. Lines with circles reflect the

corresponding surrogate data results.

9.4.5 Concluding Remarks on False Nearest Neighbors

1. The expected (d + 1)-dimensional distance between the d-dimensional nearest neighbors is a

good indicator of minimal embedding dimension for the clean deterministic time series, but

it loses its differentiation when even small additive noise is introduced into the deterministic

data.

2. New algorithms based on the composite fraction overcome the deficiencies of the earlier meth-
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ods, and are applicable even for noisy deterministic data.

3. While both composite FNN and FNS concepts provide results that can be used for estimating

the minimal embedding dimension even in a noisy data set, the composite FNS algorithm

provides a clearer indication of the minimal embedding dimension for the noise free data

compared to the composite FNN.

4. However, the composite FNN algorithm has a more differentiating power and provides less

ambiguous results for the deterministic data contaminated with additive noise.

5. These FNN/FNS composite fractions are also suitable in evaluating the presence and relative

magnitude of a deterministic component in a stochastic or noisy data set.
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Figure 9.11: Eq. (9.20) based FNS algorithms for Lorenz (left column) and Duffing (right column)

and the surrogate data with 5% (a,b), 10% (c,d), 20% (e,f), 40% (g,h) additive noise levels. Lines

with circles reflect the corresponding surrogate data results.
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Problems

Problem 9.1

Create an artificial time series by integrating the Chua’s circuit [67, 68] by Matsumoto et al. (1985):

ẋ = α

.
y − x+ bx+

1

2
(a− b) (|x+ 1|− |x− 1|)

/
(9.22)

ẏ = x− y + z (9.23)

ż = −βy (9.24)

using these parameters: α = 9, β = 100/7, a = 8/7, and b = 5/7. Start the simulation using the

following initial conditions: x(0) = 0, y(0) = 0, and z(0) = 0.6. In particular, using the x and y

time series:

1. Make sure you are using an appropriate sampling frequency or sampling time period to generate

the trajectory (check using power spectrum and auto-correlation), and record at least 60,000

evenly sampled points.

2. Determine the appropriate delay for the delay coordinate reconstruction and verify it visually.

3. Use false nearest neighbors method to determine the minimally necessary embedding dimension

using composite FNN fraction algorithms.

4. Now add some Gaussian noise to the data and do the same calculations for different signal-to-

noise ratios.

5. Interpret your results.
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Some comments on using the supplied programs to plot the FNN results.

1. false neighbors kd n.m outputs only the statistics on the nearest neighbors in the requested

dimensions in nn structure.

2. plot false neighbors.m processes the output of the false neighbors kd n.m and provides

the actual false nearest neighbor metrics inside the nn structure.

3. you can ask for ranges for the input thresholds r (usually between 0 to 20, say r = 1:2:20;),

and s (usually between 0 to 1, say s = 0.1:0.1:1;)

4. Most of the FNN metrics inside nn are matrices (which can be plotted using mesh or surf

commands), however two most important ones nn.P and nn.S are three-dimensional arrays.

They need special care in plotting.

5. The first coordinate in nn.P and nn.S corresponds to the embedding dimensions considered,

the second coordinate is threshold for the Kennel ratio (r), and the third threshold for the

(d+ 1)-th distance (s).

6. To do a 3D plot of FNNs versus d embedding dimension and r you can just use mesh(nn.P(:,:,k));,

where k is the index of the s for which you want to make a plot.

7. To do a 3D plot of FNNs versus d embedding dimension and s, first you need to per-

mute the three-dimensional array as nnP = permute(nn.P,[1,3,2]); and then you can use

mesh(nnP(:,:,k)); to plot, where k now is the index of the r for which you want to make a

plot.



Chapter 10

Dimension Theory

We are used to the notion of dimension from vector spaces: dimension of a vector space V is the

minimum number of independent bases vectors needed to span V . Therefore, a point has dim = 0;

a line has dim = 1; a plane has dim = 2, and etc. In other words, dimension is the number

of independent coordinates needed to specify a point in a “space.” However, there is a problem:

Cantor showed that there is a one-to-one correspondence between R1 and R2 (i.e., they have the

same cardinality), and Peano actually constructed a continuous map from R1 to R2 (Peano curve).

Then, the question is do R1 and R2 have same dimension?

This suggests the need for a topological definition of dimension:

Topological Dimension: A set X has Lebesgue covering dimension or topological dimen-

sion D if every open cover C of X has a refinement C1 such that every point x ∈ X is

contained in at most D + 1 sets in C, and D is the minimum such integer.

Remarks

1. We can think of the sets C as open balls centered at x with radius r:

B(x, r) = {y ∈ X | d(x, y) < r} . (10.1)

However, in actual topology a distance function is not used to define open sets.

2. The topological dimension corresponds to our “usual” notion of dimension. In particular, for

Rm, D = m (see Figs. 10.1 and 10.2).

3. This notion of dimension (also called Brovwer dimension) has nothing to do with dynamics.

In particular, our set A is being generated by an orbit that visits the various portions of A.
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Figure 10.1: For a curve X , refinement cover C1 is such that every point x ∈ X is contained in at

most 2 sets in C1, therefore dimX = 1.

10.1 Invariant Measure of an Attractor

Recall that we are discussing invariant sets A ∈ S. This means that for every u0 ∈ A, we have

ϕt(u0) ∈ A ∀t (see Fig. 10.3). As the dynamics travels over A, the probability of visiting different

parts of A will be given by a probability density p defined by

lim
T→∞

+ T

0

f(ϕt(u0)dt =

+

A
f(u)p(u)du , (10.2)

where by definition
,
A p(u)du = 1.

Figure 10.2: For a region X , refinement cover C1 is such that every point x ∈ X is contained in at

most 3 sets in C1, therefore dimX = 2.
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Figure 10.3: For every u0 ∈ A, we have ϕt(u0) ∈ A ∀t.

Remarks

1. If p(u) is the same for almost all1 u0 the basin of attraction of a given attractor, p is a natural

density.

2. This density is invariant if we have conservation of probability:

+

B
p(u)du =

+

ϕt(B)

p(u)du , (10.3)

for B ∈ A (see Fig. 10.5). In other words, the probability that the orbit visits the set B is

equal to the probability that it visits the set ϕt(B) for all t.

3. Note that by definition, the invariant density is ergodic with respect to the dynamics.

1Here, “almost all” means except on a set C with
"
C p(u)du = 0 (set of measure zero).

Figure 10.4: For every u0 ∈ A, we have ϕt(u0) ∈ A ∀t.
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Figure 10.5: A is covered by uniform boxes Bi(ε) of size ε.

4. Practically speaking, then, the natural invariant density is that generated by all orbits observed

to lie on the same attractor.

5. The fact is that p(u) can be very nonsmooth or spikey. Indeed, it may be difficult to define

p(u), whereas one can always define the invariant probability measure, µ(u) (or cumulative

probability distribution), so that we use
,
B dµ instead.

6. When p(u) does exist, then dµ(u) = p(u)du and we say µ is absolutely continuous with respect

to Lebesque measure (so p = dµ
du ).

10.2 Dimension Spectrum Dq

Viewing from the perspective of topological dimension, consider an attractor A covered by uniform

boxes Bi(ε) of size ε (see Fig. 10.5). Then

pi =

+

Bi

dµ = lim
T→∞

η (Bi,u0, T ) , (10.4)

where η (Bi,u0, T ) is a function of time (i.e., relative number of data points) the orbit spends in box

Bi. If µ is the invariant measure, this limit will be the same for almost all u0. Then define

Iq(ε) =

N(ε)4

i=1

pqi (10.5)

for q ≥ 0. Idea is that for q > 0, larger µi have more effect on I.
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Observe that

Iq(ε) =

N(ε)4

i=1

pq−1
i pi = 〈pq−1

i 〉 , (10.6)

where 〈pq−1
i 〉 is average of pq−1

i on A. Therefore,

N(ε)4

i=1

pq−1
i pi ≈

+

A
pε(u)

q−1pdu =

+

A
pε(u)

q−1dµ , (10.7)

where pε(u) is the probability in a ball of radius ε centered at u. But from definition of p (or µ),

this is

Cq(ε) ≜
+

A
pε(u)

q−1dµ = lim
T→∞

+ T

0

pε (ϕt(u0))
q−1

dt , (10.8)

where Cq(ε) is the Generalized Correlation Integral, and we have

Iq(ε) ∼ Cq(ε) , (10.9)

or Iq(ε) is asymptotic to Cq(ε) as ε → 0.

If A attractor is self similar

Cq(ε) ∼
5
εq−1

6Dq
= ε(q−1)Dq . (10.10)

For some exponent Dq.

Remark: While historically motivated by thinking of the right hand side of Eq. (10.10) as a

“generalized volume,” this is essentially a definition of self similarity.

Thus

Dq ∼ 1

q − 1

lnCq(ε)

ln ε
, (10.11)

or

Dq = lim
ε→0

1

q − 1

lnCq(ε)

ln ε
, (10.12)

which is called the generalized dimension of order q, when it exists. Since, Iq ∼ Cq, we can also

write

Dq = lim
ε→0

1

q − 1

ln Iq(ε)

ln ε
, (10.13)

Remarks

1. Definition Eq. (10.52), in terms of “boxes” is in some way easier to understand; Eq. (10.12) is

better for actual data-based estimates.

2. If q = 0, I0(ε) =
7N(ε)

i=1 p0i = N(ε), so

D0 ∼ lnN(ε)

ln(1/ε)
, (10.14)

or it reflects how does number of “boxes” needed to cover A scale with ε. This is usually

the definition of the box counting or capacity dimension. In other words, D0 = DF in the

embedding theorem.
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3. When q = 1 we need to use l’Hospital’s rule to get:

D1 ∼ lim
q→1

ln
7

pqi
(q − 1) ln ε

= lim
q→1

1"
pq
i

7
d
dqp

q
i

ln ε

= lim
q→1

1"
pq
i

7
d
dq e

q ln pi

ln ε

= lim
q→1

1"
pq
i

7
pqi ln pi

ln ε
.

(10.15)

Since limq→1

7
pi = 1, we get

D1 ∼
7

pi ln pi
ln ε

. (10.16)

D1 is called the information dimension since−
7

pi ln pi = −〈ln pi〉, is the Shannon information—

the average number of “digits” (or “bits” if we use log2) to specify the state to an accuracy of

ε.

4. In special case when pi = pj ≡ p, then p = N(ε)−1 and

Dq ∼ 1

q − 1

ln Iq(ε)

ln ε
=

1

q − 1

ln
7

N−q

ln ε

=
1

q − 1

lnN (N−q)

ln ε
=

1− q

q − 1

lnN(ε)

ln ε
=

lnN(ε)

ln 1
ε

= D0 ≡ DF

(10.17)

independently of q.

5. In general, Dq1 ≤ Dq2 for q1 > q2.

6. Dq = D for “normal” sets like points, lines, planes, surfaces, etc. If Df ∕= D, we say that the

object is “fractal.” If Dq ∕= D for all q the object is a “multifractal.”

7. D2 is easiest to measure and it is called the correlation dimension. Also, when q = 2:

C2(ε) =

+

A
pε(u)dµ (10.18)

is the correlation integral.

8. Since DF = D0, D2 ≤ D0, to choose embedding dimension d, we require d > 2DF ≈ 2D2

(typically, DF is “close” to D2). Now if d is a minimal good value for embedding dimension,

d/2 > DF , or d/2 > D0 ≥ D1 ≥ D2 ≥ · · · .

10.3 Some Illustrative Examples

10.3.1 A Line Segment

Let us consider a line segment shown in Fig. 10.6(a) covered by balls Bi. For all x ∈ A, x ∈ 2Bi.

Thus, topological dimension D = 1. For a line segment of length L in Fig. 10.6(b) covered by
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uniform boxes of size ε, the number of boxes N(ε) ∼ L/ε. Therefore,

D0 = lim
ε→0

ln
5
L
ε

6

ln
5
1
ε

6 = lim
ε→0

lnL− ln ε

ln 1− ln ε

= lim
ε→0

ln ε

ln ε
= 1 .

(10.19)

Therefore, DF = D = 1 or topological dimension is equal to the box counting dimension.

Figure 10.6: A line segment A covered by balls Bi (a) and covered by uniform boxes of size ε (b)

10.3.2 An Area

We know that the topological dimension for the area D(A) = 2. Now, if we imagine covering this

area by N uniform boxes of size ε, then

N(ε) ≈ A(A)

A(Bε)
=

A

ε2
, (10.20)

where A is the total area. Now, we consider a box counting dimension

Figure 10.7: An area A of size A covered by uniform boxes Bε of size ε
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D0 = lim
ε→0

ln
5
A
ε2

6

ln
5
1
ε

6 = lim
ε→0

lnA− 2 ln ε

ln 1− ln ε

= lim
ε→0

2 ln ε

ln ε
= 2 .

(10.21)

Therefore, DF = D = 2 or, again, we show that topological dimension is equal to the box counting

dimension.

10.3.3 Middle Thirds Cantor Set

In this example, A is generated as shown in Fig. 10.8:

Figure 10.8: Generation of middle thirds Cantor set

1. Take interval [0, 1] and remove the interval ( 13 ,
2
3 ) to get

?
0,

1

3

@
∪
?
2

3
, 1

@

2. Remove the middle 1/3 of each of those to get

?
0,

1

9

@
∪
?
2

9
,
1

3

@
∪
?
2

3
,
7

9

@
∪
?
8

9
, 1

@

3. Repeat this at each step as n → ∞.

The total length after nth step can be expressed as Ln =
5
2
3

6n → 0 as n → ∞. Therefore, A has

zero Lebesque measure. Then the question is: is A just a set of discrete points? However, A is also

uncountable, since we can make a one-to-one correspondence between A and [0, 1] using binary tree:

[ 0 ] [ 1 ] n = 1

[ 0 ] [ 1 ] [ 0 ] [ 1 ] n = 2

[0] [1] [0] [1] [0] [1] [0] [1] n = 3

(10.22)

Therefore, all x ∈ A can be written as {b1 b2 . . . bn}, where bi = 0, 1. For example, the fist member

of A can be written as an infinite sequence of zeros, and the last member as an infinite sequence of

ones. The topological D = 0, since all points are in at most one box Bi, given that A consists of
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discrete points. However, for D0 we can pick ε =
5
1
3

6n ≡ εn for each iteration n. Then at n = 1,

N(ε1) = 2; at n = 2, N(ε1) = 4. So, N(εn) = 2n and thus,

D0 = lim
n→∞

ln 2n

ln 3n
=

ln 2

ln 3
≈ 0.6309 . (10.23)

Therefore, the middle thirds Cantor set is a fractal.

Remarks

1. We have

D0 = lim
n→∞

lnN(ε)

ln(1/ε)
, (10.24)

thus,

N(ε) ∼ ε−D0 . (10.25)

That is, A is self similar.

2. Perfect self similarity is not generally seen in experiments. However, one can see the scaling

N(ε) ≈ Cε−Dq (10.26)

over a range of ε.

10.4 Fractal Sets from Dynamical System

The logical question is: can something like a Cantor set arise from dynamics? To answer this, we

consider the following one-dimensional map:

xn+1 = F (xn) , (10.27)

where

F (x) =

<
=

>
2µx for x < 1

2 ,

2µ(x− 1) + 1 for x > 1
2 .

(10.28)

Please note that for µ = 1, this is a 2x mod 1 map. In addition, for x0 > 1, xn → ∞; and for x0 < 0,

xn → −∞. Therefore, we focus on xn ∈ [0, 1] region. Considering the diagram shown in Fig. 10.9, at

each iteration the middle strip of width
A
1− 1

2µ

B
− 1

2µ = µ−1
µ ≜ ∆ leaves [0, 1] never to return. We

could ask if any points remain as n → ∞. To answer this, we consider uniform probability density

of initial conditions x0, where p(x0) = 1 on [0, 1]. Then x1 = F (x0) for all x0 ∈ [0, 1]. Now consider

the integral: + ∞

−∞
p(x0)dx0 =

+ ∞

−∞
p(x0)

.
dF

dx0

/−1

dx1 ≡
+ ∞

−∞
p(x1)dx1 = 1 . (10.29)

So p(x1) = p(x0)
A

dF
dx0

B−1

. In our case, dF
dx0

= µ, thus p(x1) = 1/µ uniformly. In other words,

p(x1) = 1 − µ−1
µ = 1

µ , the middle ∆ is the “lost” probability. So the probability of remaining in
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Figure 10.9: Diagram for map defined in Eq. (10.28)

[0, 1] goes to 0 as
A

1
µ

Bn

. Therefore, if points remain, they have zero measure or are a set of isolated

points.

A bit of thinking about points that remain after n iterations shows a picture shown in Fig. 10.10.

That is, we get a generalized Cantor set. However, this is not an “attractor”—in fact, it is unstable,

though invariant.

Figure 10.10: Generalization of Cantor set

10.5 Dimensionality of Continuous Attractors

10.5.1 Periodic Orbits

For any periodic response we get periodic orbits in the phase space for which D = 1 = D0.

Paradigm: Any periodic response (see Fig. 10.11).
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Figure 10.11: Closed orbits of any period D = 1 = D0.

10.5.2 Quasi-periodic Orbits

For a quasi-periodic orbit we need to consider a linear combination of periodic signals with incom-

mensurate periods. This generates a flow on n-torus, where n is the number of incommensurate

frequencies. An example for n = 2 can be x(t) = A1 sin t + A2 sin
√
7 t, which can be visualized as

evolving on a surface of a donut (2-torus) as shown in Fig. 10.12. In this case, D = n = D0.

Figure 10.12: A quasi-periodic orbit for x(t) = A1 sin t+A2 sin
√
7 t response

Paradigm: Coupled van der Pol oscillator:

ẍ+ µẋ(1− x) + x = µy ,

ÿ + µẏ(1− y) + y = µx ,
(10.30)

which has quasi-periodic solutions.

10.5.3 Chaotic Orbits

Here we will have a continuous directing along the time axis (or forcing phase) and we would have

fractal directions usually seen in Poincaré sections as in Fig. 10.13. Here, D < D0, where D0 is a

non-integer.

Paradigms:

1. Driven two-well Duffing chaos (2 < D0 < 3);

2. Lorenz equation (D0 ≈ 2 + ε); and
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Figure 10.13: A snapshot of a chaotic orbit from a driven two-well Duffing oscillator showing fractal

structure in a stroboscopic Poincaré section

3. Chua circuit (2 < D0 < 3).

Please note that a flow must have D > 2 dimensions for chaotic behavior to be possible, while

maps can be chaotic in one-dimension. The reason is, in 2−D uniqueness of the solutions “traps”

bounded orbits into either fixed points or limit cycles. In other words, there is not enough room in

2−D for chaos as shown in Fig. 10.14.

x

v

Figure 10.14: Uniqueness of solution in two-dimensions traps bounded flows either to fixed points

(e.g., (0, 0) stable spiral) or limit cycles (red is unstable and blue is stable).
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10.6 Experimental Estimates of Fractal Dimension

In previous chapter we have discussed the dimension theory and defined the dimension spectrum. It

was also mentioned that the easiest and most reliable estimation is for D2, correlation dimension,

based on:

C2(ε) ≡ C(ε) =

+

A
pε(u)dµ , (10.31)

where ε is the size of partition on the attractor A, u ∈ A, and µ is the corresponding invariant

probability measure.

10.6.1 Correlation Dimension Estimate

Given a time scalar series {xn}Nn=1, we start by selecting a “good” delay τ and embedding dimension

d to get a vector time series {x}N−(d−1)τ
n=1 . In what follows, for simplicity, we will assume that we

have {x}Nn=1 (considering that N ≈ N − (d− 1)τ for N large). Then, the estimator of C(ε) can be

thought of as a cumulative distribution of distances ‖xi − xj‖ < ε in our data set. Therefore, we

consider the following correlation sum:

Ĉ(ε) =
2

N(N − 1)

N−14

i=1

N4

j=i+1

Θ (ε− ‖xi − xj‖) , (10.32)

where Θ is the Heaviside function.

Eq. (10.32) is a good estimator for the C(ε) if our data consists of points randomly drawn from

our attractor A. However, we usually have a continuously sampled time series, which cannot be

considered to be randomly drawn from A. From false nearest neighbors chapter, we know that

temporal correlations can lead to skewed or biased estimates. In case of estimating the correlation

dimension, the temporal correlations can lead to false low-dimensional results. If we have large

amount of data, we can randomly draw points from it to generate the needed randomly sampled

data to avoid the effect of temporal correlations. However, the availability of abundant data is

only viable in simulations and not in experiments. Then, the solution is to only measure distances

‖xi − xj‖ between the points which are separated by time greater than the Theiler window w (i.e.,

∆ij > w). Then the corresponding correlation sum can be written as:

Ĉ(ε) =
2

(N − w)(N − w − 1)

N−w−14

i=1

N4

j=i+w+1

Θ (ε− ‖xi − xj‖) , (10.33)

For small ε, we expect Ĉ(ε) ∼ εD22, or ln Ĉ(ε) ∼ D2 ln ε. Therefore:

D2 ∼
d
A
ln Ĉ(ε)

B

d (ln ε)
, (10.34)

if we are lucky and our data shows this trend.

2Here, ∼ means as ε → 0, N → ∞.
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1 2 … w+1 w+2 w+3 … … N

1 … i+w+1 N

2 … i+w+1 N
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w+2 j+w+1 … … i+w+1

w+3 j+w+1 … …

… j+w+1 … …
… j+w+1 …

N N N N N j+w+1 …

Figure 10.15: Visualization of all the temporarily uncorrelated pairs of points xi and xj for which

the interpoint distance needs to be calculated. The green squares represent i = j and the blue

squares are the temporarily correlated points within |i− j| < w.

Remarks:

1. Number of point pairs in our data is N(N−1)
2 , hence the divisor in Eq. (10.32).

2. Number of point pairs that are separated by ∆t > w in Eq. (10.53) is (N−w)(N−w−1)
2 , hence

the divisor in Eq. (10.53).

3. The Fig. 10.15 shows the basic set up for estimating the correlation sum. It illustrates all the

needed distances that we need to calculate for the sum.

4. If we plot ln Ĉ(ε) vs ln ε for a chaotic data, we expect to see three distinct regions (refer to

Fig. 10.16):

(a) For ε > εmax = ‖xi − xj‖max, Ĉ(ε) = 1, so ln Ĉ → 0 as ε → εmax.

(b) For ε < εmin = ‖xi − xj‖min, Ĉ(ε) = 0, so ln Ĉ → −∞ as ε → εmin. For ε small, ln Ĉ(ε)

no longer looks smooth, since the number of points at those scales is very low.

(c) Scaling region in which ln Ĉ(ε) scales linearly with respect to ln ε.

5. Actually xi = yi + ni, where ni is noise and yi is the true reconstructed point. Now, recall

that noise is ∞-dimensional it ni are independent. Therefore, D2(noise) → D2 in the limit as

N → ∞. So actual ln Ĉ(ε) curves would skew towards the ∞ slope for noise dominated scales

of ε as shown in Fig. 10.16. Therefore, if noise kicks in before the scaling region, we cannot

estimate D2.
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Figure 10.16: Correlation sum estimate Ĉ(ε) vs ε for the Lorenz signal.

6. To estimate D2, we need to identify the tangent line to ln Ĉ(ε) vs ln ε in the scaling region as

shown in Fig. 10.16. It is usually not easy to identify the suitable scaling region even if it is

there. One way it can be done is to look at d ln Ĉ(ε)
d(ln ε) at each value of ln ε as shown in Fig. 10.17.

We want to ignore any points that show large variability in the beginning due to noise. This

should be followed by a smooth and close to horizontal section for the scaling region, which

will be followed by the drop in the slope due to distances approaching the attractor size.

10.6.2 Pointwise Dimension

From mathematical perspective, the pointwise dimension is used to differentiate between the prob-

ability measures µ1 on a phase space S1 and µ2 on another space S2 which are not equivalent by a

locally bi-Lipschitz injection. For a point u ∈ S and and a number ε > 0, we can define an ε-ball as

B(u, ε) ≜ {v ∈ S | d(u,v) < ε} . (10.35)

Then we can call a map F : S1 → S2 bi-Lipschitz if for all u ∈ S1 there exists r > 0 and a constant

K ≥ 1 such that for all x,y ∈ B(u, r) we have:

1

K
d1(x,y) ≤ d2 (F (x), F (y)) ≤ Kd1(x,y) , (10.36)

where di is the dimension metric in Si. From this perspective, the measures µ1 and µ2 are equivalent

if there exists a locally bi-Lipschitz injection F : S1 → S2, such that for all u ∈ S2 we have

µ1(F
−1(u)) = µ2(u) . (10.37)

https://en.wikipedia.org/wiki/Talk%3ALipschitz_continuity
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Figure 10.17: Correlation sum and the corresponding estimated of D2 for the Lorenz (a–b) and

two-well Duffing’s (c–d) signals. Shaded regions indicate the scaling regions.

Consider geometric objects like a line segment L ∈ R, area A ∈ R2, or, in general, hyper-volume

V ∈ Rm, then for any u ∈ V we can observe that (see Fig. 10.18)

Figure 10.18: The measure inside the ε-ball scales like: ε for a line segment (a), ε2 for a surface area

(b), and ε3 for a three-dimensional volume (c).

µ (B(u, ε)) ∼ εm . (10.38)

This motivates the definition of pointwise dimension at a point u ∈ A as:

Dµ(u) = lim
ε→0

lnµ(B(u, ε))
ln ε

. (10.39)

This, in turn, motivates the generalization of pointwise dimension over the whole attractor A as

DP =

+

A
Dµ(u)dµ(u) = lim

ε→0

,
A lnµu(ε) dµu(ε)

ln ε
= lim

ε→0

〈lnµu(ε)〉A
ln ε

, (10.40)
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where µu(ε) = µ(B(u, ε)). There is a clear confusion as to which generalized dimension is the

pointwise dimension closely related (J. York [29] claims it is equivalent to information dimension,

F.C. Moon [72] claims it is like correlation dimension). However, if we look at the asymptotics of

these dimensions:

D1 ∼ 〈ln pi〉
ln ε

, and D2 ∼ ln〈pi〉
ln ε

, (10.41)

it is clear that pointwise dimension has a similar form to the expression for the information dimension

D1, since the probability density inside the ε-ball Pi(ε) =
,
B(xi,ε)

pi dx =
,
B(xi,ε)

dµ = µxi(ε).

10.6.3 Average Pointwise Dimension Estimate

Given a reconstructed phase space vectors {x}Nn=1, we can estimate the measure µ for ε-ball Bi(ε) =

B(xi, ε) centered at xi as:

µ̂i(ε) =
1

N

N4

j=1

Θ (ε− ‖xi − xj‖) =
N (Bi(ε))

N
=

Ni(ε)

N
, (10.42)

where Θ is the Heaviside function, and Ni(ε) = N(Bi(ε)) is the number of point inside the ball

Bi(ε). Then, the average log of pointwise measures inside the ε-ball can be estimated as:

〈ln µ̂i(ε)〉 =
1

N

N4

i=1

ln

%

& 1

N

N4

j=1

Θ (ε− ‖xi − xj‖)

'

(

=
1

N

N4

i=1

lnNi(ε)− logN .

(10.43)

Thus, we can estimate the average pointwise dimension as:

D̂P = lim
ε→0

〈ln µ̂i(ε)〉
ln ε

= lim
ε→0

1
N

7N
i=1 lnNi(ε)− logN

ln ε
, (10.44)

or

D̂P ∼ d 〈ln µ̂i(ε)〉
d ln ε

=

7N
i=1 d lnNi(ε)

Nd ln ε
. (10.45)

Algorithms using fixed distance based metrics (e.g., D̂P estimator is using fixed ε to estimate

the number of point inside the corresponding ε-balls) is called fixed distance method or algorithm.

There are also algorithms that are called fixed mass algorithms. In fixed mass algorithms, instead

of counting points inside the fixed size ε-balls, we first fix the number of points n we want to be

contained inside the balls, and then find the size of these balls εi(n) centered at xi and containing

n points. Using a fixed mass algorithm, we can estimate the average log of εi(n)-ball as:

〈ln εi(n)〉 =
1

N

N4

i+1

ln εi(n) , (10.46)

where εi(n) is defined as the distance between xi and its n-th nearest neighbor xj(n):

εi(n) =
KKxi − xj(n)

KK . (10.47)
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Thus, we can try to estimate fixed mass based average pointwise dimension as:

D̄P = lim
n→1

ln(n/N)

〈ln εi(n)〉
= lim

n→1

N ln(n/N)
7N

i+1 ln εi(n)
. (10.48)

However, as n → 1, εi(n) → εi(1) and we cannot make it smaller. Therefore,

D̄P ≈ N ln(1/N)
7N

i+1 ln εi(1)
=

−N lnN
7N

i+1 ln εi(1)
. (10.49)

Or more precisely, to let 〈εi(1)〉 → 0, we need to let N → ∞, then

D̄P = lim
N→∞

N lnN
7N

i+1 ln(1/εi(1))
. (10.50)

Please note, if we want to use the above expression for the estimation, then we really need to worry

about eliminating temporarily correlated nearest neighbors from the calculation. However, if the

sampling time period is reasonable and we let N → ∞ or some fairly large number, we may not

need to worry about temporal correlations since the nearest neighbors will most likely be there due

to geometry of A.

Remarks

In practice, we cannot really let εi(1) → 0 or N → ∞, thus we need to estimate DP using the

identified scaling regions as was done for the correlation dimension. Constraints similar to ones

identified for the correlation dimension are also present for the estimates of the pointwise dimension.

In addition to the artifacts caused by noise, these constraints mainly arise due to the finite nature

of the available set of data:

1. For the fixed distance algorithm, and 0 < ε < dmin, Ni(ε) = 1, where the dmin is the minimum

nearest neighbor distance of the data. Thus, D̂P → 0 as i(1) → dmin, and D̂P = 0 for

0 < ε < dmin.

2. For the fixed distance algorithm, when ε > dmax, Ni(ε) = N . Thus, D̂P → 0 as ε → dmax, and

D̂P = 0 as ε > dmax

3. For the fixed mass algorithm, as n → 1, D̄P → N lnN"N
i+1 ln(1/εi(1))

, which would be an accurate

estimate only in the limit as N → ∞.

4. For the fixed mass algorithm, Grassberger (1983) [37] proposed to use ψ(n)− lnN instead of

lnn/N to compensate for finite sample bias in p̂i(ε) = µ̂i for small ε, where ψ is digamma

function. Therefore, algorithmically we estimate:

D̄P (n) =
N (ψ(n)− lnN)
7N

i+1 ln εi(n)
. (10.51)

https://en.wikipedia.org/wiki/Digamma_function
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Figure 10.19: Pointwise dimension estimation for the Lorenz (a–b) showing DP = 2+ ε (0 < ε ≪ 1),

and two-well Duffing’s signal (c–d) showing DP ≈ 2.5. The shaded areas correspond to the scaling

regions.

We may want to remove time correlated neighbors in both algorithms when estimating the

probability measure µ̂(ε) and average ball size ε(n). As n → 1 we may also run into scaling problems

and as ε → ‖xi − xj‖max and DP → 0. This is somewhat alleviated by the Grassberger correction

for finite size. Example of the results of these estimations using both fixed distance and fixed mass

methods for the Duffing’s signal are shown in Fig. 10.19.

10.6.4 Other Generalized Dimension Estimates

The generalized dimension

Dq = lim
ε→0

1

q − 1

lnCq(ε)

ln ε
(10.52)

can be estimated for different values of q to explore the multi-fractal nature of the attractor. The

estimation of box-counting D0 = DF is problematic if we do not have access to the abundant clean

data. For the D1 we can use the pointwise dimension estimates, and for the D2 we can use the

correlation dimension. However, in general, to estimate the generalized dimension Dq for q ≥ 1 we

can use two different approaches: (1) is similar to correlation sum estimation, and (2) uses pointwise

dimension procedure. The correlation sum estimation used the distribution of the inter-point lengths
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in the data. We can follow the same example and define the estimate of Cq as

Ĉq(ε) =
1

N

N4

i=1

!

" 1

Ni

4

j ∕∈[i−w,i+w]

Θ (ε− ‖xi − xj‖)

#

$
q−1

, (10.53)

where Ni = N−w−min(i−1, w,N− i)−1, which is equal to Ni = N−2w−1 when w < i < N−w.

For, q > 2 this leads to the biased estimator due to nontrivial power in the second sum. In general,

this algorithms tends to give lower dimensional estimates than the C2 algorithm. In addition, it

seems that Dq < Dl if l > q even when we do not expect a multi-fractal.

For q ≤ 1 estimation of fractal dimension is problematic as some of the sums may be zero.

Here, a fixed mass algorithm is more appropriate, which will also work for q > 1 and provides more

consistent results. First, we assume that have total of N phase space points, and we want to use M

query points for pointwise estimation. Then, we estimate the measure inside the range of ε-balls for

each query point {xi}Mi=1 as

µ̂i(ε) =
1

N

K4

k=1

Θ (ε− εi(k)) =
1

N

K4

k=1

Θ
5
ε−

KKxi − xn(k)

KK6 , (10.54)

where εi(k) =
KKxi − xn(k)

KK, xn(k) is the k-th nearest neighbor of xi, and K is large enough so that

〈εi(K)〉 is close to the attractor scale. Then, the generalized correlation sum can be estimated as:

C̄q(ε) =
1

M

M4

i=1

-
1

N

K4

k=1

Θ (ε− εi(k))

0q−1

. (10.55)

Finally, to find Dq, we need to identify a scaling range at intermediate length scales, or look at the

plateau of

D̂q(ε) =
d ln Ĉq(ε)

d ln ε
, (10.56)

or

D̄q(ε) =
d ln C̄q(ε)

d ln ε
. (10.57)

These calculations are still problematic if done for ε < εmax(1). Therefore, we need to make sure

that we only consider (or count) points which have nonzero measure for the minimum ε used in

calculation. Alternatively, we need to increase the minimum ε, so that εi(1) > εmin for all i or points

considered in the calculation.

10.7 Embedding Dimension from Fractal Dimension

In previous chapter, it was discussed that the estimation of the embedding dimension can also be

done by considering how it affects the estimation of some nonlinear metric. Since the correlation

and pointwise dimensions are determined by the slope in their scaling regions, insufficiently large

dimension will cause the changes in these slopes due to projections. Only after reaching the sufficient



10.7. EMBEDDING DIMENSION FROM FRACTAL DIMENSION 129

-8 -6 -4 -2 0 2
-20

-15

-10

-5

0

d=1
d=2
d=3
d=4
d=5
d=6

-8 -6 -4 -2 0 2
-20

-15

-10

-5

0

d=1
d=2
d=3
d=4
d=5
d=6

Figure 10.20: Correlation sum for Lorenz and two-well Duffing signals.

embedding dimension, will the slope stabilize and remain the same even if we increase the embedding

dimension. Thus, we can use the estimated correlation sum or pointwise measure µ̂(ε) to find the

minimally necessary embedding dimension by observing at which embedding dimension the slopes

of the metric becomes invariant to the increase in the embedding dimension. An example of this

calculation for the Lorenz’s and Duffing’s signals are shown in Fig. 10.20 using correlations sum.

From the trends in the plots it is clear that using this criterion the minimally necessary embedding

dimension for the Lorenz is three and for the Duffing’s is four. An example of applying fixed

distance and fixed mass based pointwise measure estimation to Lorenz and two-well Duffing’s signals

are shown in Fig. 10.21.
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Figure 10.21: Pointwise dimension estimation for the Lorenz (a–b) and two-well Duffing’s (c–d)

signals using different embedding dimensions for the fixed distance algorithm on the left and fixed

mass algorithm or the right
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Problems

Problems 10.1

Given a periodic solution, show that D2 ≈ 1. Now generate a quasi-periodic time series and show

D2 ≈ n, where n is the number of incommensurate frequencies. Discuss how closely you are able to

get the result. Remember that the estimation ofD2 requires that you choose an embedding dimension

d, fix a delay m, and generate C2. All estimates should be presented in the form, D2 = 3D2 ± E,

where E is the standard error. You should also always look at PSD, S(f), and autocorrelation,

R(τ).

Problem 10.2

Take at least two chaotic, or otherwise “complex” time series from Hénnon Map (a = 1.4 and

b = 0.3), Lorenz, double-well Duffing, or Chua’s Circuit models and estimate D2 and D̄p. Discuss

the quality of your result and how does it change with the addition of noise. Does the data appear

to be “fractal?” Over what range of length scales does your data appear to have a scaling region?

Estimate other Generalized dimensions Dq for both q > 1 and q < 1, what can you say about the

results?

Problem 10.3

Now we want to estimate Kolmogorov-Sinai entropy, which according to Ruelle (1978) is a lower

bound on the sum of Lyapunov exponents discussed in the next chapter. It is usually difficult to

calculate, but one can estimate the correlation entropy, which is a close lower bound on the K–S

entropy. It is given by:

K2 = lim
d→∞

lim
ε→0

lim
N→∞

log
C2(d, ε)

C2(d+ 1, ε)
, (10.58)

where C2(d, ε) is the correlation sum for an embedding dimension d.

Choose one of the time series from continuous ode’s from Problem 10.2. Plot family of curves

lnC2(ε) vs ln ε for different values of embedding dimension from 1 to 8. How does the slope of these

curves vary with d? Can you estimate the K–S entropy?



Chapter 11

Stability and Lyapunov Exponents

Recall the analysis of stability for the fixed point of a map:

xn+1 = F (xn) , (11.1)

where xn ∈ Rm. The period-one fixed point needs to satisfy x∗ = F(x∗). For example, consider a

Henon map:

xn+1 = a− x2
n + byn

yn+1 = xn ,
(11.2)

where xn = [x, y]T . Fixed point for the period-one orbit is determined by solving the following

equations:

x = a− x2 + by

y = x ,
(11.3)

which results into: x = a − x2 + by or x2 + (1 − b)x − a = 0. This quadratic equation has two

solutions

x∗
1,2 =

(b− 1)±
H
(b− 1)2 + 4a

2
, (11.4)

when (b − 1)2 + 4a ≥ 0 or a ≥ −(b−1)2

4 as shown in Fig. 11.1. That is, as a crosses over the value

−(b−1)2

4 we would experience the saddle-node bifurcation during which we transition from having no

fixed points to having one stable and one unstable fixed points.

11.1 Stability of Periodic Orbits

To study the stability of fixed points, we perturb x∗ solution by a small vector u ≪ 1

xn = x∗ + un (11.5)

131
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a

x∗

−(b−1)2

4

b−1
2

Figure 11.1: Saddle-node bifurcation generating one stable, one unstable fixed points

and study how does this perturbation behave as we let t → ∞. Thus, we plug Eq. (11.5) into Eq.

(11.1) to get:

x∗ + un+1 = F(x∗ + un) ,

= F(x∗) +DF(x∗)un +O(‖un‖2) .
(11.6)

Now, remembering that x∗ = F(x∗) and ignoring the higher order terms, we get

un+1 = DF(x∗)un = Aun (11.7)

where

A = DF(x∗) =

?
∂Fi

∂xj

@CCCC
x=x∗

(11.8)

is the Jacobian matrix evaluated at x∗. Since the perturbations can be expressed as:

un+1 = q1ê1 + q2ê2 + · · ·+ qmêm = Vq , (11.9)

where columns of V ∈ Rm×m are êi, and êi satisfy the following eigenvalue problem:

Aêi = siêi . (11.10)

Then, x∗ is stable if |si| ≤ 1 (|si| can be complex) and asymptotically stable if |si| < 1. In the former

case, ‖un‖ < δ for all n if ‖u0‖ < ε, and in the latter, ‖un‖ → 0 as n → ∞. In particular, if

u0 = α0êi,

u1 = α1êi = A (α0êi) = α0Aêi = siα0êi , (11.11)

so

αn+1 = siαn . (11.12)

Thus,

αn = sni α0 . (11.13)



11.2. STABILITY OF CHAOTIC ORBITS 133

Remark

The eigenvalues si are stability numbers. Often, people like to write them in terms of an exponential

as

si = eλi or λi = ln si , (11.14)

and λi are called stability exponents. In this case, stability is determined by the familiar requirement,

for continuous time systems: ℜ {λi} ≤ 0.

We can also look for Period-k fixed points (periodic orbits):

{· · · ,xm,xm+1,xm+2, · · · ,xm+k, · · · } , (11.15)

where

xm+k = xm = x∗ . (11.16)

In other words,

x∗ = F(F(· · · (F8 9: ;
k times

(x∗)) · · · ) , (11.17)

or

x∗ = Fk(x∗) . (11.18)

Then stability of Period-k orbit is determined by mapping

un+1 = Aun , (11.19)

where

A = DFk(x∗) =

?
∂F k

i

∂xj

@CCCC
x=x∗

. (11.20)

Therefore, we look for stability numbers, si, or exponents, λi = ln si, where

Aêi = siêi . (11.21)

11.2 Stability of Chaotic Orbits

We have shown how the stability of periodic orbits is evaluated. However, What if we have an orbit

that never repeats? Can we still talk about its stability? The answer is yes, we can do it as outlined

below.

Consider a ‘fiducial’ trajectory, that is a sample steady state trajectory starting from an initial

point on the attractor x∗
0,

{x∗
0,x

∗
1, · · · ,x∗

n, · · · } . (11.22)

By definition x∗
n+1 = F(x∗

n). As before, we can always consider a perturbation about this fiducial

trajectory, xn = x∗
n + un, so

x∗
n+1 + un+1 = F(x∗

n + un)

= F(x∗
n) +DF(x∗

n)un +O(‖un‖2) ,
(11.23)
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so, as before, neglecting higher order terms, we get

un+1 = DF(x∗
n)un = Anun , (11.24)

where, now, the matrix An depends on n. Unfortunately, we cannot just look at the eigenvalues of

An, since it changes at each step. However, since

un = AnAn−1An−2 · · ·A1u0 =

nP

i=1

Aiu0

≜ Anu0 = An(x∗
0)u0 ,

(11.25)

An depends on x∗
0 only. Then we could look at eigenvalues of An. Unfortunately, in practice, that

is not a simple task. Instead, it is better to look at the behavior of ‖un‖ directly:

‖un‖2 = uT
nun = (Anu0)

T (Anu0)

= uT
0 ><? >? >? >?? > ????(An)T (An)u0 ≜ uT

0 Bnu0 ,
(11.26)

where Bn = (An)TAn is a positive, real, Hermitian (symmetric) matrix. Therefore, all eigenvalues

and eigenvectors are real and eigenvalues are all nonnegative. Now, we can denote these eigenvalues

as s2ni to get

Bnêni = s2niêni . (11.27)

Now, we assume a particular perturbation u0 = α0êni, then

‖un‖2

‖u0‖2
=

uT
0 Bnu0

‖u0‖2
=

α0ê
T
ni

5
s2niα0êni

6

α2
0

= s2ni ≜ (s̄ni )
2
. (11.28)

In other words, we define an average constant s̄i, such that if iterated n times would give the same

value: s̄ni = sni. Therefore, we can write

s̄ni ≜
A
eλ̄i

Bn

= enλ̄i =
‖un‖
‖u0‖

(11.29)

or

λ̄i =
1

n
ln

.
‖un‖
‖u0‖

/
, (11.30)

where u0 is chosen such that u0 ‖ êni, and λ̄i is called n-step stability exponent. In addition, we can

write

λ̄i =
1

n
ln

%

&
5
uT
0 Bnu0

6 1
2

‖u0‖

'

( =
1

2n
ln
5
uT
0 Bnu0

6
− 1

n
ln ‖u0‖ , (11.31)

where the last term 1
n ln ‖u0‖ → 0 for large n. Then, for each u0 ‖ êi, we define

λi = lim
n→∞

1

2n
ln
5
uT
0 Bnu0

6
(11.32)

to be the Lyapunov Exponent, which we can always order as

λ1 ≥ λ2 ≥ · · · ≥ λd , (11.33)

which we call Lyapunov Spectrum.
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Remarks

1. Another way to write Eq. (11.32):

λi = lim
n→∞

1

2n
ln ‖DFn(x∗

0)u0‖2 , (11.34)

or

λi = lim
n→∞

1

n
ln ‖DFn(x∗

0)u0‖ , (11.35)

where u0 ‖ êi, and DFn(x∗
0) =

Qn
i=0 DF(x∗

i ).

2. The following theorem guarantees that these limits exist:

Multiplicative Ergodic Theorem (Oseledec): Given an ergodic invariant measure on

A, the following Oseledec matrix

H = lim
n→∞

(Bn)
1
2n (11.36)

exists and is independent of x∗
0 except on a set of measure zero.

Note that:

H2n
n ≜ Bn , (11.37)

where Bn is a positive matrix, so it has a square root. Since

Bnêni = s2niêni = (s̄ni )
2
êni , (11.38)

we know

H2n
n êni = s̄2ni êni , (11.39)

and, therefore,

Hnêni = s̄iêni . (11.40)

Thus, the Lyapunov numbers (and exponents) are those of H = limn→∞ Hn.

3. Since the λi are independent of initial conditions (almost for all x0), then the λi are properties

of the attractor.

4. If λ1 > 0 and
7

λi < 0, the attractor is chaotic. In other words, it combines the features of

stability (it is an attractor after all) and instability (‖u0‖ grows in at least one direction ê1).

5. In addition, λi are invariant under diffeomorphisms and, therefore, under delay coordinate

embedding.

https://en.wikipedia.org/wiki/Oseledets_theorem
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6. Since λ̄i = ln s̄i,

m4

i=1

λ̄i = ln

F
mP

i=1

s̄i

G
= ln (detHn) =

1

n
ln [|det (DFn(x0)|] , (11.41)

so, if the system is dissipative (i.e., the phase space volumes collapse in time), we have

m4

i=1

λ̄i =
1

n
ln [|det (DFn(x0)|] < 0 . (11.42)

For example, recall Henon map:

xn+1 = a− x2
n + byn

yn+1 = xn ,
(11.43)

where xn = [x, y]T . Then

DF =

%

&2xn b

1 0

'

( , (11.44)

so det(DF) = −b and is not a function of xn. Thus, we can evaluate

1

n
ln [|det (DFn(x0)|] =

1

n
ln |b|n = ln |b| . (11.45)

Therefore, λ1 + λ2 = ln |b| and it is negative if |b| < 1.

7. Flows versus maps:

• For flows, one λi = 0, corresponding to the direction along the orbit (e0 = 1).

• Also
7

λi = div f(x) = ∇f(x), where ẋ = f(x).

• For Poincaré map, λmax = λflow t̄Σ, where t̄Σ is the average time between crossings of

section Σ.

• Relationship to Dimensions:

DL = k +
1

λk+1

k4

i=1

λi , (11.46)

where k is the largest integer such that
7k

i=1 λi ≥ 0. DL ≡ DKY is the Lyapunov or

Kaplan-Yorke dimension. There is also Kaplan-Yorke conjecture: DL ≡ D1, which is

proved for two-dimensional maps.

11.3 Experimental Lyapunov Exponents

Now we will discuss how can we experimentally estimate Lyapunov exponent as defined by Eq.

(11.35),

λi = lim
n→∞

1

n
ln ‖DFn(x0)u0‖ , (11.47)
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Figure 11.2: Estimating Jacobian through regression

from experimentally measured scalar time series or measured trajectory. As was the case with the

fractal dimensions, we start from the phase space trajectory {xn}Nn=1. Generally one might try to

estimate DF(xn) at each phase space point using regression on its nearest neighbor points contained

inside an ε-ball Bε(xn) and the corresponding points at next time step contained in F (Bε(xn)) as

shown in Fig. 11.2. In other words, we minimize

e2 =
1

Nε

4

xj∈Bε(xn)

‖xj+1 − F(xj)‖2 . (11.48)

However, in general, we do not know the form of F. Therefore, if ε is small enough (‖xj − xn‖ < ε)

xj+1 = F(xj) ≈ F(xn) +DF(xn)(xj − xn) = xn+1 +DF(xn)(xj − xn) , (11.49)

or

xj+1 = Anxj + bn , (11.50)

where An = DF(xn), and bn = xn+1 + DF(xn)xn. Therefore, we can estimate these parameters

(i.e., An and bn) by minimizing:

e2 =
1

Nε

4

xj∈Bε(xn)

KKKxj+1 − Âxj − b̂
KKK
2

. (11.51)

Solution to this minimization problem can be determined using matrix algebra. First, let us define

two matrices containing point inside the corresponding balls:

Xn = [xj(1),xj(2), · · · ,xj(Nε)] , and Xn+1 = [xj(1)+1,xj(2)+1, · · · ,xj(Nε)+1] . (11.52)

Then we are looking for such Ân and b̂n that the following is satisfied in the least squares sense:

Xn+1 = ÂnXn + b̂n = B̂nX̃n , (11.53)

where B̂n = [Ân, b̂] and X̃n is the same matrix as Xn with additional row of ones at the bottom.

Now if we multiply this equation with X̃T
n from the right-hand side, we get:

Xn+1X̃
T
n = B̂nX̃nX̃

T
n . (11.54)
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which can be solved as

B̂n = Xn+1X̃
T
n

A
X̃nX̃

T
n

B−1

. (11.55)

The inverse in the above expression is possible because the auto-corelation matrix X̃nX̃
T
n/Nε is

square.

Remarks

1. Ân and b̂n define a local linear map (which would be globally nonlinear) that approximates

the true nonlinear map F at xn point in the reconstructed phase space.

2. That is, if we have a new data point x ∈ Bε(xn), we can predict it goes to y = Ânx+ b̂n. We

will talk more on this later in predictive modeling chapter.

3. It is often better, for Lyapunov exponents estimation purposes, to use higher order fits and

then take only the linear piece, which would be Ân.

4. If xn comes from delay reconstruction,

xn =
5
xn, xn−τ , . . . , xn−(d−1)τ

6T
,

xn+k =
5
xn+k, xn+k−τ , . . . , xn+k−(d−1)τ

6T
.

(11.56)

where d is the embedding dimension, τ is integer delay. If k = τ :

xn+τ =
5
xn+τ , xn, . . . , xn+τ−(d−2)τ , xn+τ−(d−1)τ

6T
,

=

%

RR&xn+τ , xn89:;
x
(1)
n

, . . . , xn−(d−3)τ8 9: ;
x
(d−2)
n

, xn−(d−2)τ8 9: ;
x
(d−1)
n

'

SS(

T

.
(11.57)

Now we can write

x
(1)
n+τ = xn+τ = f(xn, xn−τ , . . . , xn−(d−1)τ ) = f(xn) ,

x
(2)
n+τ = x(1)

n = xn ,

x
(3)
n+τ = x(2)

n = xn−τ ,

...

x
(d)
n+τ = x(d−1)

n = xn−(d−2)τ .

(11.58)

Therefore,

xn+τ
∼=

%

RRRRRRRRR&

a11 a12 a13 · · · a1(d−1) a1d

1 0 0 · · · 0 0

0 1 0 · · · 0 0
...

. . .
...

...

0 0 0 · · · 1 0

'

SSSSSSSSS(

xn + bn . (11.59)
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Given an estimate Ân =
Qn

k=1 Âk, we can look at eigenvalues of
A
Ân

BT A
Ân

B
. However,

there is a problem: the resulting matrix is inherently ill conditioned since the eigenvalues are

eλ1n, eλ2n, . . . , eλdn, and, therefore eλ1n/eλ2n = e(λ1−λ2)n → ∞ very rapidly for large n. Results of

this estimation depend strongly on quality of data and your milage may vary. However, given any

perturbation u defined by

u =

d4

j=k

αj êj , (11.60)

where we assume that λ1 ≥ λ2 ≥ · · · ≥ λd, then

λk = lim
n→∞

1

n
ln ‖DFn(x0)u‖ (11.61)

with probability one. In particular,

λ1 = lim
n→∞

1

n
ln ‖DFn(x0)u‖ = lim

n→∞

1

n
ln

‖un‖
‖u0‖

. (11.62)

for any u0 with probability one.

11.3.1 The Largest Shot-Time Lyapunov Exponent Estimate

Similar to the pointwise dimension estimation, Lyapunov exponents can be estimated using either

fixed distance or fixed mass methods. For a fixed distance methodology, let ‖u0‖ ≡ δ0 and ‖un‖ = δn,

then Eq. (11.62) says nλ1 ∼ ln(δn/δ0), or

δn ∼ δ0e
nλ1 (11.63)

for n large. At the same time, we do not want n too large since we expect δn to saturate at the scale

of the attractor. We can also write:

ln
δn
δ0

∼ nλ1 , (11.64)

or if we average over many or all data points x0 = xk:

T
ln

δn
δ0

U
∼ nλ1 . (11.65)

More specifically, we can estimate the average ∆n = 〈ln(δn/δ0)〉 as:

∆n =
1

N

N4

k=1

ln

!

" 1

Nε

4

xm∈Bε(xk)

‖xk+n − xm+n‖

#

$ , (11.66)

where Nε is the number of points inside the ε-ball neighborhood of xk, Bε(xk) and the indices are:

k: “initial condition” or reference point;

m: points inside Bε(xk);

n: number of steps ahead.
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Then plotting ∆n vs n should give us a slope λ1 per sampling time.

Fixed mass method for estimating Lyapunov exponents fixes the number r of the nearest neighbor

points of xk and then calculates:

∆n =
1

N

N4

k=1

ln

-
1

r

r4

m=1

KKxk+n − xm(r)+n

KK
0
, (11.67)

or

∆n =
1

N

N4

k=1

ln

-
r4

m=1

KKxk+n − xm(r)+n

KK
0
− ln r , (11.68)

where {i(m)}rm=1 are the indices of all r nearest neighbor points of xk.

Remarks

1. For a fixed distance method, one should be careful in choosing the ε: if it is too small many

points might not have any neighbors inside the ε-ball neighborhood.

2. For a fixed mass method, r should be chosen conservatively, otherwise the corresponding

neighborhood size will be too large for accurate estimation.

3. One might combine the important features of both fixed mass and fixed distance methods

using the weighted sum as

∆n =
1

N

N4

k=1

ln

-7r
m=1 w(r)

KKxk+n − xm(r)+n

KK
7r

m=1 w(r)

0
, (11.69)

where w(r) is appropriately chosen weighting function that weighs points closest to xk more

than the ones further from it.

The results of the fixed mass based Lyapunov exponent estimation for our sample signals are shown

in Fig. 11.3
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Problems

Problem 11.1

Using the same time series of Problem 10.2, find the largest Lyapunov exponent of a candidate

chaotic time series. Can you conclude in fact that the system is chaotic?
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Figure 11.3: Lyapunov exponent estimation for the Lorenz (a–b), and two-well Duffing’s (c–d)

signals. The shaded areas correspond to the scaling regions.



142 CHAPTER 11. STABILITY AND LYAPUNOV EXPONENTS



Chapter 12

Multivariate Analysis

Multivariate analysis is based on the statistical principles of multivariate statistics, which involve

the process of simultaneously analyzing multiple independent variables using matrix algebra [58, 79].

It has many uses in data and model reduction, blind source signal separation, identification of the

modal structure of dynamical systems, identifying important dominant variables in data, etc. Here,

we will mainly focus on proper orthogonal decomposition (POD) and smooth orthogonal decomposition

(SOD) as they are applied to the recorded measurements of a scalar field. The measurements can

be taken from the scalar field using sensors, or obtained by simulating a dynamical system. The

recorded measurements or their phase space reconstructions form the data matrices used in the

multivariate analysis.

The objective of POD is to obtain the best low-dimensional approximate description of high-

dimensional data in the least squares sense [13, 59, 74]. In contrast, SOD is aimed at obtaining

the smoothest low-dimensional approximations of high-dimensional dynamical processes [12, 15, 16].

While POD only focuses on the spatial characteristics of the data, SOD considers both its temporal

and spatial characteristics.

12.1 Proper Orthogonal Decomposition

The POD (also refered to as Karhunen-Loéve decomposition or principal component analysis) aims

at finding a decomposition of the scalar field u(x, t), x ∈ Ω ⊂ Rn and t ∈ T ⊂ R, into an orthonormal

basis functions ξi(x) with time coefficients qi(t):

u(x, t) =

∞4

i=1

pi(t)ξi(x) , (12.1)

such that, ξ1(x) maximizes the projection of the field u(x, t) onto itself:

max
ξ1

-
1

T

+ T

0

.+

Ω

u(x, t)ξ1(x)dx

/2

dt

0
; (12.2)
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ξ2(x) maximizes the projection of the field into the subspace orthogonal to the first basis function

(or its null space), and etc. This is equivalent to following a constrained maximization problem:

max
ξi

-
1

T

+ T

0

.+

Ω

u(x, t)ξi(x)dx

/2

dt

0
, with

+

Ω

ξi(x)ξj(x)dx = δij (12.3)

This itself is reduced to the following integral eigenvalue problem:
+

Ω

R (x,y) ξk(y)dy = σ2
kξk(x) , (12.4)

where

R (x,y) =
1

T

+ T

0

u(x, t)u(y, t)dt , (12.5)

is the auto-correlation function of our scalar field. The resultant eigenfunctions ξk(x) are called

proper orthogonal modes (POMs) and the corresponding eigenvalues σ2
k are called proper orthogonal

values (POVs). Now, the corresponding time dependent coefficients or proper orthogonal coordinates

(POCs) are obtained as:

pi(t) =

+

Ω

u(x, t)ξi(x)dx . (12.6)

Remark

The POD assures us that m first POMs are most optimal projections of energy available in the scalar

field. However, if the field is contaminated by noise (systematic or measurement) then the POMs

would try to maximize the noise content too. In addition, this method is marred with notorious

energy leakage problem.

12.2 Smooth Orthogonal Decomposition

The basic idea of SOD is that given the same scalar field u(x, t) we are looking for a linear projection

of that field:

q(t) =

+

Ω

u(x, t)ψT (x)dx , (12.7)

such that the resultant time coordinate q(t) is minimally rough and has maximal variance. The min-

imal roughness or maximal smoothness can be characterized by the roughness metric that has been

extensively used in smoothing splines [23, 75, 76, 81], where the γ-weighed roughness is minimized

RF (Dif) =

+ b

a

γ(t)(Dif)(t)2dt = 〈(Dif)(t)2〉 (12.8)

over all f functions with i-derivatives defined on the [a . . . b] time interval, given the natural number i,

and the non-negative integrable function γ. Most of the time i = 2 is used in splines approximations.

However, for our purposes i = 1 shows good results and is less noisy when estimated from simulated

or experimental data. As for the weighting, we just use γ = 1, since our function f is empirical and

would incorporate γ naturally.
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Therefore, the SOD idea translates into the following maximization problem

max
ψ(x)

L
q(t)2

M

〈(Diq)(t)2〉 , (12.9)

which can be written as constrained maximization problem

max
ψ(x)

L
q(t)2

M
, under

L
(Diq)(t)2

M
= 1 . (12.10)

This in turn translates into the following Euler-Lagrange equation:

δ
L
q(t)2

M
= λ2δ

L
(Diq)(t)2

M
, (12.11)

where variations are in terms of ψ(x). We can evaluate the arguments of this Euler-Lagrange

equation as
L
q(t)2

M
=

1

T

+ T

0

+

Ω

u(x, t)ψ(x)dx

+

Ω

u(y, t)ψ(y)dy dt

=

+

Ω

+

Ω

-
1

T

+ T

0

u(x, t)u(y, t) dt

0
ψ(x)dx ψ(y)dy

=

+

Ω

+

Ω

R(x,y)ψ(x)dx ψ(y)dy ,

(12.12)

and, similarly,

L
Diq(t)2

M
=

1

T

+ T

0

+

Ω

Diu(x, t)ψ(x)dx

+

Ω

Diu(y, t)ψ(y)dy dt

=

+

Ω

+

Ω

-
1

T

+ T

0

Diu(x, t)Diu(y, t) dt

0
ψ(x)dx ψ(y)dy

=

+

Ω

+

Ω

DiR(x,y)ψ(x)dx ψ(y)dy ,

(12.13)

where

DiR(x,y) =
1

T

+ T

0

Diu(x, t)Diu(y, t) dt (12.14)

is the the i-th derivative of the auto-correlation function, or auto-correlation function of the time

derivative of our field. Therefore, the Euler-Lagrange equation is transformed into the generalized

integral eigenvalue problem:

+

Ω

R(x,y)ψk(y)dy = λ2
k

+

Ω

DiR(x,y)ψk(y)dy (12.15)

The solution to this eigenvalue problem will yield generalized eigenvalues λk or smooth orthogonal

values (SOVs) and corresponding generalized set of eigenfunctions ψk(x) or smooth projective modes

(SPMs). Please note, that SPMs are not required to be orthogonal. Finally, we can reconstruct our

field in terms of smooth orthogonal modes (SOMs) as

u(x, t) =

∞4

i=1

qi(t)φi(x) , (12.16)
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where SOMs φi(x) are bi-orthogonal set of SPMs ψi(x)

+

Ω

φi(x)ψj(x)dx = δij , (12.17)

and SOCs qi(t) also form an orthogonal set of functions:

1

T

+ T

0

qi(t)qj(t)dt = ciδij . (12.18)

12.3 Practical Calculation of POD and SOD

In the experimental context we usually sample the field u(x, t) in discrete time intervals ti (i =

1, . . . ,m) at discrete spacial xj (j = 1, . . . , n). Now if we introduce the following notation ui
j =

u(xj , ti) then we can express the correlation matrix components as

Rij = R(xi,xj) =
1

m− 1

N4

k=1

uk
i u

k
j , (12.19)

Now if we define a data matrix Y ∈ Rm×n, with components yij = ui
j , then the corresponding n×n

auto-correlation matrices can be written as

R =
1

m− 1
YTY, and DkR =

1

m− 1
(DkY)TDkY. (12.20)

If the measurements for DkY are not available, we can use a finite difference based differential

operators to estimate DkY.

Given the estimate of the auto-correlation matrix, our discrete generalized eigenvalue problem

for POD is

Rξk = σ2
kξk , (12.21)

where the orthogonal set of {φk}nk=1 are POMs and σ2
k are the corresponding POVs. In practice, it

is easier and more robust to just do the singular value decomposition of the data matrix Y:

Y = PΣΞT , (12.22)

where columns of P are POCs pk, Σ = diag(σk) is a diagonal matrix of singular values (square of

a singular value is a POV), and columns of Ξ are POMs.

For SOD we would need to estimate the corresponding time derivative of the data matrix, and

then solve the following generalized eigenvalue problem:

Rψk = λ2
k(D

iR)ψk . (12.23)

In practice, similarly to POD, it is more expedient and robust to just calculate economic generalized

singular value decomposition of the matrix pair Y and DkY as

Y = UCΦT , and DkY = VSΦT , (12.24)

https://en.wikipedia.org/wiki/Singular-value_decomposition
https://en.wikipedia.org/wiki/Generalized_singular_value_decomposition
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Figure 12.1: Geometric interpretation of POD

where U ∈ Rm×n and V ∈ Rm×n are matrices with orthonormal columns, C = diag(ci) ∈ Rn×n and

S = diag(si) ∈ Rn×n are diagonal matrices, and columns of Φ = [φ1,φ2, . . . ,φn] ∈ Rn×n contain

the unit norm SOMs φi. SPMs are then given by the columns of

Ψ = Φ−T , (12.25)

and the corresponding SOVs or discrete generalized eigenvalues are given by squaring the following

ratio

λi =
ci
si

. (12.26)

The corresponding SOCs are orthogonal and form the columns of Q = UC = YΨ, or

qi = Yψi , (12.27)

and

QTQ = CTUTUC = C2 . (12.28)

12.4 Geometric Interpretation of POD

To illustrate geometry of POD, we consider a matrix Y ∈ Rm×k containing a cloud of m points

generated by our k-dimensional trajectory, such that each column of Y has zero mean. Then

POD can be pictured as fitting a best ellipsoid to this data in the least squares sense as shown in

Fig. 12.1. The resultant singular values {σn}kn=1 are the lengths of the semi-axes of the ellipsoid,

and the corresponding directions are span by the POMs ξn. Signal energy or variance in n-th POM

is σ2
n and the total signal energy is captured by

7k
n=1 σ

2
n.
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Figure 12.2: Geometric interpretation of smooth orthogonal decomposition

12.5 Geometric Interpretation of SOD:

Now we consider a generic pair of consecutive points yn and yn+1 from a scalar field matrix Y

composed of trajectory points sampled with rate of ∆t = 1 as shown in Fig. 12.2. Then the velocity

vector for yn can be approximated as vn = yn+1 − yn. Now, if we follow the SOD maximization

procedure, first we would like to identify a unit vector ψ̂1, such that we maximize the expected ratio

of the projections onto this vector qn1 = yT
n ψ̂1 over q̇n1 = vT

n ψ̂1. In other words ψ̂1 corresponds to

the stationary value of this fraction:

λ2
1 = max

ψ̂1

<
VV=

VV>

TCCCyT
n ψ̂1

CCC
2
U

TCCCvT
n ψ̂1

CCC
2
U

W
VVX

VVY
= max

ψ̂1

ZL
q2n1

M

〈q̇2n1〉

[
, (12.29)

where the resultant stationary value λ2
1 is the smooth orthogonal value corresponding to the dominant

ψ̂1 SOM and q1 = Yψ̂1 SOC. Once, we identify ψ̂1, we can look for the second ψ̂2 which is linearly

independent of ψ̂1 and would yield us the second stationary value or SOV for:

λ2
2 = max

ψ̂2∦ ψ̂1

<
VV=

VV>

TCCCyT
n ψ̂2

CCC
2
U

\CCCvT
n ψ̂2

]CCC
2

W
VVX

VVY
= max

ψ̂2∦ ψ̂1

ZL
q2n2

M

〈q̇2n2〉

[
, (12.30)
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and so on until we obtain a full set of {ψ̂k}nk=1. Then the corresponding bi-orthogonal set of vectors

are obtained by

Φ = Ψ̂
−T

, (12.31)

where Ψ =
D
ψ̂1, ψ̂2, . . . , ψ̂n

E
∈ Rn×n is SPMs matrix and Φ = [φ1,φ2, . . . ,φn] ∈ Rn×n are SOMs

(no longer unit norm) that can be used to describe any point in our matrix Y as:

yn =

k4

i=1

qniφi , and ẏn =

k4

i=1

q̇niφi . (12.32)

where qi = Yψ̂i or qni = yT
n ψ̂i. On the figure we only show two pairs of basis vectors. As shown, φ1

is perpendicular to ψ̂2, and φ2 is perpendicular to ψ̂1. While ψ̂n are used during the maximization

process, φn are actually used to describe our data.

Problems

Problem 12.1

1. Generate a vector valued time series of harmonic functions with different frequency and mag-

nitude contents. Make sure you consider at least seven (n = 7) different frequencies and seven

different magnitudes. Record the vector valued time series so that it includes at least sev-

eral full periods of the highest frequency component. As a result you should have a matrix

Y ∈ Rm×n, where m > n.

2. Apply POD and SOD to this time series and identify the corresponding time coordinates,

modes, and eigenvalues.

3. Interpret the POMs and SOMs and the corresponding modes.

4. Now take the same matrix Y and make sure each column is composed of harmonics that have

exactly the same unit magnitude.

5. Redo the POD and SOD analysis. Please explain discrepancies, if any.
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Chapter 13

Nonlinear Noise Reduction

Many natural and engineered systems generate nonlinear deterministic time series that are con-

taminated by random measurement or dynamic noise. Even “clean” time series generated from

simulations have inherent digitization noise, which magnitude is at least half of the digital resolu-

tion. Generally, one can express the measured time series as:

xn = h(xn + ηn) + γn , (13.1)

where h is a scalar smooth measurement function, ηn random variable is the source of systematic

noise and reflects the uncertainty in the underlying dynamic state variable, and γn random variable

is additive measurement noise. Generally, dealing with measurement noise is less problematic since,

in reality, there is actual deterministic trajectory underlying the measurements. In contrast, the

dynamic noise can reflect some random variations in system parameters, and, thus, we cannot claim

that there is a deterministic attractor for the system. In some cases, the practical effect of both

noise sources can be treated as just an additive noise. But, in general, the type and source of noise

source will determine the extent of predictability and properties of the system. In the remainder

of this chapter we will assume that our measurements are contaminated by the measurement noise

and if there is any dynamical noise it can be treated as additive measurement noise.

Chaotic time series have inherently broad spectra and are not amenable to conventional spectral

noise filtering. Two main methods for filtering noisy chaotic time series [51, 52, 61] are: (1) model

based filtering [6], and (2) projective noise reduction [51]. While model based reduction has some

merit for systems with known analytical models [6], projective noise reduction provides a superior

alternative [51] for experimental data. There are other methods like adaptive filtering or the wavelet

shrinkage [90] method that can work in certain cases but require an opportune selection of parameters

or some a priori knowledge of the system or the noise mechanisms [33].

In this chapter, we describe projective methods for nonlinear noise reduction that are based on

a local subspace identification [16, 30, 51] in the reconstructed phase space [64, 79]. In particular,
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Figure 13.1: Schematic illustration of projective noise reduction idea. The blue curve shows the true

phase space trajectory, and the tangent space to it at point ỹn is shown by the red straight line.

The noisy measured trajectory is shown by the black dots and line. The noise reduction idea is to

project noisy yn onto the tangent space to obtain better approximation ȳn ≈ ỹn.

we will describe POD and SOD based projective noise reductions.

13.1 Projective Noise Reduction

Both POD-based local projective noise reduction [51], and SOD-based smooth projective noise re-

duction [17] work in the reconstructed phase space of the system generating the noisy time series.

The basic idea is that, at any point on the attractor, noise leaks out to higher dimensions than the

actual local dimension of the attractor’s tangent space at that point. Thus, by embedding data into

the higher d-dimensional space and then projecting it down to the tangent subspace of q-dimensions

reduces the noise in the data as illustrated in Fig. 13.1. The differences between the methods are in

the way this tangent space is identified.

For both noise reduction methods, the noisy time series {xi}ni=1 is embedded into a d-dimensional

global phase space using delay coordinate embedding generating the vector-valued trajectory:

yi =
1
xi, xi+τ , . . . xi+(d−1)τ

2T
, (13.2)

where τ is the delay time, and we get a set of {yi}n−(d−1)τ
i=1 reconstructed phase space points.

The selection of the global embedding dimension d, and the dimension of the tangent subspace q

are important steps in both noise reduction schemes. For a noise-free time series, a method of false

nearest neighbors [1, 77] is usually used to estimate the minimum necessary embedding dimension D

as described in Chapter 9. However, for the experimental time series we want proceed conservatively

by embedding in large d and observing results for various q-dimensional projections.

While POD based projective noise reduction works for both map or flow generated time series,
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SOD based noise reduction is only applicable to continuous flow generated data. This is due to the

fact that, for the SOD, we need to estimate data-based time derivative of the time series, which

would be problematic for the map generated data. In addition, the described SOD method can also

be modified to use POD instead of SOD when dealing with the continuous time series to obtain the

energy based subspace instead of smooth subspace for noise reduction.

13.1.1 POD Based Local Projective Noise Reduction

Standard methodology to approximate nonlinear map governing the evolution of a deterministic

signal is to use local linear maps. Assuming the original map F(y) is a smooth nonlinear function

of the reconstructed coordinates, we can linearize it about a point of interest:

F(y) ≈ F(yi) +DF(yi)(y − yi) = yi+1 +DF(yi)(y − yi) , (13.3)

or

yi+1 = Aiyi+1 + bi , (13.4)

where Ai is the Jacobian DF(yi). Usually Ai is determined by a least squares fit to experimental

data.

The basic idea is to adjust yi by projecting it down to a subspace span by the dominant eigen-

vectors of Ai which should approximate the tangent space to the actual dynamics at time i as

Figure 13.2: Schematic of the local projective noise reduction. Consider a cloud of points on a

k-dimensional hypersurface which are corrupted by noise. The noise spreads the points above and

below the hypersurface so that in d-dimensional space they form a d-dimensional object of small but

finite thickness. We can approximate the distribution of points by an ellipsoid and thus identify the

direction of smallest extent. Then we project the points onto the subspace orthogonal to it.
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illustrated in Fig. 13.2. In the local projective noise algorithm [48], for each point yi in the recon-

structed d-dimensional phase space r temporarily uncorrelated nearest neighbor points
^
y
(j)
i

_r

j=1

are determined. This is usually done utilizing fast nearest neighbor search algorithms such a kd-tree

based searches as was the case for the false nearest neighbor and fixed mass based algorithms. The

POD is applied to this cloud of nearest neighbor points, and the optimal q-dimensional projection

of the cloud is obtained providing the needed filtered ȳi (which is also adjusted to account for the

shift in the projection due to the trajectory curvature at yi [52]). The filtered time series {x̄i}ni=1 is

obtained by averaging the appropriate coordinates in the adjusted vector-valued time series {ȳi}.

POD Subspace Identification and Data Projection

POD is solved using singular value decomposition of a matrix Yi =
D
y
(1)
i ,y

(2)
i , . . . ,y

(r)
i

E
∈ Rd×r

containing the r nearest neighbors of point yi:

YT
i = PiΣiΞ

T
i , (13.5)

where POMs are given by the columns of Ξi ∈ Rd×d, POCs are given by the columns of Pi ∈ Rr×d

and SOVs are diagonal terms of Σi squared. We will assume that the POVs are arranged in

descending order (σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
d).

The most energy in q-dimensional approximation to Y (q < d) can be obtained by retaining only

q columns of interest in the matrices P and Ξi, and reducing Σi to the corresponding q × q minor.

In effect, we are looking for a projection of Yi onto a q-dimensional most energetic subspace. The

embedding of this q-dimensional projection into d-dimensional space (Ȳi) is constructed using the

corresponding reduced matrices: P̄i ∈ Rn×q, Σ̄i ∈ Rq×q, and Ξ̄i ∈ Rd×q, as follows

ȲT
i = P̄iΣ̄iΞ̄

T
i . (13.6)

Adjusting for Bias due to Curvature

The above approximation would be acceptable if our true clean trajectory passed through the center

of mass of the cloud of nearest neighbors. However, due to the inherent trajectory curvature, the

clean trajectory would pass through a point shifted outwards from the center of mass. Therefore,

the identified POD subspaces will not be tangent to the actual trajectory’s manifold, they would

actually intersect it. Thus, we need to adjust our linear projection subspace towards the point of our

interest by eliminating the shift caused by the curvature. As suggested by Kantz and Schreiber [53]

one can do so by moving the projection as 2ȳn − ¯̄yn, where ¯̄yn = (ȳn−1 + ȳn+1)/2 is the average of

the neighborhood mass centers as illustrated in Fig. 13.3.
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Figure 13.3: Consider a cloud of noisy points yk around a one dimensional curve going through

our noise free point of interest yn. The local linear approximations are not tangents to the actual

trajectory and the centre of mass (ȳ) of the neighborhood and is shifted inward with respect to

the curvature. We can adjust for it by shifting the centre of mass ȳn outward with respect to the

curvature by 2ȳn − ¯̄yn.

13.1.2 SOD Based Noise Reduction

In contrast, smooth projective noise reduction works with short strands of the reconstructed phase

space trajectory. Therefore, this method can only be applicable for data coming from a continuous

flow and not a map. These strands are composed of (2l + 1) time-consecutive reconstructed phase

space points, where l > d is a small natural number. Namely, each reconstructed point yk has

an associated strand Sk = [yk−l, . . . ,yk+l], and an associated bundle of r nearest neighbor strands

{Sj
k}rj=1, including the original. This bundle is formed by finding (r − 1) nearest neighbor points

{yj
k}

r−1
j=1 for yk and the corresponding strands. SOD is applied to each of these strands in the

bundle and the corresponding q-dimensional smoothest approximations to the strands {S̃j
k}rj=1 are

obtained. The filtered ȳk point is determined by the weighted average of points {ỹj
k}rj=1 in the

smoothed strands of the bundle. Finally, the filtered time series {x̄i}ni=1 are obtained just as in the

local projective noise reduction. The procedure can be applied repeatedly for further smoothing or

filtering.

13.1.3 Smooth Subspace Identification and Data Projection

SOD is solved using a generalized singular value decomposition of the matrix pair Si and Ṡi:

ST
i = UiCiΦ

T
i , ṠT

i = ViGiΦ
T
i , CT

i Ci +GT
i Gi = I , (13.7)

where SOMs are given by the columns of Φi ∈ Rd×d, SOCs are given by the columns of Qi =

UiCi ∈ Rn×d and SOVs are given by the term-by-term division of diag(CT
i Ci) and diag(GT

i Gi).

The resulting SPMs are the columns of the inverse of the transpose of SOMs: Ψ−1
i = ΦT

i ∈ Rd×d.

In this paper, we will assume that the SOVs are arranged in descending order (λ1 ≥ λ2 ≥ · · · ≥ λd).
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The magnitude of the SOVs quadratically correlates with the smoothness of the SOCs [16].

The smoothest q-dimensional approximation to Si (q < d) can be obtained by retaining only q

columns of interest in the matrices Ui and Φi, and reducing Ci to the corresponding q×q minor. In

effect, we are looking for a projection of Si onto a q-dimensional smoothest subspace. The embedding

of this q-dimensional projection into d-dimensional space (S̄i) is constructed using the corresponding

reduced matrices: Ūi ∈ Rn×k, C̄i ∈ Rk×k, and Φ̄i ∈ Rd×k, as follows

S̄T
i = ŪiC̄iΦ̄

T
i . (13.8)

13.1.4 Data Padding to Mitigate the Edge Effects

SOD-based noise reduction is working on (2l + 1)-long trajectory strands. Therefore, for the first

and last l points in the matrix Y, we will not have full-length strands for calculations. In addition,

the delay coordinate embedding procedure reconstructs the original n-long time series into Y which

has only [n − (d − 1)τ ]-long rows. Therefore, the first and last (d − 1)τ points in {xi}ni=1 will not

have all d components represented in Y, while other points will have their counterparts in each

column of Y. To deal with these truncations, which cause unwanted edge effects in noise reduction,

we pad both ends of Y by [l + (d − 1)τ ]-long trajectory segments. These trajectory segments are

identified by finding the nearest neighbor points to the starting and the end points inside Y itself

(e.g., ys and ye, respectively). Then, the corresponding trajectory segments are extracted from

Y: Ys = [ys−l−(d−1)τ , . . . ,ys−1] and Ye = [ye+1, . . . ,ye+l+(d−1)τ ], and are used to form a padded

matrix 3Y = [Ys,Y,Ye]. Now, the procedure can be applied to all points in 3Y starting at l+1 and

ending at n+ (d− 1)τ + l points.

13.2 Smooth Noise Reduction Algorithm

Smooth noise reduction algorithm is schematically illustrated in Fig. 13.4. While we usually work

with data in column form, in this figure—for illustrative purpose—we arranged arrays in row form.

The particular details are explained as follows:

1. Delay Coordinate Embedding

(a) Estimate the appropriate delay time τ and the minimum necessary embedding dimension

D for the time series {xi}ni=1.

(b) Determine the local (i.e., projection), q ≤ D, and the global (i.e., embedding), d ≥ D,

dimensions for trajectory strands.

(c) Embed the time series {xi}ni=1 using global embedding parameters (τ , d) into the recon-

structed phase space trajectory Y ∈ Rd×(n−(d−1)τ).
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Figure 13.4: Schematic illustration of smooth projective noise reduction algorithm

(d) Partition the embedded points in Y into a kd-tree for fast searching.

2. Padding and Filtering:

(a) Pad the end points of Y to have appropriate strands for the edge points, which results in

3Y ∈ Rd×[n+2l+(d−1)τ ]. In addition, initialize a zero matrix Ȳ ∈ Rd×[n+2l+(d−1)τ ] to hold

the smoothed trajectory.

(b) For each point {ŷi}n+(d−1)τ+l
i=l+1 construct a (2l+1)-long trajectory strand S1

i = [ŷi−l, . . . , ŷi+l] ∈

Rd×(2l+1). The next step is optional intended for dense but noisy trajectories only.

(c) If r > 1, for the same point ŷi, look up (r−1) nearest neighbor points that are temporarily

uncorrelated, and the corresponding nearest neighbor strands {Sj
i}rj=2.

(d) Apply SOD to each of the r strands in this bundle, and obtain the corresponding q-

dimensional smooth approximations to all d-dimensional strands in the bundle {S̃j}rj=1.

(e) Approximate the base strand by taking the weighted average of all these smoothed strands

S̄i = 〈S̃j
i 〉j , using weighting that diminishes contribution with the increase in the distance

from the base strand.

(f) Update the section corresponding to ŷi point in the filtered trajectory matrix as

Ȳi = Ȳi + S̄iW , (13.9)
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Figure 13.5: Sample weighting functions for l = 10 size strand

where Ȳi is composed of (i− l)-th through (i+ l)-th columns of Ȳ:

Ȳi = [ȳi−l, . . . , ȳi, . . . , ȳi+l] , (13.10)

and W = diag(wi) (i = −l, . . . , l) is the appropriate weighting along the strand with the

peak value at the center as illustrated in Fig. 13.5.

3. Shifting and Averaging:

(a) Replace the points {ŷi}n+(d−1)τ+l
i=1+l at the center of each base strand by its filtered ap-

proximation ȳi determined above to form Ȳ ∈ Rd×[n+2l+(d−1)τ ].

(b) Average each d smooth adjustment to each point in the time series to estimate the filtered

point:

x̄i =
1

d

d4

k=1

Ȳ (k, i+ l + (k − 1)τ) .

4. Repeat the first three steps until data is smoothed out, or some preset criterion is met.

13.3 Examples of the Nonlinear Noise Reduction

In this section we evaluate the performance of the algorithm by testing it on a time series generated

by Lorenz model [87] and a double-well Duffing oscillator [62]. The Lorenz model used to generate

chaotic time series is:

ẋ = −8

3
x+ yz , ẏ = −10 (y − z) , and ż = −xy + 28y − z . (13.11)

The chaotic signal used in the evaluation is obtained using the following initial conditions (x0, y0, z0) =

(20, 5,−5), and the total of 60,000 points were recorded using 0.01 sampling time period. The
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double-well Duffing equation used is:

ẍ+ 0.25 ẋ− x+ x3 = 0.3 cos t . (13.12)

The steady state chaotic response of this system was sampled thirty times per forcing period and a

total of 60,000 points were recorded to test the noise reduction algorithms.

In addition, a 60,000 point, normally distributed, random signal was generated, and was mixed

with the chaotic signals in 1/20, 1/10, 1/5, 2/5, and 4/5 standard deviation ratios, which respectively

corresponds to 5, 10, 20, 40, and 80 % noise in the signal or SNRs of 26.02, 20, 13.98, 7.96, and 1.94

dB. This results in total of five noisy time series for each of the models. The POD-based projective

and SOD-based smooth noise reduction procedures were applied to all noise signals using total of

ten iterations.

To evaluate the performance of the algorithms, we used several metrics that include improvements

in SNRs and power spectrum, estimates of the correlation sum and short-time trajectory divergence

rates (used for estimating the correlation dimension and short-time largest Lyapunov exponent,

respectively [47]). In addition, phase portraits were examined to gain qualitative appreciation of

noise reduction effects.

13.4 Results and Discussion

13.4.1 Lorenz Model Based Time Series

Using average mutual information estimated from the clean Lorenz time series, a delay time of 12

sampling time periods is determined. The false nearest neighbors algorithm (see Fig. 13.6) indicates

that the attractor is embedded in D = 3 dimensions for the noise-free time series. Even for the noisy

time series the trends show clear qualitative change around four or five dimensions. Therefore, six is
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Figure 13.6: False nearest neighbor algorithm results for Lorenz time series
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Figure 13.7: Phase portrait from Lorenz signal (a); random noise phase portrait (b); power spectrum

of clean and noisy signals (c); POD-filtered phase portrait (d) and SOD-filtered phase portrait (e)

of 5% noise added data; and the corresponding power spectrums (f).

used for global embedding dimension (d = 6), and k = 3 is used as local projection dimension. The

reconstructed phase portraits for the clean Lorenz signal and the added random noise are shown

in Fig. 13.7 (a) and (b), respectively. The corresponding power spectral densities for the clean and

the noise-added signals are shown in Fig. 13.7 (c). The phase portraits of POD- and SOD-filtered

signals with 5% noise are shown in Fig. 13.7 (d) and (e), respectively. Fig. 13.7 (f) shows the

corresponding power spectral densities. In all these and the following figures, 64 nearest neighbor

points are used for POD-based algorithm, and bundles of 9 eleven-point-long trajectory strands are

used for SOD-based algorithm. The filtered data shown is for 10 successive applications of the noise

reduction algorithms. The decrease in the noise floor after filtering is considerably more dramatic

for the SOD algorithm when compared to the POD.

The successive improvements in SNRs after each iteration of the algorithms are shown in Fig. 13.8,

and the corresponding numerical values are listed in Table 13.1 for the 5% and 20% noise added

signals. While the SNRs are monotonically increasing for the SOD algorithm after each successive

application, they peak and then gradually decrease for the POD algorithm. In addition, the rate of

increase is considerably larger for the SOD algorithm compared to the POD, especially during the

initial applications. As seen from the Table 13.1, the SOD-based algorithm provides about 13 dB

improvement in SNRs, while POD-based algorithm manages only 7 ∼ 8 dB improvements.
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Figure 13.8: Noisy Lorenz time series SNRs versus number of application of POD-based (left) and

SOD-based (right) nonlinear noise reduction procedures

The estimates of the correlation sum and short-time trajectory divergence for the noise-reduced

data and the original clean data are shown in Fig. 13.9. For the correlation sum, both POD- and

SOD-based algorithms show similar scaling regions and improve considerably on the noisy data.

For the short-time divergence both methods manage to recover some of the scaling regions, but

SOD does a better job at small scales, where POD algorithm yields large local fluctuations in the

estimates.

−1.5 −1 −0.5 0 0.5 1

−3

−2

−1

0

log10( )

lo
g 1
0(
C
(
))

−1.5 −1 −0.5 0 0.5 1

−3

−2

−1

0

log10( )

lo
g 1
0(
C
(
))

0 100 200 300 400
−2

−1

0

1

2

3

n (timesteps)

ln
δ n

0 100 200 300 400
−2

−1

0

1

2

3

n (timesteps)

ln
δ n

Clean Data
Noisy Data
POD−filtered
SOD−filtered

Clean Data
Noisy Data
POD−filtered
SOD−filtered

Clean Data
Noisy Data
POD−filtered
SOD−filtered

Clean Data
Noisy Data
POD−filtered
SOD−filtered

Figure 13.9: Correlation sum (top plots) and short-time divergence (bottom plots) for 5% (left plots)

and 20% (right plots) noise contaminated Lorenz time series

The qualitative comparison of the phase portraits for both noise reduction methods are shown

in Fig. 13.10. While POD does a decent job at low noise levels, it fails at higher noise levels where
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Table 13.1: SNRs for the noisy time series from Lorenz model, and for noisy data filtered by POD-

and SOD-based algorithms

Signal Lorenz + 5% Noise Lorenz + 20% Noise

Algorithm None POD SOD None POD SOD

SNR (dB) 26.0206 33.8305 39.1658 13.9794 22.3897 27.4318

no deterministic structure is recovered at 80% noise level. In contrast, SOD provides smoother

and cleaner phase portraits. Even at 80% noise level, the SOD algorithm is able to recover large

deterministic structures in the data. While SOD still misses small scale features at 80% noise level,

topological features are still similar to the original phase portrait in Fig. 13.7(a).
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Figure 13.10: Phase space reconstructions for noisy and noise-reduced Lorenz time series after ten

iterations of the POD- and SOD-based algorithms

13.4.2 Duffing Equation Based Time Series

Using the noise-free Duffing time series and the average mutual information, a delay time of seven

sampling time periods is determined. In addition, false nearest neighbors algorithm indicates that

the attractor is embedded in D = 4 dimensions for 0% noise (see Fig. 13.11). Six is used for global

embedding dimension (d = 6), and k = 3 is used as local projection dimension. The reconstructed
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Figure 13.11: False nearest neighbor algorithm results for Duffing time series

phase portraits for the clean Duffing signal and the added random noise are shown in Fig. 13.12

(a) and (b), respectively. The corresponding power spectral densities for the clean and noise-added

signals are shown in Fig. 13.12 (c). The phase portraits of POD- and SOD-filtered signals with

5% noise are shown in Fig. 13.12 (d) and (e), respectively. Fig. 13.12 (f) shows the corresponding

power spectral densities. In all these and the following figures, 64 nearest neighbor points were

used for POD-based algorithm, and bundles of nine 11-point-long trajectory strands were for SOD-

based algorithm. The filtered data shown is after 10 successive applications of the noise reduction

algorithms. As before, the decrease in the noise floor after filtering is considerably more dramatic

for the SOD algorithm when compared to the POD.

The successive improvements in SNRs after each iteration of the algorithms are shown in Fig. 13.13,
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Figure 13.12: Reconstructed phase portrait from Duffing signal (a); random noise phase portrait

(b); power spectrum of clean and noisy signals (c); POD-filtered phase portrait of 5% noise added

(d); SOD-filtered phase portrait of 5% noise added (e); and the corresponding power spectrums (f).
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Figure 13.13: Noisy Duffing time series SNRs versus number of application of POD-based (left) and

SOD-based (right) nonlinear noise reduction procedures

and the corresponding numerical values are listed in Table 13.2 for 5% and 20% noise added sig-

nals. Here, SNRs for both methods are peaking at some point and then gradually decrease. In

addition, the rate of increase is considerably larger for the SOD compared to the POD algorithm,

especially during the initial iterations. SOD is usually able to increase SNR by about 10 dB, while

POD provides only about 4 dB increase on average.

Table 13.2: SNRs for the noisy time series from Duffing model, and for noisy data filtered by POD-

and SOD-based algorithms

Signal Duffing + 5% Noise Duffing + 20% Noise

Filtering None POD SOD None POD SOD

SNR (dB) 26.0206 30.7583 36.1687 13.9794 19.5963 24.5692

The estimates of the correlation sum and short-time trajectory divergence for the noisy, noise

reduced data, and the original clean data from Duffing oscillator are shown in Fig. 13.14. For the

correlation sum, both POD- and SOD-based algorithms show similar scaling regions and improve

substantially on the noisy data, with SOD following the noise trend closer than POD. For the short-

time divergence rates both methods manage to recover some of the scaling regions, but SOD does a

better job at small scales, where POD algorithm causes large local fluctuations in the estimates.

The qualitative comparison of the Duffing phase portraits for both noise reduction methods

are shown in Fig. 13.15. For consistency all noise-reduced phase portraits are obtained after 10

consecutive applications of the algorithms. While POD does a decent job at low noise levels, it

fails at high noise levels where no deterministic structure is recovered at 40% or 80% noise levels.

In contrast, SOD provides smoother and cleaner phase portraits at every noise level. Even at 80%

noise level, the SOD algorithm is able to recover some large deterministic structures in the data,
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Figure 13.14: Correlation sum (top plots) and short-time divergence (bottom plots) for 5% (left

plots) and 20% (right plots) noise contaminated Duffing time series

providing topologically similar phase portrait.

In summary, the decrease in the noise floor observed in the power spectral density for the SOD-

based method was at least 20 dB larger then for the POD-based method, which itself improved

on the original signals noise floor at best by 10 dB. SNRs show similar trends, where SOD-based

method manages to improve it by about 10 dB, while POD-based manages only 4 ∼ 5 dB increase. In

addition, SOD accomplishes this with considerably fewer applications of the noise reduction scheme,

while POD works more gradually and requires many more iterations at higher noise levels.

Estimating nonlinear metrics used in calculations of correlation dimension and short-time Ly-

punov exponent showed that both methods are adequate at low noise levels. However, SOD per-

formed better at small scales, where POD showed large local fluctuations. At larger noise levels

both methods perform similarly for the correlation sum, but SOD provides larger scaling regions for

short-time trajectory divergence rates. POD still suffers from large variations at small length/time

scales for larger noise levels.

The above quantitative metrics do not tell a whole story, however; we also need to look at the tra-

jectories themselves. Visual inspection of the reconstructed phase portraits showed superior results

for SOD. POD trajectories had small local variations even at low noise levels, and completely failed

to recover any large dynamical structures at large noise levels. In contrast, SOD method provides

very good phase portraits up to 20% noise levels, and for larger noise levels the reconstructions

still have clear topological consistency with the original phase portrait. However, SOD also fails to
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capture finer phase space structures for 80% noise level.

Problems

Problem 13.1

Create an artificial time series by integrating the Chua’s circuit by Matsumoto et al. (1985):

ẋ = α

.
y − x+ bx+

1

2
(a− b) (|x+ 1|− |x− 1|)

/
(13.13)

ẏ = x− y + z (13.14)

ż = −βy (13.15)

using these parameters: α = 9, β = 100/7, a = 8/7, and b = 5/7. Start the simulation using the

following initial conditions: x(0) = 0, y(0) = 0, and z(0) = 0.6. In particular, using the z time series

containing at least 60,000 points:

1. Make sure your time series is appropriately sampled, make it zero mean and unit standard

deviation.

2. Determine the needed embedding parameters.

3. Make noisy time series with 1%, 5%, and 20% additive Gaussian noise (percents are in terms

of relative standard deviations of the signal and the noise).

4. Apply both projective and smooth noise reduction schemes to the noisy time series.

5. Compare the results using phase portraits, power spectrum, correlation sum, and Lypunov

exponents.

6. Interpret your results.
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Figure 13.15: Phase space reconstructions for noisy and noise-reduced Duffing time series after ten

iterations of the POD- and SOD-based algorithms
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Chapter 14

Modeling and Predicting Chaotic

Time Series

To understand the behavior of a dynamical system in terms of some meaningful parameters we seek

the appropriate mathematical model that captures the important physical characteristics of the

system that are observable experimentally. Ideally, we would like to have a simplified mathematical

description of natural behavior that is consistent with the empirical observations, but can also be

used to explore wider implications under different parameters or environmental conditions. Such

models are called phenomenological, as opposed to first principles based models that are usually

derived from fundamental physical principles (e.g., classical mechanics models). Obviously, the first

principles models also need to be consistent with empirical evidence otherwise we need to reexamine

our fundamental understanding of the underlying physics.

In this chapter, we will discuss the development of data-based models. In many cases, we would

also have some tangential and incomplete information about the systems or the processes generating

the data we use for modeling. However, we may need to proceed with just the available scalar or

multivariate measurements and not much else. In any case, we cannot expect there to be a unique

solution to this modeling problem and we have to often use other criteria in selecting specific model

(e.g., the simples possible model consistent with observations is usually selected). There may be

other metrics we can use to evaluate the usefulness of a model such as stability, convergence, or

computability.

The main advantage of the first-principles models is that they inherently have physical meaning

and parameters. In contrast, for models based on time series, we cannot expect to have parameters

that have any physical meaning. However, a successful data-based model can faithfully reproduce

empirically observed dynamics and the associated properties or statistics and, in this regard, is

usually superior to the phenomenological model.
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The process of data-based model building has two main components: (1) selection of particular

model type or equation, and (2) identification of model parameters be fitting or updating the model

predictions to empirically available data. If the identified model parameters have any phenomeno-

logical meaning the model is called parametric, otherwise it is called nonparametric. The selection

of model equation is usually guided by the purpose of the model, which could have conflicting ob-

jectives. The usual objectives for model building are prediction of future evolution, noise reduction,

control, system identification, or generation of some synthetic data sharing the same statistical or

dynamical properties for the empirically available data.

The basic sources of predictability in the data are linear and nonlinear correlations and deter-

minism. For linear systems, the determinism ie equivalent to having linear correlations. Therefore,

usual choices for linear models are moving average (MA), autoregressive (AR), or combination of

AR and MA (ARMA). For nonlinear systems, there is no such connection and to model chaotic time

series we cannot just relay on autocorrelations. The natural choice for nonlinear systems is to extend

linear models by introduction of local or global nonlinearity. For example, threshold autoregressive

(TAR) models use piecewise liner modeling paradigm: they employ set of regular AR models that

are valid only in small local neighborhoods of the vector space. These will be the members of local

linear models. In contrast, we can extend the AR model by inclusion of nonlinear terms to create a

globally nonlinear model. Thus, these would be classified as global nonlinear models.

In this chapter we will focus on models for deterministic or mainly deterministic data. Readers

who are interested in AR, MA, ARMA, or their extensions can refer to any time series analysis books

such as Refs. [5, 40, 65]. In what follows, we will discuss nonlinear models build in the reconstructed

phase space of dynamical systems.

14.1 Model Development in Reconstructed Phase Space

We assume that the dynamics attractor can be reconstructed through the delay coordinate embed-

ding of scalar time series using the delay τ and embedding dimension d. The process should also

work and may benefit by having vector-valued time series too. Thus, we assume that we are working

in the reconstructed phase space and we have total N points {xk}Nk=1, which are governed by some

nonlinear map:

xn+1 = F(xn) , (14.1)

where F : Rd → Rd. Then our objective is to approximate this map with a model:

x̂n+1 = P(xn) . (14.2)

To determine the appropriate form of P and its parameters, we need a criterion to evaluate the

quality of the model. This could be accomplished by minimizing some cost function, selection of
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which would depend on the purpose of the model. If, for example, we are looking for best possible

predictions in the least squares sense, we may want to minimize mean squared prediction error:

ek =

àab 1

N

N−k4

n+1

(xn+k −Pk(xn))
2
, (14.3)

where we are minimizing k-step prediction error. In many cases, we would just minimize for k = 1.

However, there is a particular choice of k = τ (which is usually the case for data generated by maps

when τ = 1) that simplifies the modeling considerably. In particular, only one coordinate in xn+τ

is different from xn, very similar to the Eq. (11.59) in Lyapunov exponent chapter. Therefore, Eq.

(14.2) can be written as

x̂n+τ =
1
x̂n+τ , xn, xn−τ , . . . , xn−(d−2)τ

2T
=

1
P (xn), xn, xn−τ , . . . , xn−(d−2)τ

2T
, (14.4)

or just as

x̂n+τ = P (xn) . (14.5)

In many cases, even when data is coming from flow and not map, one does not bother to choose

an optimal delay τ and the just uses the unit delay (τ = 1). In this situation, and when the data

are generated by continuous flow, successive measurements will be strongly correlated. Therefore,

it is better to use the following form of a model:

x̂n+1 = xn +∆t P (xn) , (14.6)

where ∆t is the sampling time.1

14.2 Method of Analogues and Simple Averaging

If the data is clean and plentiful, the local models have some advantages over the global models.

Local models usually require more computation at each prediction step, but can be more accurate

if data is dense and has little noise. The simplest of local models or algorithms is Lorenz’s method

of analogues. This really does not involve any modeling, to predict the future evolution of a point

in the phase space, all we need to do is lookup its nearest neighbor in our data and use its future

image as a prediction. However, if we use this for long predictions, we would just reproduce our base

trajectory, which would yield a periodic time series. To mitigate this problem, the simple averaging

method looks up several nearest neighbors of the initial point, and uses the average of their future

images as the prediction as illustrated in Fig. 14.1. This method could be effective when dealing

with high dimensional state space or when we have large stochastic component added to our data.

1This is similar to the Euler integration of differential equations
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Figure 14.1: Simple averaging method looks up several nearest neighbors of xn in its neighborhood

and uses the average of their future images as the prediction x̂n+1

14.3 Local Linear Models

We can do better than the simple averaging method by building local linear models which show how

neighborhoods about each data point are mapped forward in time. Therefore, we can write a simple

local linear map relating the state at time n, xn to the state xn+k at time n+ k as:

x̂n+k = Ak
nxn + bk

n , (14.7)

where the model parameter matrix Ak
n and parameter vector bk

n are determined by regression at

each point in the data set using either a fixed distance method or fixed mass method to define local

neighborhoods Bε(xn).

The basic procedure for modeling is explained schematically in Fig. 14.2. Given a point xn in

the phase space of the systems, we select a fixed number of points (fixed mass method), say r, in

the neighborhood of that point Bε(xn). These same points, k time steps later, lie in some other

small region of phase space FkBε(xn) (k cannot be too large, since we expect to have a positive

Lyapunov exponent). Then, as affine map Eq. (14.7) fitted in the least squares sense between these

two clusters of points provides locally linear approximation to the dynamics of the system. Please

note, the smaller the Bε(xn), the more accurate the fitted affine map is expected to be. Note, also,

that for any fixed number r of neighboring points, the size of the Bε(xn) will be smaller if the data

set is larger.

The collection of these local linear models gives us the global nonlinear model of the system.

In addition, individual local linear models can be viewed as linearization of this global model at

the points of interest in the phase space. Therefore, we implicitly require that the global nonlinear

models to be not only continuous at out points of linearization but also have a first derivative.

Thus, local linear models in effect are approximating a tangent space to the global map F(xn) at

each xn. However, if the size of Bε(xn) is large compared to the inverse of the curvature of the
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Figure 14.2: Schematic illustration of the basic idea about local linear models

true attractor at xn, then the approximation will be poor. We try to circumvent this problem of

having small neighborhoods as well as sufficient enough nearest neighbors for estimating parameters

by incorporating weighting in the procedure. Basing our model on r nearest neighbors (xj(i), i =

1, . . . , r) of the point of interest xn, we can find the optimal model parameters by minimizing

e2k =

r4

i=1

wi

KKxj(i)+k −Ak
nxj(i) − bk

n

KK2 , (14.8)

where wi is a suitable weighting function that assigns greater weight to the points xj(i) that are

closest to the xn within the needed neighborhood size. If we define Bk
n =

1
Ak

n,b
k
n

2
and the following

matrices

Xn =
5
xj(1),xj(2), . . . ,xj(r)

6
, (14.9)

Wn = diag(w1, w2, . . . , wr) , (14.10)

X̃n =

%

&xj(1) xj(2) . . . xj(r)

1 1 . . . 1

'

( , (14.11)

(14.12)

Then we can rewrite Eq. (14.7) as:

Xn+k ≈ Bk
nX̃n . (14.13)

If we use weighting and multiply the above from the right-hand side with WX̃T
n we get:

Xn+kWX̃T
n ≈ Bk

nX̃WX̃T
n , (14.14)

Now, it is easy to show that the optimal model parameters are given by

Bk
n = Xn+kWX̃T

n

A
X̃nWX̃T

n

B−1

. (14.15)

An example of simple local linear prediction is shown in Fig. 14.3 for a Chua’s circuit signal,

using delay 6, embedding dimension 3 and using 16 nearest neighbors.
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Figure 14.3: Local linear prediction for Chua’s circuit x time series

There could be two major problems for local linear models: (1) we could have too few points to

have sufficiently small neighborhoods for some points in the phase space, and (2) if the magnitude

of noise is larger that the maximum allowable neighborhood size we will fit just noise not the

deterministic component. In these cases, we may want to consider global nonlinear models such as

ones using polynomial or radial basis functions. There is also a large body of literature utilizing

neural networks for modeling chaotic behavior. The problem with the “black box” approaches, like

neural networks, is that we loose any physical intuition about how and why they work and they

may not be generalizable if we have even small changes in the system’s parameters or operating

conditions.

Problems

Problem 14.1

Use the same time series of Problem 10.2 and build a predictive local linear model from data. Split

your data into two pieces, one to train the model, and the other to test the prediction. What are

the in-sample and out-of-sample RMS prediction errors?



Chapter 15

Surrogate Data Analysis

In many practical situations we may want to classify or characterize our time series with few numbers

(e.g., fractal dimension, Lyapunov exponent, model prediction error, or some entropy). These char-

acteristic numbers then can be used for determining if the underlying dynamical systems is operating

as expected or needs an attention. They could also be used as measures of some underlying hidden

processes that may evolve on a slower time scales than the observed dynamics. Some examples

include damage identification and monitoring, fault detection and localization, medical diagnosis,

and etc. In all these cases we need to have trust in the estimated metrics, are they really reflecting

the underlying dynamics or just giving us some numbers as a result of algorithmic calculations that

have no physical meaning?

Many times we do not have a strong indication or evidence that what we are estimating can be

trusted or is actually measure of some deterministic process. In this situations, we need to evaluate

the probability that our measures are reflecting the physical reality by statistical hypothesis testing.

However, due to the limited size of the experimental data we usually are limited in the ability

to estimate the probability distribution of our metrics using, for example, different subsets of our

data. Furthermore, it is usually fairly difficult to come up with simple null hypothesis for testing

the complicated metrics we are using here. Due to all of this, we usually resort to surrogate data

analysis.

The main idea behind the surrogate data analysis is that we want to compare our particular

nonlinear metric estimated from the available time series to the distribution of the same metric

obtained from a large number of time series (i.e, surrogate data) that satisfying some null hypothesis.

This null hypothesis could be that the time series are generated by some linear stochastic process (i.e.,

autoregressive moving average or ARMA). Then, we can estimate the probability that our metric

is real or obtained purely by chance by observing if and where it falls in the obtained distribution

obtained from the surrogates. Then, if the probability of it being true is high enough we can reject

175
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the null hypothesis.

The confidence level with which the null hypothesis can be rejected will depend on the number of

surrogate signals used. We allow for a chance that null hypothesis could be rejected even if it is true.

For example, if we require a 90% confidence level, we accept a 10% chance that the null hypothesis

could be falsely rejected. To quantify this, we assign a value of 0.10 (10 %) to the parameter α.

The number of surrogate data sets required is then determined by α. Statistics used to differentiate

metrics, can be either single sided or double sided. Depending on which, the number of surrogates,

β, will vary according to the following rules:

Single Sided Statistic: We expect our data statistic to either be always higher or lower than our

statistic measured from the surrogates:

β =
1

α
− 1

Double Sided Statistic: We expect our surrogate statistic to be higher or lower than our data

statistic:

β =
2

α
− 1

For this method to be effective our surrogate data needs to have some properties that are identical

or similar to our time series to establish the corresponding null hypothesis. Since, we are mainly

interested in testing for nonlinear metrics, we usually require that all or some of the linear properties

of the test time series and surrogates be shared. This would support a powerful null hypothesis that

the time series are generated by the ARMA model. Generally, we could consider these three null

hypothesis or their combinations:

1. The data is composed of random numbers drawn from some fixed, but unknown distribution.

2. The data is drawn from a stationary linear stochastic process with Gaussian inputs.

3. The data is drawn from a stationary linear stochastic process with unknown distribution.

Each null hypothesis has a method of creating surrogate data sets associated with it. Each surrogate

needs to have the same number of points as the original signal for the test to be valid. The three

basic methods surrogate data generation methods are:

Unconstrained randomization of time series: This is a very simple form of surrogate data set.

We will simply shuffle the time series in some random order.

Phase randomized surrogates: Here we require that the surrogates have the same power spec-

trum as our data, which is equivalent of requiring to having identical linear correlations. Hence,

if there are nonlinear correlations in our test data, we should be able to reject the hypothesis.

This method will preserve the power spectrum amplitudes of the time series while randomizing

its phase. In particular,
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1. Taking the digital fast Fourier transform (DFFT) of our measured time series {xn}Nn=1:

Xn =
1√
N

N4

k=1

xke
i2πnk

N , (15.1)

2. Replace the complex components of Xn by random phases, X ′
n = |Xn| eiφn , where φn are

uniformly distributed in [0, 2π].

3. Compute an inverse digital fast Fourier transform (IDFFT) to get the surrogate:

x′
n =

1√
N

N4

k=1

X ′
ke

−i2πnk
N . (15.2)

Iteratively refined surrogates: This is using the iterated amplitude adjusted Fourier transformed

surrogates method as described in Ref [82]. This method preserves all the linear statistical and

spectral properties in the surrogates (i.e., power spectrum, mean, variance, autocorrelation,

probability distribution, etc.). However, any nonlinear structures in the data will be destroyed

by the randomization procedure, which uses two step iterative method.

1. We start by sorting the original time series {xn}N−1
n=0 by its magnitude in ascending order

into {yn}N−1
n=0 and storing it with the corresponding Fourier transform magnitudes:

Xn =
1

N

CCCCC

N−14

k=0

xke
i2πnk

N

CCCCC . (15.3)

2. The iterative process is initiated by randomly reshuffling {xn} to get {r(0)n }:

3. Take DFFT of {r(i)n }N−1
n=0 to get:

R(i)
n =

1√
N

N−14

k=0

r
(i)
k e

i2πnk
N , (15.4)

4. Now replace the magnitudes
CCCR(i)

n

CCC with Xn, but keep the phase ψ
(i)
n = argR

(i)
n the same

and take IDFFT to get

x(i)
n =

1√
N

N−14

k=0

Xke
iψ

(i)
k e−

i2πnk
N . (15.5)

5. Finally, transform {x(i)
n } into {r(i+1)

n } by rank-ordering according to stored {yn}:

r(i+1)
n = y

rank
#
x
(i)
n

$ . (15.6)

The idea is that iteratively we are converging to a fixed point r
(i+1)
n = r

(i)
n for large i, which is

usually reached after finite number of iterations.

15.1 Examples

To investigate the usefulness and abilities of this method we are going to look at two separate time

series. The first time series will be a simple linear stochastic process, and the second will come from

a simulation of the Lorenz attractor.
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Figure 15.1: Stochastic process with its observation (left plots), and autocorrelation of the data in

comparison with the autocorrelation of 99 surrogates (right).

15.1.1 Linear Stochastic System

The linear process can be described by the following:

xn = 0.99xn−1 + ηn , (15.7)

where ηn are independent random numbers. To make this problem more interesting for our appli-

cation, we will observe the process through a nonlinear function,

sn = x3
n . (15.8)

It should also be noted that the mean of the signal is removed prior to the nonlinear transformation.

The process along with the nonlinear observation can be seen in Fig. 15.1 (left). It is very possible

to see a signal like this in real life. Many times, especially in biological systems, we do not know the

governing equations and processes of a system. When we take some measurement of that system

there could easily be a nonlinear rescaling. In this case it would be inappropriate to analyze the

time series using nonlinear time series analysis techniques. For the sake of this problem we are going

to assume we know nothing about the underlying process and only see the nonlinear observation.

The first approach will be to test the null hypothesis (number 1) that the data is of a random

process. The statistic used will be the autocorrelation at lag one, and the surrogate method will be

unconstrained randomization of the time series.

We want to pass every test in this paper with a 99 % confidence level. This requires that α = 0.01,

and therefore, β = 1
0.01 − 1 = 99 surrogates for single sided tests and β = 2

0.01 − 1 = 199 surrogates

for double sided tests. The autocorrelation is expected to be much lower for a random signal than

a linear stochastic signal, so this test will be single sided requiring 99 surrogates. Fig. 15.1 (right)

shows the results of the statistic test. On the horizontal axis is the value of the autocorrelation and
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Figure 15.2: PSD of the original time series and one surrogate data set (left), and autocorrelation

of 99 phase randomized surrogates plotted along with the autocorrelation of the data (right).

the vertical axis is for the purpose of illustration only. All surrogates are given a value of 1 and the

data is given a value of 1.5 for ease of picking out the differences. If the autocorrelation of the data

was close to the range of the distribution of the surrogates it would be plotted here as well. However

it is obvious that the autocorrelation of all surrogates is much lower than that of the data. The null

hypothesis is then rejected with 99 % confidence level and we can declare that the observation is

not a random distribution of numbers.

This test does not tell us about the nonlinearity of the system. The next null hypothesis we can

take is that the time series is a stationary linear stochastic process with Gaussian inputs. Again

we will use the autocorrelation as the statistic with 99 surrogates. The surrogates will be generated

using the phase randomized process. The power spectrum is well preserved as can be seen in the

PSD plot of Fig. 15.2 (left).

The autocorrelation is then computed for the time series and 99 of its surrogates and plotted in

Fig. 15.2 (right). From this test the null hypothesis cannot be rejected and the assumption that this

process is actually a linear stochastic process with Gaussian inputs can hold. On the other hand,

the statistic could also not be powerful enough to distinguish the nonlinearity.

The final null hypothesis taken here is that the data is drawn from a linear stochastic process with

unknown distribution. For this test we will be using the error of a one time-step-ahead prediction

as our statistic. This test is double sided and will require 199 surrogates. The surrogate sets will

be generated using the iteratively refined (polished) randomization scheme. Here the distribution

and the power spectrum are preserved as described earlier. Fig. 15.3 (left) shows the PSDs of the

signal and one surrogate. The two match fairly well together. This method will not produce perfect

matching by nature, but can be refined with an increase of iterations. Here, the iterations were kept

relatively low for the sake of computational time. For predictive modeling, both the original time
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series and surrogates were embedded in three dimensional space with unit delay. Fig. 15.3 (right)

Figure 15.3: PSD of signal and one polished surrogate (left) and prediction error (right).

shows that the null hypothesis cannot be rejected with 99 % confidence here either. We can now

reasonably assume that the data comes from a linear stochastic process, which we know is true.

15.1.2 Lorenz Time Series Example

The surrogates are generated using the refined iterative randomization method. Fig. 15.4 shows the

results of the randomization. The preservation characteristics can be seen in Fig. 15.5 showing the

Figure 15.4: Lorenz data (top), surrogate (bottom)

PSD and histogram of the data and one surrogate. Noise is also added to the time series, sn = xn+ηn,
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to make the problem more realistic. All signals are embedded using standard embedding parameters

and the prediction algorithm is run identically. Fig. 15.6 shows the results of the statistical test.

Figure 15.5: Comparison of distribution and PSD of Lorenz signal (left) and one surrogate (right)

Clearly, the null hypothesis can be rejected in every case giving us a 99 % confidence level that this

signal is not a linear stochastic process measured through a nonlinear function.

Figure 15.6: Lorenz attractor time series prediction error versus 199 surrogates
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Chapter 16

Invariant Measures and Nonlinear

Metrics Zoo

Classifying and identifying nonlinear dynamical systems are some of basic tasks in nonlinear time-

series analysis [3, 26, 54]. Most generic approach is to rely on some feature metric that is invariant

under the evolution of the dynamics. Conventional methods often characterize a dynamical system

using long-time invariant quantities such as already discussed Lyapunov exponents or fractal dimen-

sions [28, 46, 50, 73]. Fractal dimensions provide bounds on the number of active degrees-of-freedom

and reflect the complexity of the system. Lyapunov exponents characterize the average exponential

divergence rates of infinitesimally close trajectories on the attractor, and are used to infer if the

underlying system is integrable or chaotic.

Application of these metrics in vibrations-based structural health monitoring has been studied

extensively [34, 92, 93]. However, reliable estimation of Lyapunov exponents from the observed time

series is difficult in the presence of noise, complicated by the fact that they are not exactly defined

for noisy data [95]. Literature survey of techniques developed for the computation of Lyapunov

exponents is extensive [4]. Most of the methods monitor the evolution of system dynamics for

thousands of time steps. Therefore, large experimental data requirements and extensive computation

time impose limits on their practical applications. To deal with these problems, Clement and Laurens

proposed the Jacobian Feature Vector [22] which is based on Lyapunov exponent’s algorithm but

has faster computation. Other interesting feature extracted from measured data has been studied by

Todd et al. [91], where local attractor variance ratio is described as a change in geometric properties

of an attractor.

All these quantities describe the long-time behavior of a dynamical system. While they are

able to detect sudden changes in a system, they are ill-suited for continuous tracking of slowly

changing parameters responsible for nonstationarity in a dynamical systems. In Refs. [18, 19], a
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concept of phase space warping (PSW) was proposed to characterize changes in slow parameter

drifts in the fast-time flow. A one-to-one relationship between PSW-based tracking vectors and

actual slow-time variables causing these changes has been demonstrated. However, this procedure

requires considerable computational time and resources for estimation.

In many practical application like in MEMS-based sensors (e.g., in atomic force microscopy),

observed data is accumulated at such high rates that it is impractical to record the raw time series

or do complicated online, real-time analysis. Hence, it is more practical to do simple, easy to

calculate feature extraction locally on the sensor and only output feature time series at much lower

sampling rates. However, local processing has limited storage and computational resources, and it

requires fairly simple and easy to estimate features (most use mean, variance, or resonant frequency

estimations). These simple features do not capture important nonlinear behaviors and have limited

application scope. To address this problem, a new class of simple nonlinear features that are fast to

calculate and do not require large data are discussed here. These metrics are applicable in situations

where fast online computation is needed.

16.1 A New Class of Nonlinear Metrics

Lyapunov exponents and fractal dimensions are rooted in Ergodic theory [96] which is originally

developed to identify and classify invariant measures under the time evolution. In the following, one

of the important theorems in Ergodic theory, Birkhoff Ergodic Theorem, is restated for completeness.

Then a new class of characteristics of nonlinear dynamics based on this theorem is discussed.

16.1.1 Birkhoff Ergodic Theorem

Consider the time evolution of a dynamical system, measured in discrete time units, given by a

transformation T : X → X, so that if x ∈ X ⊂ Rn is the current state then T (x) is the state

of the system after one time unit. If the system is at the steady state, by the invariant property

T (X) ⊆ X then T is a measure preserving transformation. For example, let X be the phase space

of a mechanical system. Then every point of X represents the values of position and momentum

variables. A measurement of the system (e.g., velocity, acceleration) can be defined by a function

f : X → R. To measure a quantity of the system, one usually takes n successive measurements

f(x), f (T (x)) , . . . , f (T n(x)) and looks at their average. The question is if the average exists and

is invariant when n → ∞. Ergodic theory was originally developed to answer this question.

Birkhoff Ergodic Theorem for measure preserving transformation [96]: Let

(X,B, µ) be a finite measure space. Let T : X → X be a measure preserving transfor-
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mation. For any f ∈ L1(X,B, µ) the following limit

lim
n→∞

1

n

n−14

k=0

f
5
T k(x)

6
(16.1)

exists and is invariant.

Using this theorem, we can define useful invariant metrics for a dynamical system’s attractor

which are fast, easy to calculate, robust to noise, and do not require large data or computational

resources.

16.1.2 Generalized Distances

Let gq : X × Z → R be a measurable function, which is the Minkowski distance between a point

x ∈ X ⊂ Rm and its image after k time steps y = T kx ∈ X ⊂ Rm,

gq(x, k) =
KKx− T kx

KK
q
=

F
m4

i=1

|xi − yi|q
G 1

q

. (16.2)

Then a scalar generalized distance dq(k) can be defined as a limit

dq(k) = lim
n→∞

1

n

n−14

i=0

gq(T i(x), k) . (16.3)

For example, this metric has some connection to auto-correlation or auto-covariance for q = 2:

d2(k) = E [‖xi − xi+k‖2]i = E

?c
(xi − xi+k)T (xi − xi+k)

@

=
1

n− k

n−k4

i=0

àab
m−14

j=0

(xi+jτ − xi+k+jτ )
2
.

(16.4)

For q ∕= 2:

dq(k) = E
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‖xi − xi+k‖q
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(

1
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(16.5)

is no longer a linear statistic. One can obtain a full spectrum of these characteristic lengths for

different k values at each q. However, the information in this metric becomes redundant once

the characteristic length reaches the attractor size (similar to the largest Lyapunov exponent, or a

correlation integral). These metrics have applications in determining the appropriate delay times

from time series and can also provide information about nonlinear correlations in the data.

https://en.wikipedia.org/wiki/Minkowski_distance
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16.1.3 Characteristic Distance and Position

Let f : X → R be a measurable function, which is the Euclidean distance between a point x ∈ X ⊂

Rm and some fixed point y ∈ Rm,

f(x) = ‖x− y‖2 . (16.6)

Then a scalar characteristic distance D(y) can be defined as a limit

D(y) = lim
n→∞

1

n

n−14

i=0

f(T i(x)) . (16.7)

By the Birkhoff Ergodic Theorem, the characteristic distance is an invariant measure on an

attractor. It can be seen as an average distance from an arbitrary fixed point in the phase space to

an attractor.

There is nothing particularly special about this characteristic distance metric other than it is easy

to define and estimate. Other similar metrics can also be defined and may be more appropriate in

different applications. For example, we will also define and use vector-valued characteristic position

as

P(y) = lim
n→∞

1

n

n−14

i=0

fp(T i(x)) , (16.8)

where again y ∈ Rm, and fp : X → Rm is defined as

fp(x) =
x− y

‖x− y‖2
. (16.9)

16.2 Reconstructing Slowly Drifting Variables

We consider a coupled dynamical system where a slow-time state variable causes drifts in the pa-

rameters of a fast-time subsystem:

ẋ = f(x,µ(φ), t), φ̇ = εg(φ, t), (16.10)

where x ∈ X ⊂ Rn is a fast-time dynamic variable, φ ∈ P ⊂ Rm is a hidden slow-time dynamic

variable, which alters the parameter vector µ ∈ Rp. t ∈ T ⊂ R is time, overdots denote time

differentiation, 0 < ε ≪ 1 is a small rate constant defining the time scale separation. This formulation

is relevant to tracking and identifying damage processes as discussed in [20]. It is assumed that the

variable φ changes slowly. Thus, φ is considered as approximately constant for a fast-time data set

collected over an intermediate time interval.

A general solution to the fast subsystem of Eq. (16.10) can be written as x = X(t,x0,φ), where

x0 is the initial condition. Hence, the continuous form of the characteristic distance for a fixed point

y can be expressed as

D(y) = lim
T→∞

1

T

+ T

0

‖y −X(t,x0,φ)‖2 dt . (16.11)
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This limit is approximated by the integral

D(y) ≈ 1

Tn

+ Tn

0

‖y −X(t,x0,φ)‖2 dt , (16.12)

where Tn is a large number. By the Mean Value Theorem for integrals, there is a ti ∈ [0, Tn] such

that

1

Tn

Tn+

0

‖y −X(t,x0,φ)‖2 dt = ‖y −X(ti,x0,φ)‖2 . (16.13)

Therefore, an estimated value of D(y) is a direct function of φ.1 Because of bifurcations, the position

of the attractor may change dramatically, therefore the characteristic distance D(y) is not expected

to be a continuous function of φ. However, the estimated characteristic distances may still provide

valuable information about the parameter drifts in the system. In what follows, D(y) for different

points y will be used to reconstruct slow state variable φ.

It is assumed that scalar time series measured from a fast-time subsystem are recorded into m

consecutive data sets. Each of the ith data set (i = 1, . . . ,m) is recorded over the intermediate time

interval over which the variations in the slow variable are assumed negligible φ ≈ φi = 〈φ〉i, where

〈φ〉i is the average value of φ within the ith data set. However, φi itself changes gradually from one

data set to another.

The characteristic distances are calculated for each data set and are assembled together in a

feature vector

Yi = [D(φi,y1);D(φi,y2); . . . ;D(φi,yn)] , (16.14)

where {yi}ni=1 are randomly chosen fixed points in the phase space. These feature vectors describe

the gradual evolution of slow state variable φ and are concatenated in time sequence into tracking

matrix Y ∈ Rm×n in time sequence. This matrix Y embeds the changes in the parameters of the

fast-time subsystem.

Previously, smooth orthogonal decomposition SOD [19, 21] has been used for identifying smooth

trends in multivariate time series. Here, we also use SOD to extract deterministic slow trends from

Y. SOD analysis is performed using generalized singular value decomposition of matrix Y and its

time derivative DY, where D is a discrete differential operator. These matrices are decomposed as:

Y = UCXT and DY = VSXT , (16.15)

where U and V are unitary matrices, C and S are diagonal matrices, and X is a square matrix.

The smooth orthogonal coordinates (SOCs) are given by the columns of UC, smooth projective

modes (SPMs) are provided by columns of X−T , and smooth orthogonal values (SOVs) are σ =

diag(CTC)./diag(STS) (‘./’ indicates term by term division). The greater the magnitude of the

1The same derivation can also be repeated for the characteristic position metric to show that P(y) is also a direct

function of φ.
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Figure 16.1: Bifurcation diagram for Rössler equation

SOV the smoother in time is its corresponding SOC. Since the slow-time state variable is a product

of a smooth deterministic process, we hypothesize that this variable is embedded in the smoothest

SOCs.

16.3 Numerical Examples

In the following, the time series derived from a Rössler and a Duffing equations are used to validate

our slow variable tracking algorithm. In the simulations, a slow-time variable is introduced by slowly

varying a parameter in the equations.

Rössler Equation is given by

ẋ = −y − z ,

ẏ = x+ ay , (16.16)

ż = b+ z(x− c) .

In our simulations, b is fixed at 0.6, c is fixed at 6.0, and a is varied sinusoidally from 0.1 to 0.4.

Here, a is considered a slow-time variable. For each particular value of a, 100, 000 steady state

trajectory points are generated with time step ts = 0.06. The bifurcation diagram is shown in

Fig. 16.1. Filled-in regions of the plot indicate chaotic regions.

Then characteristic distances from 50 arbitrarily chosen fixed points are estimated. Fig. 16.2

shows the plot of characteristic distance as a function of the bifurcation parameter a. Finally, the

786 × 50 tracking matrix Y is assembled. The tracking results after applying SOD to this matrix

are shown in Fig. 16.3. Fig. 16.3(a) shows the first SOV is much larger than the rest, which is

consistent with the fact that there is only one slowly varying parameter in the system. The SOC
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Figure 16.2: The characteristic distances versus a for three randomly chosen fixed points in the

phase space

corresponding to the largest SOV is depicted in Fig. 16.3(c). To indicate the strength of the linear

relationship between the real slow state variable, as shown in Fig. 16.3(b), and the first SOC, the

correlation coefficient r is calculated. r ≈ 1 shows that there is a strong linear relationship between

the two variables as seen in Fig. 16.3(d).
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Figure 16.3: First ten SOVs (a), parameter a versus time (b), dominant SOC1 corresponding to the

largest SOV (c), plot of SOC1 versus parameter a (red dots) with least square linear fit (black line)

(d). The correlation coefficient between a and SOC1 is r = 0.9999.

Duffing Equation In the previous example, the real phase space of Rössler equation is used to

calculate the characteristic distances. In this example, only a time series x from a two-well Duffing

equation is considered:

ẍ+ γẋ+ αx+ βx3 = f cosωt (16.17)

where the system’s parameters and forcing frequency are fixed to γ = .25, α = −1, β = 1, and

ω = 1. f is used as a slowly drifting variable or a bifurcation parameter. The bifurcation diagram
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is shown in the Fig. 16.4. We consider the case when f is changed slowly and linearly from 0.35 to

0.4. In this range of f , the response of the system is in the chaotic region.

Figure 16.4: Bifurcation diagram for Duffing oscillator

In the calculations, the first 50 cycles of data are dropped, and 100,000 steady state points are

recorded for each forcing amplitude using a sampling time t = π/36. The phase space is then

reconstructed using a time delay τ = 53 and embedding dimension d = 4 [3, 54]. Fig. 16.5 shows

the characteristic distances to the reconstructed phase space from three randomly chosen points.

400 randomly chosen points in the phase space are used to assemble 1001× 400 tracking matrix

Y. Then the SOD-based tracking result is shown in Fig. 16.6. Again, we obtain a linear relation-

ship between the smoothest SOC1 and the real slowly drifting variable f as seen in Fig. 16.6(d).

Please note that these tracking results are still possible even when each component of matrix Y is

discontinuous as shown in Figs. 16.2 and 16.5.

16.4 Experimental Data Example

Data generated from a modified version [24] of the well known two-well magneto-elastic oscillator [71]

is used to illustrate the slow-parameter tracking. Description of this experiment is given in Ref. [21].

The basic schematic of the experiment is shown in Fig. 16.7. In this experiment, a couple of

electromagnets powered by a computer-controlled power supply are used to cause perturbations in

the magnetic potential at the free end of a vibrating cantilever beam. The vibration of the beam

is measured by two laser vibrometers (CH1, CH2) mounted near the clamped end of the stiffened

beam. The position of the beam is calculated by the difference between CH1 and CH2. The beam is

excited by a 10 Hz harmonic load, and its amplitude is set so the beam undergoes nominally chaotic

cross-well oscillations for fully loaded (10V) electromagnets. Vibration data is low-pass filtered with
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Figure 16.5: Characteristic distances from the three randomly chosen points in the phase space of

the Duffing oscillator

50 Hz cut off frequency and collected at a 160 Hz sampling frequency.

The voltages supplied to the electromagnets (v1(t) and v2(t)) are altered harmonically and in-

dependently as shown in Fig. 16.9(b). These voltages play a role of slow state variables in the

system.

The experiment lasts about 12 hours and 6.6 million data points are recorded [21]. The 5-

dimensional fast-time phase space is reconstructed using a delay time of six time samples (ts = 1/160
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Figure 16.6: First ten SOVs (a), parameter f versus time (b), dominant SOC1 corresponding to the

largest SOV (c), plot of SOC1 versus parameter f (red dots) with least square linear fit (black line)

(d). The correlation coefficient between f and SOC1 is r = 0.9991.
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Figure 16.7: Schematic of the experimental apparatus

s). The time series are split into 800 data records, and each record contains 213 points. Here, the

characteristic distances are calculated from 300 fixed points randomly chosen in the reconstructed

phase space. Then the 800×300 tracking matrix Y is assembled. Three randomly chosen columns of

the tracking matrix are shown in Fig. 16.8. The SOD-based tracking result is shown in Fig. 16.9(a)

and (c). The two largest SOVs are several orders-of-magnitude larger than the rest, which is con-

sistent with two-dimensional slowly varying variable in the system. The SOCs corresponding to

these two largest SOVs are depicted in Fig. 16.9(c). The phase portraits of the actual power supply

terminal voltages and two smoothest SOCs are shown in Fig. 16.10.

The scaled SOCs are compared with v1+v2 and v1−v2 as shown in Fig. 16.9(d). The correlation

coefficients between v1+v2, v1−v2 and SOC1, SOC2 are 0.9951 and 0.9834, respectively. The result

confirms that the slow-time state variable is embedded (or reconstructed) in the smoothest SOCs as

indicated by topological similarity of phase portraits in Fig. 16.10.

16.5 Noise Effects

To illustrate the robustness of characteristic distances to noise, normally distributed random noise

was added to Rössler’s attractor at 1/5, 3/5 and 5/5 RMS amplitude ratios, which corresponds

to 20%, 60% and 100% noise in the signal. Fig. 16.11 shows that the characteristic distances

for a particular fixed point drift under the presence of noise. However, the shape of the plot of

characteristic distance versus bifurcation parameter a does not change noticeably. The tracking

results of slow state variable are shown in Fig. 16.12. Even for 100% noise, our method still recovers

the real slow state variable.
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Figure 16.8: Three randomly chosen column of the tracking matrix

16.6 Discussion

The application of the SOD was warranted by the assumption that feature vectors were in smooth

functional relationship with the slow-time state variables. In our simulation examples, the systems

exhibited complicated bifurcations while one of the parameters was varied slowly. Therefore, indi-

vidually, the estimated characteristic distances were not smooth function of the drifting parameters.

However, when we combined the characteristic distances from different fixed points and applied SOD

to the tracking matrix, we recovered the corresponding smooth deterministic trends, which can be

used for one-to-one tracking even in noisy environments.
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Figure 16.9: Plot of ten largest SOVs (a); actual electromagnet supply voltages v1 (—) & v2 (- -)

versus time plot (b); plot of the first (—) and second (- -) SOCs corresponding to the two largest

SOVs (c); plots of v1 + v2 (—), v1 − v2 (- -), and the scaled first two SOCs (.) (d).
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Figure 16.10: Phase portrait of the power supply terminal voltages (a) and two smoothest SOCs (b)

We also studied the quality of tracking results versus the number of fixed points and their lo-

cations. In numerical simulation, 50 fixed points were sufficient. However, in the experiment, we

need 300 feature vectors to obtain robust results. To reduce the required number of fixed points and

complexity of the tracking matrix, instead of using characteristic distances, we also used character-

istic positions as defined in Eq. (16.9). For example, in the Rössler simulation, instead of using 50

fixed points, we used characteristic positions of only 20 points for tracking (see Fig. 16.13(a) for the

tracking result). For experimental data, characteristic positions of 60 points are enough to obtain

reliable result in comparison with characteristic distances of 300 points as shown in Fig. 16.13(b).
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Figure 16.11: Characteristic distances of one fixed point.
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Figure 16.12: Tracking results. (a) no noise; (b) 20% noise; (c) 60% noise; (d) 100% noise.

16.7 Summary

Birkhoff Ergodic theorem for measure preserving transformation was used to develop a new class of

nonlinear metrics for dynamical systems. In particular, a characteristic distance metric was defined

by the average distance from a fixed point in a phase space to all points on the attractor, and the

characteristic position was given by the normalized average location of the attractor with respect to

a fixed point. These metrics were shown to be sensitive to small parameter changes in a system, and

were used to track and identify these changes in conjunction with smooth orthogonal decomposition.

The main advantage of these metrics was that they were simple and easy to calculate, while also being

robust to noise. These properties make them suitable for online, real-time applications. Numerical

simulations, synthetic data, and experiments were used to show how the slowly evolving parameters

can be continuously tracked and identified using the considered metrics.
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Figure 16.13: (a). Tracking a parameter in Rössler equation; (b). Phase portrait of two smoothest

SOCs in the experimental data.
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Appendix A

MATLAB Functions

A.1 Average Mutual Information Algorithm

function [Ixx] = ami( x, n, m, nb )

% AMI calculates average mutual information for the input scalar time

% series. if no output is requested it plots the AMI curve.

%

% CALL: Ixx = ami( x, n, m, nb );

%

% x - input scalar time series

% n - number of points to use in the calculation

% m - maximum delay parameter to consider

% nb - number of bins to use in calculation (default=16)

% p - length of continuously sampled data

% Ixx - average mutual information in bits

%

% Copyright and Revised by David Chelidze 2-11-2009 & 12/12/17

% chelidze@uri.edu

if nargin < 3

error(’Requires at least three input arguments!’)

elseif nargin == 3

nb = 16; % set the number of bins to default

end

199
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% check data and make a row vector of scalar data

if min(size(x)) ~= 1

error(’first input should be a vector of scalar data points.’)

else % normalize the input data

x = (x(:) - mean(x))/std(x);

end

% get the matrix of delayed versions of x

nmax = size(x,1) - m; % <- thats the maximum size possible!!!

% get the maximum possible matrix size!!!

if (n == 0) || (n > nmax)

warning([’Specified data size is zero or exceeds maximum possible’...

’ value!\n Continuing using maximum possible size!\n’])

n = nmax;

end

y = zeros(n,m+1); % initialize array for embedding full subsets

for i = 0:m

y(:,i+1) = x(1+i:n+i);

end

% obtain Px

x1 = y(:,1);

Px = hist(x1, nb); Px = Px/n;

[~, ~, NPx] = find(Px);

% initialize Ixx

Ixx = zeros(m+1,1);

for ii = 1:m+1 % calculate the average mutual information

x2 = y(:,ii);

[Pxy, ~, ~] = joint_prob(x1, x2, nb);

[~, ~, NPxy] = find(Pxy);

Ixx(ii) = sum(NPxy.*log2(NPxy)) - 2*sum(NPx.*log2(NPx));
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end

if nargout == 0

plot(0:m,Ixx,’o-’,’markerfacecolor’,’w’); grid on

xlabel(’Delay (sampling time)’);

ylabel(’Average Mutual Information (bits)’);

end

%%-------------------------------------------------------------------------

function [Pxy, xx, yy] = joint_prob( x, y, nbx, nby )

%

% Determines the joint Probability P(x,y) based on

% distributed sets of scalar variables x and y

%

% call [Pxy, xx, yy] = joint_prob( x, y, nbx, nby );

% Inputs:

% x & y - vectors (time series)

% nbx - number of bins for x

% nby - number of bins for y

% Output: Pxy - (nbx,nby) matrix

% It plots results if no output is requested

%

% Copyright and Revised by David Chelidze 7-31-2000

% >>>> Needs cond_prob.m <<<<

if (nargin == 0 || nargin == 1)

error(’Requires at least two input arguments’)

end

if length(x) ~= length(y)

error(’Both arrays should be the same size’)

end

if nargin == 2

nbx =16; nby = 16;

elseif nargin == 3

nby = nbx;

end
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% put in column form

y = y(:); x = x(:);

[Px_y,xx,yy] = cond_prob(x,y,nbx,nby);

Py = histc(y,yy); Py = Py(:)/length(y); Py = Py(1:end-1);

Pxy = Px_y.*(ones(nbx,1)*Py’);

end

%%-------------------------------------------------------------------------

function [Px_y, xx, yy] = cond_prob( x, y, nbx, nby )

% COND_PROB Determines the conditional Probability P(x|y) based on

% distributed sets of scalar variables x and y

%

% CALL: [Px_y, xx, yy] = cond_prob(x, y, nbx, nby);

% INPUTS:

% x & y - vectors (scalar time series)

% nbx - number of bins for x

% nby - number of bins for y

% Output: Px_y - (nbx,nby) matrix

% It plots results if no output is requested

%

% Copyright and Revised by David Chelidze 7-31-2000

if (nargin == 0) || (nargin == 1)

error(’Requires at least two input arguments’)

end

if length(x) ~= length(y) % this can be changed for other applications

error(’Both arrays should be the same size’)

end

if nargin == 2

nbx = 16; nby = 16;

elseif nargin == 3

nby = nbx;

end

% initialize the conditional probability density matrix

Px_y = zeros(nbx, nby);

% put inputs into column form
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y = y(:); x = x(:);

% get bin sizes

minx = min(x); maxx = max(x);

binx = (maxx - minx)/nbx;

miny = min(y); maxy = max(y);

biny = (maxy - miny)/nby;

% get bin boundaries (edges)

xx = minx + binx*(0:nbx);

xx(1) = -inf; xx(end) = inf;

yy = miny + biny*(0:nby);

yy(1) = -inf; yy(end) = inf;

for j=1:nby % calculate!

iy = find((y > yy(j)) & (y <= yy(j+1))); % # points in bin # j

if ~isempty(iy)

Hx_y = histc(x(iy), xx);

Hx_y = Hx_y(:);

Px_y(:,j) = Hx_y(1:end-1)/length(iy);

end

end

end

end

A.2 Correlation Dimension Algorithm

function [r, c] = c2r( x, d, m, n, r, p, q )

% C2R function calculates the correlation sum from a scalar time

% series after reconstructing its phase space using delay coordinates

% It uses Euclidean distances!

%

% CALL: [r, c] = c2r( x, d, m, n, r, p, q );

% If no output is requested it will just plot the results

%

% INPUT:

% x -- scalar time series

% d -- embedding dimension

% m -- delay time
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% n -- number of points to use in the reconstructed phase space

% r -- number of bins (ball length-scales) to use if it’s just a number,

% or the array of ball sizes (bins) to consider if it’s a vector

% p -- (optional) supply 0 to NOT remove temporal correlations

% or number of points to remove. The default is p = d*m.

% NOTE: only need to remove these correlations for the continuous

% flow data!

% q -- (optional) only supply if instead of removing temporal

% correlations you wish to randomly populate attractor with q sample

% points (thus, this will ignore p input if provided, & use max

% number of points possible in the phase space reconstruction)

%

% OUTPUT:

% r -- ln of ball sizes

% c -- ln of correlation sum

%

% copyright by David Chelidze 3/27/2002

% revised by DC 5/31/2002 & 6/12/2002 & 10/2/2002 & 10/30/2002

% & 11/04/2005 & 3/3/3009 & 11/4-21/2013 & 12/12/2013 & 10/20/17 & 12/12/17

if nargin < 5 % not enough input variables

error(’Error: Needs at least five input variables.’)

end

if min(size(x)) ~= 1

error(’Error: The first input should be a vector of scalars.’)

else % normalize the input time series

x = (x(:)’ - mean(x))/std(x); % make it zero mean and unit variance

end

nm = length(x) - (d-1)*m; % maximum number of reconstructed points possible

if isempty(n) % use max

n = nm;

elseif n > nm % use max possible and notify user too

fprintf([’WARNING: Max number of embedded vectors exceeded.\n’...

’ACTION: Continuing with max number of vectors possible.\n’])

n = nm;

end
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if nargin < 6 || isempty(p) % remove temporal correlations of this length

p = d*m; % still open for debate, may want to use different length

end

%% reconstruct the phase space to analyze interpoint distance distributions

if nargin == 7 && isempty(q) < 1 % randomly populate attractor w/ points

indx = randperm(n, q); % pick q random points from the reconstruction

n = q; % new number of phase space points to use

p = 0; % do not need to remove temporal correlations

else % use the whole phase space

indx = 1:n;

end

y = zeros(d,n); % initialize

for i = 0:d-1 % reconstructed phase space

y(i+1,:) = x(indx+i*m);

end

%% calculate the correlation sum

np = n - p;

if length(r) == 1 % determine the needed length scales or bins to use

c = zeros(1,r);

else % use the provided length scale or bins

r = r.^2;

c = zeros(size(r));

end

for i = 1:np-1 % for every point in the reconstructed phase space

indx = i+p+1:n; % index of points to calculate distance to

dist = 0; % initialize distances

for k = 1:d % calculate distances squared to all other points

dist = dist + (y(k, indx) - y(k, i)).^2;

end

if i == 1 && length(r) == 1 % find the suitable bins or length scales

r = exp( linspace( ...

log(min(dist)/np),log(max(dist) + min(dist) ), r) );

end

c = c + cumsum( histcounts(dist, [0, r]) ); % correlation sum
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end

c = log(2*c/np/(np-1)); % ln of correlation sum

r = log(r)/2; % ln of the corresponding ball sizes

if nargout == 0 % plot the results

figure

set(gcf,’PaperSize’,[10.5 3.5],’PaperPosition’, [-.75 -.25 12 4]);

subplot(121), plot(r,c,’-’,’linewidth’,1)

set(gca,’fontsize’,12)

grid on, pbaspect([1.618, 1, 1])

xlabel(’$\ln(\epsilon)$’,’Interpreter’,’Latex’,’FontSize’,14)

ylabel(’$\ln \hat C(\epsilon)$’,’Interpreter’,’Latex’,’FontSize’,14)

subplot(122), plot(r(1:end-1),diff(c)./diff(r),’.-’,’linewidth’,1)

set(gca,’fontsize’,12)

grid on, pbaspect([1.618, 1, 1])

xlabel(’$\ln(\epsilon)$’,’Interpreter’,’Latex’,’FontSize’,14)

ylabel([’$D_2 \approx \frac{\mathrm{d}\ln \hat C(\epsilon)}’,...

’{\mathrm{d}\ln(\epsilon)}$’],’Interpreter’,’Latex’,’FontSize’,14)

end

A.3 Pointwise Dimension Algorithm

function [lnD, lnN] = pwdim( x, m, d, k, N, w )

% PWDIM: estimates average pointwise dimension using fixed distance and

% fixed mass methods

% NOTE: York claims it is equivalent to information dimension,

% Moon claims it is like correlation dimension

%

% CALL [lnD, lnN] = pwdim( x, m, d, k, N, w );

%

% INPUT:

% x - scalar time series

% m - delay parameter (time delay for embedding)

% d - embedding dimensions to use (it can be an array!)

% k - number of distance partitions (for fixed distance) or points inside

% a ball (for fixed mass)
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% N - maximum number of averages to do (optional -- 2^12 is default)

% w - (optional) Theiler window to remove the correlations, by default

% not temporal correlations are removed. This does not seem to alter

% the results significantly, but considerably increase the

% computational time.

%

% OUTPUT: The first two columns are fixed distance and the second are fixed

% mass. If no output is requested, then it plots the results.

% lnN(:,1) - <ln(fraction of points inside the eps-ball)>

% lnD(:,1) - ln(eps)--i.e., log of the epsilon-ball

% lnN(:,2) - ln(n/N)--i.e., faction of points or mass

% lnD(:,2) - <ln(ball size containing n points)>

%

% copyright by David Chelidze, 1998-2013

% modified 10/26/17 by DC

%% Initialization and preprocessing

if nargin < 3

error(’Requires at least three input arguments!’)

else

x = x(:)’; % put ’em in correct form and get parameters

n = length(x)- m*(d-1); % <- that’s the maximum size possible!!!;

if nargin < 6 % do not remove temporal correlations

w = 0;

end

if nargin < 5 || N == 0 || isempty(N) % set the default

N = min(2^12, n);

else % use the provided or max possible points

N = min(N, n);

end

if nargin < 4 || k == 0 || isempty(k) % use the default # of NNs

k = 500;

end

end

lnN = zeros(N,k); % initialize the log of measure array

y = zeros(d, n); % initialize array for embedded vectors
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for i = 1:d % reconstruct the phase space

y(i,:) = x((1:n) + (i-1)*m);

end % embedding

%% create the kd-partition search for nearest distances

ns = createns(y’,’NSMethod’,’kdtree’,’Distance’,’euclidean’);

% search for the k points nearest to the test points (+ 2*w if removing

% temporal correlations)

np = k + 1 + 2*w; % total nearest neighbors to look up

[idx, dis] = knnsearch(ns,y(:,randperm(n,N))’,...

’Distance’,’euclidean’,’k’,np);

if w == 0 % do not remove temporarily correlated nearest neighbor distances

dis = dis(:,2:end); % only drop the first zero distance

else % remove temporal correlations

dis = cell2mat( cellfun( @removecorrs,mat2cell(dis,ones(N,1),np), ...

mat2cell(idx,ones(N,1),np),’UniformOutput’,false ) );

end

%% the fixed mass based estimates:

lnDm = mean(log(dis)); % average log of the eps-ball

% lnNm = log(1:k) - log(N); % measure inside the eps-ball or use:

lnNm = psi(1:k) - log(N); % Grassberger (1985) measure inside the ball

%% the fixed distance based estimates

dm = max(dis(:)); % maximum distance

edgs = [0 exp(linspace(lnDm(1), mean([lnDm(end) log(dm)]), k))];

for ii = 1:N

ln = log( cumsum(histcounts(dis(ii,:), edgs)) );

ln( ln==-Inf ) = 0; % if count is zero assign zero

lnN(ii,:) = ln;

end

lnN = [sum(lnN)./sum(lnN~=0) - log(N); lnNm]’;

lnD = [log(edgs(2:end)); lnDm]’;

%% plotting the results

if nargout == 0
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figure

set(gcf,’PaperSize’,[10.5 3.5],’PaperPosition’, [-.75 -.25 12 4]);

subplot(121)

set(gca,’fontsize’,12)

plot(lnD,lnN,’linewidth’,1), axis tight

ylabel(’$\langle \ln \hat \mu(\epsilon)\rangle,\; \ln \left(n/N\right)$’,...

’Interpreter’,’Latex’,’FontSize’,14)

xlabel(’$\ln(\epsilon),\; \langle \ln(\epsilon) \rangle$’,’Interpreter’,...

’Latex’,’FontSize’,14)

legend(’fixed distance’, ’fixed mass’,’location’,’southeast’)

grid on, pbaspect([1.618, 1, 1])

subplot(122)

plot(lnD(1:end-1,:),diff(lnD).\diff(lnN),’linewidth’,1)

set(gca,’fontsize’,12)

grid on, pbaspect([1.618, 1, 1])

xlabel(’$\ln(\epsilon),\; \langle \ln(\epsilon) \rangle$’,’Interpreter’,...

’Latex’,’FontSize’,14)

ylabel(’$\hat D_P, \bar D_P$’,’Interpreter’,’Latex’,’FontSize’,14)

legend(’fixed distance’, ’fixed mass’,’location’,’south’)

axis([min(lnD(1,2)) max(lnD(end,2)) 0 ...

ceil(max(max(diff(lnD).\diff(lnN))))])

end

%% this removes distances to temporally correlated nearest neighbors

function d = removecorrs(d, id)

d = d( abs(id - id(1)) > w );

d = d(1:k);

end

end

A.4 Projective Noise Reduction Algorithm

This algorithm should work on both flow and map generated data.

function [ xf ] = podfilt( x, l, m, d, q, f, u )

% PODFILT: Projective nonlinear noise reduction using SVD.
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% CALL:

% [ xf ] = podfilt( x, l, m, d, q, f, u );

% REQUIRED INPUT:

% x -- scalar time series (data) in a column or row form

% l -- number of points in a cloud of nearest neighbors or strand length

% m -- delay time for the phase space reconstruction (see ami.m)

% d -- embedding dimension (see fnns.m) (d < l)

% q -- local embedding dimension (q < d)

% OPTIONAL INPUT:

% f -- f = 1 (default) for cloud based or f = 0 strand based POD

% u -- u = 1 (default) do not adjust for curvature, and u = 0 adjust

% OUTPUT:

% xf -- filtered time series in matrix form

%

% This function uses proper orthogonal decomposition to filter noisy

% nonlinear time series. The input time series is used to reconstruct phase

% space using delay coordinate embedding (generating a multivariate time

% series). To avoid edge effects, the reconstruction is continued on both

% ends by finding the nearest neighbor (nn) to the end points in the

% reconstruction and following their trajectories. Point cloud based

% projective noise reduction is based on standard published procedure (see

% Kantz/Schreiber). For strand based projection, an l-length segment of

% this vector-valued time series is called a strand. Each strand is

% decomposed using SVD and only the first q dominant modes are used for

% noise reduction. The filtering is done considering all the corrections to

% each individual sample.

%

% copyright and written by David Chelidze 03/16/2012-04/06/2012, 11/16/17

% contact email: chelidze@uri.edu

%% input check and initialization

if nargin < 5

error(’Requires at least five input arguments!\n’)

elseif min(size(x)) ~= 1

error(’Error: data should be a vector of scalar data points.\n’)

elseif d <= q
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error(’make subspace dimension q smaller than embedding dimension d\n’)

else % normalize the input time series

x = x(:)’;

nx = m*(d-1); % shrinkage in reconstruction

if nargin < 6 || isempty(f) % do cloud based SOD

f = 0;

end

if nargin < 7 || isempty(u) % do not adjust for curvature

u = 0;

end

end

%% Embedding and Partitioning for the Nearest Neighbor Search

n = length(x); % original length of time series

nrp = n - nx; % number of reconstructed points

%% embedding and partitioning for nearest neighbor (nn) search

y = zeros(d, nrp); % initialize array for embedded vectors

for i = 1:d % reconstruct the phase space

y(i,:) = x( (1:nrp) + (i-1)*m );

end % embedding

tree = createns(y’,’NSMethod’,’kdtree’,’Distance’,’euclidean’);

R = eye(d,d); R(1,1) = 1000; R(d,d) = 1000; % weighting function

%% Padding (extending the reconstruction to deal with edge effects)

if f == 1 % Cloud Based Projection

np = 1 + nx; % padding needed for the cloud based scheme

elseif l <= d

error(’Error: make string length (l) larger (l > d!)’)

else

l = floor(l/2) + 1; % strand middle point

sl = 2*l - 1; % strand length

np = l + nx; % padding needed for the strand based scheme

end

[pqi, ~] = knnsearch(tree,y(:,1)’,’k’,np); % find analogue to the first pnt

pqi = pqi( pqi > np ); % choose the acceptable nns

ya = y(:, pqi(1) - np : pqi(1) - 1); % padding from the left

[pqi, ~] = knnsearch(tree,y(:,end)’,’k’,np); % find analogue to the last p

pqi = pqi( pqi < nrp - np ); % choose the acceptable nns
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yb = y(:, pqi(1) + 1 : pqi(1) + np); % padding from the right

yp = [ ya y yb ]; % padded phase space

npr = nrp + 2*np; % new size of the phase space

%% Projecting the Noise Out

Yh = zeros(d, npr); % stores adjusted phase space points

if f == 1 % do nearest neighbor projection

b = zeros(d, npr); % stores the bias

[pqi, ~] = knnsearch(tree,yp’,’Distance’,’euclidean’,’k’,l);

for k = 1:npr % for each reconstructed point

Y = y(:, pqi(k,:)); % the nearest neighbors

b(:, k) = mean(Y, 2); % bias mean vector (crude mean filter)

[U, S, V] = svd( ( Y - b(:,k)*ones(1,l) )’*R, 0 ); % POD

C = V(:,1:q)*S(1:q,1:q)*U(:,1:q)’; % projection

Yh(:,k) = R\C(:,1) + b(:,k); % adjustment

end

if u == 0

Yh = Yh(:,2:npr-1) + b(:,2:end-1) - (b(:,1:end-2) + b(:,3:end))/2;

else

Yh = Yh(:,2:npr-1);

end

else % do the strand projection

b = zeros(d,npr-sl+1); % stores bias

W = [0:l-1, l-2:-1:0]; % use tent weighting for adjusting neighbors

W = diag(W/sum(W)); % normalize

for k = 1:npr-sl+1 % for each reconstructed point

Y = yp(:,k+(0:sl-1)); % get the corresponding strand

b(:,k) = mean(Y,2); % bias mean vector (crude mean filter)

[U,S,V] = svd((Y-b(:,k)*ones(1,sl))’*R,0); % POD

C = V(:,1:q)*S(1:q,1:q)*U(:,1:q)’; % projection

Yh(:, k+(0:sl-1) ) = Yh(:, k+(0:sl-1) )...

+ ( R\C + b(:,k)*ones(1,sl) )*W; % adjustment with weight

end % filtered phase space, now adjust for curvature

if u == 0

Yh = Yh(:,l+1:npr-l) + b(:,2:end-1) - (b(:,1:end-2)+b(:,3:end))/2;

else

Yh = Yh(:,l+1:npr-l);
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end

end

%% Shifting coordinates so they align in columns

xf = zeros(d,n);

for k = 1:d

xf(k,:) = Yh(k,(m*(d-k)+1):end-m*(k-1));

end

xf = mean(xf, 1);

A.5 Smooth Projective Noise Reduction Algorithm

This algorithm is only intended to work on flow generated time series and will fail if applied to map

generated data.

function [ xf ] = sodfilt( x, l, m, d, q, w )

% SODFILTER: SOD based noise reduction in nonlinear time series.

% CALL:

% [ xf ] = sodfilt( x, l, m, d, q, w );

% REQUIRED INPUT:

% x -- scalar time series (data) in a column or row form

% l -- number of points in each strand (use odd number, or it will add 1)

% m -- delay time for the phase space reconstruction (see ami.m/cds.m)

% d -- embedding dimension (see fnns.m) (d < l!)

% q -- local embedding dimension (q < d!!)

% OPTIONAL INPUT PARAMETERS:

% w -- weighting used in filtering (0--comb def, 1--tent, 2--exponential)

% OUTPUT:

% xf -- filtered time series

%

% This function uses smooth orthogonal decomposition to filter noisy

% nonlinear time series. The input time series x is used to reconstruct

% phase space via delay coordinate embedding (generating a multivariate

% time series). To avoid edge effects, the reconstruction is continued on

% both ends by finding the nearest neighbor to the end points in the

% reconstruction and following their trajectories. An l-length segment of

% this vector-valued time series is called a strand. Each strand is

% decomposed using SOD and only the first q smooth modes are used for noise
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% reduction. The filtering is done considering all the corrections to each

% individual sample.

%

% copyright and written by David Chelidze 03/16/2012 04/06/2012 11/16/17

% contact email: chelidze@uri.edu

%% input check and initialization

if nargin < 5

error(’Requires at least five input arguments!\n’)

elseif min(size(x)) ~= 1

error(’Error: data should be a vector of scalar data points.\n’)

else % normalize the input time series

x = x(:)’;

nx = m*(d-1); % shrinkage in reconstruction

n = length(x)- nx; % <- the maximum size possible!

if nargin < 6

w = 0;

end

end

y = zeros(d, n); % initialize array for embedded vectors

%% check if input variables are feasible

if l <= d || isempty(l)

error(’make string length l larger than the embedding dimension d\n’)

end

if d <= q

error(’make subspace dimension q smaller than embedding dimension d\n’)

end

l = floor(l/2); % distance from first point to mid-point

sl = 2*l + 1; % strand length

%% embedding and partitioning for nearest neighbor (nn) search

for i = 1:d % reconstruct the phase space

y(i,:) = x((1:n) + (i-1)*m);

end % embedding

tree = createns(y’,’NSMethod’,’kdtree’,’Distance’,’euclidean’);

%% padding (extending edges for filtering and shrinkage mitigation)

np = l + nx; % padding required to deal with edge effects
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[pqi, ~] = knnsearch(tree,y(:,1)’,’Distance’,’euclidean’,’k’,np);

pqi = pqi( pqi > np ); % find suitable nearest neighbor

ya = y(:,pqi(1)-np:pqi(1)-1); % pad the left side

[pqi, ~] = knnsearch(tree,y(:,end)’,’Distance’,’euclidean’,’k’,np);

pqi = pqi( pqi < n - np ); % find suitable neighbor

yb = y(:,pqi(1)+1:pqi(1)+np); % pad the right side

y = [ ya y yb ]; % padded phase space

npr = n+2*np; % new number of padded reconstructed points

%% weighting function for filtering

if w == 1 % use tent weighting function W (good results)

W = [0:l, l-1:-1:0];

W = diag(W/sum(W));

elseif w == 2 % use exponential weighting function W (try if you want)

W = exp(-([l:-1:0, 1:l]));

W = diag(W/sum(W));

else % use comb weighting function W (no averaging)

W = diag([zeros(1,l) 1 zeros(1,l)]);

end

%% SOD filtering part

Yh = zeros(d, npr); % stores adjusted trajectory points

for k = 1:npr-sl+1 % each reconstructed point

Y = y(:,k:k+sl-1); % get the reference strand for smoothing

b = mean(Y, 2); % get the reference strand bias vector

Y = Y - b*ones(1,sl); % get the unbiased reference strand

[U,~,X,C,~] = gsvd( Y’, diff(Y’), 0 ); % SOD of the original strand

X = fliplr(X); % SOMs

U = fliplr(U); % SOCs

C = flipud(diag(C)); % SOVs

Ya = X(:,1:q)*diag(C(1:q))*U(:,1:q)’; % smooth projection

% project original strand to the smooth subspace and add back the bias

Yh(:, k:k+sl-1) = Yh(:, k:k+sl-1)...

+ ( Ya + b*ones(1,sl) )*W;

end

%% final averaging to get filtered time series

% trimming padded edges

Yh = Yh(:,l+1:npr-l);
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%% shifting coordinates so they align in columns

xf = zeros(d,n+nx);

for k = 1:d

xf(k,:) = Yh(k,m*(d-k)+1:end-m*(k-1));

end

xf = mean(xf, 1); % average for filtered time series

A.6 Largest Short-Time Lyapunov Exponent Algorithm

function [ ns, lnd ] = lyapunov( x, d, m, N, r, n, w )

% This function calculates metrics for the largest short-time Lyapunov

% exponent from a scalar time series after reconstructing its phase space

% using delay coordinates

%

% CALL: [ ns, lnd ] = lyapunov( x, d, m, N, r, n, w );

% If no output is requested it will just plot the results

%

% INPUT:

% x -- scalar time series

% d -- embedding dimension

% m -- delay parameter

% N -- number of initial (fiducial) points to use (should be large)

% r -- number of nearest neighbors to use (r = 1 should work)

% n -- maximum number of steps ahead to proceed

% w -- (optional) supply 0 to not remove temporal correlations

% or number of points to remove. The default is p=d*m.

% NOTE: only need to remove these correlations for flow data!!

%

% OUTPUT:

% ns -- the time steps used

% lnd -- ln of averaged distances

% If not output is requested it plots the results. rescale results using

% appropriate sampling time interval to get actual short-time maximal LE.

%

% (c) by David Chelidze 11/04/2005

% modified by DC on 11/16/2005, 4/11/2011, 11/26/2012, 11/11/2013,
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% 11/2/17, 12/11/17, 1/5/18

if nargin < 6

error(’Error: Needs at least six input variables!’)

end

if min(size(x)) ~= 1 % check data and make a raw vector of scalar data

error(’Error: First input should be a vector of scalar data points.’)

else % make row vector with zero mean and unit variance

x = (x(:)’ - mean(x))/std(x);

end

nm = length(x) - (d-1)*m; % max number of points possible in phase space

if nargin < 7 || isempty(w)

w = d*m; % remove temporal correlations of this length, open for debate

end

if N == 0 || isempty(N) % set the default

N = min(2^12, nm);

else % use the provided or max possible points

N = min(N, nm);

end

% reconstruct the phase space

y = zeros(d, nm);

for i = 0:d-1

y(i+1,:) = x( (1:nm) + i*m );

end

% expected nearest neighbor distance for noise in d-dimensions (used in w)

a = sqrt(2)*gamma((d+1)/2)*(sqrt(d)/nm)^(1/d)/gamma(d/2);

% define N random initial conditions for ‘fiducial’ points

indx = randperm(nm-n,N);

lnd = zeros(1,n); % initialize log of average distance array

% partition all suitable phase space points for fast searching

ns = createns(y(:,1:end-n)’,’NSMethod’,’kdtree’,’Distance’,’euclidean’);

% search for the k points nearest to the test points (+ 2*w if removing

% temporal correlations)
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np = r + 2*w + 1; % total nearest neighbors to look up

[idx, dis] = knnsearch(ns,y(:,indx)’,’Distance’,’euclidean’,’k’,np);

if w == 0 % do not remove temporarily correlated nearest neighbor distances

dis = dis(:,2:end); % only drop the first zero distance

idx = idx(:,2:end);

else % remove temporal correlations

[dis, idx] = cellfun(@removecorrs, mat2cell(dis,ones(N,1),np),...

mat2cell(idx,ones(N,1),np),’UniformOutput’,false);

dis = cell2mat(dis);

idx = cell2mat(idx);

end

for k = 1:N % for each fiducial trajectory

W = a ./ ( (dis(k,:)-dis(1,:)).^4 + a ); % weighting function

dist = zeros(1, n); % initialize local distances

for inn = 1:r % all nearest neighbor trajectories

% find the difference between nn and fiducial trajectories

tmp = y(:, idx(k,inn)+(1:n)) - y(:, indx(k)+(1:n));

% normalized distances between trajectories:

dist = dist + W(inn)*sqrt(sum(tmp.*tmp));

end

lnd = lnd + log(dist/sum(W)); % log of average distance

end % k loop

lnd = lnd/N; % normalize by the number of reference/fiducial points

ns = 1:n; % just how far we went

if nargout == 0 % plot the results

figure

set(gcf,’PaperSize’,[10.5 3.5],’PaperPosition’, [-.75 -.25 12 4]);

subplot(121)

set(gca,’fontsize’,12)

plot(ns,lnd,’linewidth’,1), axis tight

grid on, pbaspect([1.618, 1, 1])

xlabel(’$n$’,’Interpreter’,’Latex’,’FontSize’,14)

ylabel(’$\Delta_n = \langle \ln \delta_n - \ln \delta_0 \rangle$’,...

’Interpreter’,’Latex’,’FontSize’,14)
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subplot(122)

set(gca,’fontsize’,12)

plot(diff(ns).\diff(lnd),’linewidth’,1), axis tight

grid on, pbaspect([1.618, 1, 1])

xlabel(’$n$’,’Interpreter’,’Latex’,’FontSize’,14)

ylabel(’$\Delta t \hat\lambda_1=\mathrm{d}\Delta_n/\mathrm{d}n$’,...

’Interpreter’,’Latex’,’FontSize’,14)

end

%% this removes temporally correlated nearest neighbors

function [d, id] = removecorrs(d, id)

cond = abs(id - id(1)) > w;

d = d(cond);

id = id(cond);

d = d(1:r);

id = id(1:r);

end

end

A.7 Sample MATLAB Function for Local Linear Model Pre-

diction

function yp = loclin( ym, yq, n, N, w )

% LOCLIN local linear modeling for prediction

%

% INPUT:

% ym -- reconstructed phase space points (trajectory) used for modeling

% should be d times M, where M is the number of points

% yq -- initial point to start the prediction from

% should be d times 1

% n -- number of nearest neighbors to use for prediction

% N -- how far ahead to do the prediction (number of time steps)

% w -- optional, to use weighting w = 1, otherwise use no weighting

% OUTPUT:

% yp -- predicted phase space trajectory starting from yq point

%

% EXAMPLE:
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% x = x(:)’; % experimental time series or generated from some model

% np = size(x,2) - (d-1)*m; % maximum number of reconstructed points

% y = zeros(d,np); % reconstructed phase space trajectory

% for k = 1:d

% y(k,:) = x((1:np) + (k-1)*m);

% end

% % use half points for modeling and other half for testing:

% yp = loclin( y(:,1:np/2), y(:,np/2 + 10), 8, 1000 );

% plot(yp(1,:)), hold on, plot(y(1,n/2+10:n/2+1000))

%

% written and copyrighted by David Chelidze on 12/4/17

[d, nm] = size(ym);

ns = createns(ym(:,1:end-1)’,’NSMethod’,’kdtree’,’Distance’,’euclidean’);

yp = [yq zeros(d,N)];

if nargin < 5 || w ~= 1 % use no weighting

w = 0;

elseif w == 1 % expected nearest neighbor distance for noise in d-dims:

a = sqrt(2)*gamma((d+1)/2)*(sqrt(d)/nm)^(1/d)/gamma(d/2);

end

for k = 1:N

[indx, dis] = knnsearch(ns,yq’,’Distance’,’euclidean’,’k’,n);

Yn = [ym(:,indx); ones(1,n)];

Ynp1 = ym(:,indx+1);

if w == 1 % use weighting

W = diag(a ./ ( dis.^4 + a )); % weighting fun (can make your own)

yp(:,k+1) = ((Ynp1*W*Yn’)/(Yn*W*Yn’))*[yq; 1];

else

yp(:,k+1) = ((Ynp1*Yn’)/(Yn*Yn’))*[yq; 1];

end

yq = yp(:,k+1);

end
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A.8 Iteratively Refined Surrogates

function [rb, sb] = irsurr(s, n)

% IRSURR generates the iteratively refined surrogates of the original time

% series.

%

% USE: >> [rb, sb] = irsurr(s, n);

%

% INPUT:

% x -- original scalar time series

% n -- number of iterations to do

%

% OUTPUT:

% rb -- surrogates that exactly match in histogram (PDF)

% sb -- surrogates that exactly match in FFT magnitudes (PSD)

%

% Written by David Chelidze on 7/12/18 according to the paper:

%

% Schreiber, T., Schmitz, A., 2000. Surrogate time series.

% Physica D 142 (3-4), 346-382.

s = s(:); % make a column vector

N = size(s,1); % get the length of the time series

c = sort(s); % sort and store the magnitudes in ascending order

S = abs( fft(s) ); % store the FFT magnitudes

% initialize the iterations by phase randomizing the original signal

rb = real(ifft(fft(s).*exp(1i*2*pi*rand(N,1))));

for k = 1:n

sb = real(ifft( S.*exp(1i*angle(fft(rb))) )); % first match the PSD

[~, indx] = sort(sb); % now match the PDF

rb(indx) = c; % by substituting the original magnitudes

end
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