
  

 
Figure 1.  Conventional disc electrode (A) and tripolar concentric 

ring electrode (B). 

  

Abstract— Conventional electroencephalography with disc 
electrodes has major drawbacks including poor spatial 
resolution, selectivity and low signal-to-noise ratio that are 
critically limiting its use. Concentric ring electrodes are a 
promising alternative with potential to improve all of the 
aforementioned aspects significantly. In our previous work, the 
tripolar concentric ring electrode was successfully used in a 
wide range of applications demonstrating its superiority to 
conventional disc electrode, in particular, in accuracy of 
Laplacian estimation. This paper takes the first fundamental 
step toward further improving the Laplacian estimation of the 
novel multipolar concentric ring electrodes by proposing a 
general approach to estimation of the Laplacian for an (n + 1)-
polar electrode with n rings using the (4n + 1)-point method for 
n ≥ 2 that allows cancellation of all the truncation terms up to 
the order of 2n. Examples of using the proposed approach to 
estimate the Laplacian for the cases of tripolar and, for the first 
time, quadripolar concentric ring electrode are presented. 

I. INTRODUCTION 

Electroencephalography (EEG) is an essential tool for 
brain and behavioral research and is used extensively in 
neuroscience, cognitive science, cognitive psychology, and 
psychophysiology. EEG is also one of the mainstays of 
hospital diagnostic procedures and pre-surgical planning. 
Despite scalp EEG’s many advantages end users struggle 
with its poor spatial resolution, selectivity and low signal-to-
noise ratio, which are EEG’s biggest drawbacks and major 
hindrances in its effectiveness critically limiting the research 
discovery and diagnosis [1]-[3].  

EEG’s poor spatial resolution is primarily due to (1) the 
blurring effects of the volume conductor with disc electrodes; 
and (2) EEG signals having reference electrode problems as 
idealized references are not available with EEG [2]. 
Interference on the reference electrode contaminates all other 
electrode signals [2]. The application of the surface Laplacian 
(the second spatial derivative of the potentials on the body 
surface) to EEG has been shown to alleviate the blurring 
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effects enhancing the spatial resolution and selectivity [4]-
[6], and reduce the reference problem.   

While several methods were proposed for estimation of 
the surface Laplacian through interpolation of potentials on a 
surface and then estimating the Laplacian from an array of 
disc electrodes [5]-[9] concentric ring electrodes (CRE) have 
shown more promise. The CREs can resolve the reference 
electrode problems since they act like closely spaced bipolar 
recordings [2]. CREs are symmetrical alleviating electrode 
orientation problems [10]. They also act as spatial filters 
reducing the low spatial frequencies and increasing the 
spatial selectivity [10], [11]. Finally, even bipolar CRE, 
consisting of just two elements including a single ring and the 
central disc, improve the radial attenuation of the 
conventional disc electrode from 1/r3 to 1/r4 with higher 
numbers of poles having the potential to enhance radial 
attenuation even further [12].  

Tripolar CREs (TCRE; the highest number of CRE poles 
currently used), consisting of three elements including the 
outer ring, the middle ring, and the central disc (Fig. 1, B), 
are distinctively different from conventional disc electrodes 
that have a single element (Fig. 1, A). TCREs have been 
shown to estimate the surface Laplacian directly through the 
nine-point method (NPM), an extension of the five-point 
method (FPM) used for bipolar CREs, and significantly 
better than other electrode systems including bipolar and 
quasi-bipolar CREs [13], [14]. Compared to EEG with 
conventional disc electrodes Laplacian via TCREs have been 
shown to have significantly better spatial selectivity 
(approximately 2.5 times higher), signal-to-noise ratio 
(approximately 3.7 times higher), and mutual information 
(approximately 12 times lower) [15]. TCREs also have very 
high common mode noise rejection providing automatic 
artifact attenuation, -100 dB one radius from the electrode 
[14]. Because of such unique capabilities TCREs have found 
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Figure 2.  Regular plane square grid with interpoint distance equal to 

r.

numerous applications in a wide range of areas including 
brain-computer interface [16], seizure onset detection [17], 
[18] seizure attenuation using transcranial focal stimulation 
applied via TCREs [19]-[22], etc. 

Taking a next fundamental step toward development of 
multipolar CREs, in this study the Laplacian is derived for a 
general case of (n + 1)-polar CRE with n rings using the (4n 
+ 1)-point method for n ≥ 2 and it is demonstrated how the 
accuracy of the Laplacian estimation increases with the 
increase of n due to elimination of higher order truncation 
terms. Furthermore, the Laplacian estimations for TCRE and 
quadripolar CRE (QCRE) are derived numerically using the 
proposed general case approach. 

II. PRELIMINARIES AND NOTATIONS 

A. Five-Point Method (Bipolar CRE) 
As shown in Fig. 2 v0 through vnr,4 are the potentials at 

points p0 through pnr,4, respectively. To simplify the narrative, 
v0 through vnr,4 may also signify points p0 through pnr,4.  v0, 
vr,1, vr,2, vr,3 and vr,4, with a spacing of r are applied in the 
FPM (a bipolar CRE configuration Laplacian estimation) 
following Huiskamp’s [23] calculation of the Laplacian. The 
Laplacian potentials at point p0 are calculated using Taylor 
expansion: 
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is the truncation error. Expression (1) can be generalized by 
taking the integral along the circle of radius r around p0 of the 
Taylor expansion. Defining x = rcos(θ) and y = rsin(θ) as in 

Huiskamp [23] we have: 
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of radius r and 0v  is the potential on the disc of the CRE. 

B. Nine-Point Method (TCRE) 
To derive the Laplacian for the TCRE using NPM we add 

another FPM applying the integral along a circle of radius 2r 
(v0, v2r,1, v2r,2, v2r,3 and v2r,4 on Fig. 2) around point p0. The 
following is obtained for the average potential on the ring of 
radius 2r and disc:  
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Next, we multiply (2) by 16 and subtract (3) canceling the 
fourth-order truncation term and resulting in the Laplacian 
estimation: 
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III. MAIN RESULTS 

A. General (4n + 1)-Point Method for (n + 1)-polar CRE 
with n Rings  
Generalizing (2) and (3) for a case of CRE with n rings (n 

≥ 2) we obtain a set of n FPM equations, one for each ring 
with radii ranging from r to nr (v0, vnr,1, vnr,2, vnr,3 and vnr,4 on 
Fig. 2) around point p0 for which we have: 

2 2

0 0
0

24 44
4

4
00

26 66
6

6
00

1 ( )( , )
2 4

( ) sin ( )cos ( ) ( )
4!

( ) sin ( )cos ( ) ( ) ...
6!

j j
j j

j

j j
j j

j

nrv nr d v v

nr vd
x y

nr vd
x y

π

π

π

θ θ
π

θ θ θ

θ θ θ

−
−

=

−
−

=

− = Δ

∂
+

∂ ∂

∂
+ +

∂ ∂

∫

∑∫

∑∫

(5) 

To estimate the Laplacian for this general case the n 
equations have to be combined in a way that cancels all the 
truncation terms up to the highest order that can be achieved 
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for n rings increasing the accuracy of the Laplacian 
estimation. In order to find such a combination we arrange 
the coefficients lk of the truncation terms with the general 

form 
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order k ranging in increments of 2 from 4 to some even 
positive integer m (m ≥ 4) and ring radius multiplier l ranging 
from 1 [equation (2)] to n [equation (5)] into the (m - 2)/2 by 
n matrix A as follows:  
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A matrix equation of the form:  

0Ax =                     (7) 

is equivalent to a homogeneous system of linear equations 
where 0  is the (m - 2)/2-dimensional zero vector and x  is 
the n-dimensional vector that allows the cancellation of all 
the truncation terms up to the order of m by setting the linear 
combination of n coefficients lk corresponding to all ring radii 
for each order k equal to 0. 

The existence of nontrivial solution ( 0x ≠ ) of equation 
(7) depends on the relationship between the number of rows 
(m - 2)/2 and the number of columns n of matrix A. It is 
known that for homogeneous systems nontrivial solutions 
exist only when the system is underdetermined, i.e. (m - 2)/2 
< n [24]. Moreover, if A is real as in our case, a real nontrivial 
solution exists. The largest number of rows the matrix A from 
(6) may have to stay underdetermined is n - 1, so in order to 
find the highest truncation term order m that can be cancelled 
with n rings CREs we solve (m - 2)/2 = n - 1 which yields m 
= 2n. Therefore, matrix A can be rewritten as an n - 1 by n 
matrix A' that is a function only of the number of the rings n: 
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 Equivalently to substituting A' for A into (7) it can be 
observed that the same nontrivial solutions are given by the 
null space (or kernel) of matrix A' [24]. 

B. Examples  
In this section (8) is used to numerically estimate the 

Laplacian for the cases of TCRE (2 rings) and QCRE (3 
rings).  

For the case of TCRE (n = 2) (8) becomes: 
4(1 2 )A′ =                  (9) 

One of the integer vectors of the null space of matrix A' 
from (9) is [16, -1] that was used to estimate the Laplacian 
for TCRE in (4) as well as in [13]-[22] and other works 
utilizing TCRE. 

For the case of QCRE (n = 3) (8) becomes: 
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One of the integer vectors of the null space of matrix A' 
from (10) is [270, -27, 2], so the Laplacian estimation that 
cancels the truncation terms in (5) up to the sixth order for 
QCRE can be written as follows: 
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It should be noted that null space vectors used for TCRE 
and QCRE Laplacian estimations in (4) and (11) respectively 
are not unique. From the properties of matrix multiplication it 
is known that for any vector x  that belongs to the null space 
of matrix A and a scalar c the scaled vector cx also belongs 
to the null space of the same matrix A since 
( ) ( )cA x c Ax= . Therefore, any scaled version of given 
null space vector would also be a null space vector. 

Estimation of the Laplacian for any other number of rings 
n ≥ 2 can be performed in the identical manner. 

IV. DISCUSSION 
In this study we propose the general approach to 

estimating the Laplacian for (n + 1)-polar CREs using the (4n 
+ 1)-point method for n ≥ 2. This approach allows cancelling 
all the truncation terms up to the order of 2n which is 
demonstrated to be the highest order achievable for a CRE 
with n rings. It should be noted that the accuracy of Laplacian 
estimation increases with the increase of n due to elimination 
of higher order truncation terms. The general approach is 
illustrated with two examples deriving the currently used 
Laplacian estimation for TCRE and, for the first time, 
introducing the Laplacian estimation for QCRE.   

The directions of future work are two-fold. First, for any 
n ≥ 2 the null space vectors of matrix A' in (8) can easily be 
calculated numerically through finding the column echelon 
form of the matrix using methods like Bareiss algorithm 
which for exactly given integer matrices such as A' in (8) 
have been shown to be more efficient than the standard 
Gaussian elimination [25]. However, deriving the analytic 
expression for the null space vectors of A’ as a function of n 
would be even more efficient in terms of its computation. 
Second, while the accuracy of Laplacian estimation increases 
with the increase of n, computer simulations need to be 
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performed to assess how significant this gain in accuracy is 
for practical applications. We plan to perform a comparison 
between Laplacian estimations for bipolar CRE, TCRE, 
QCRE and higher order multipolar CREs using both basic 
single dipole and advanced concentric sphere head models.  

V. CONCLUSION 
With TCREs gaining increased recognition in a wide 

range of applications due to their unique capabilities this 
study lays the groundwork for higher order multipolar CREs. 
We demonstrate that such higher order multipolar CREs have 
the potential to offer more accurate Laplacian estimation 
further suggesting the superiority of CREs as an alternative to 
conventional disc electrodes for applications not just limited 
to EEG but with potential for electrocardiography, 
electromyography, etc. 
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