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Abstract— The aim of this study is to evaluate a new method for 

seizure detection using the tripolar Laplacian electroence-

phalography signal (tEEG) recorded using a tripolar concentric 

ring electrode (TCRE) on the scalp surface of rats based on 

empirical mode decomposition (EMD) and time-frequency 

energy concentration. Data from 10 rats were examined with the 

proposed algorithm. After EMD decomposition, three oscillation 

components named intrinsic mode functions (IMFs) were 

selected.  An energy estimate of the TFR for the selected IMFs 

was calculated and used as a feature for automatic seizure 

detection of the tEEG signals. After classification the obtained 

results using the proposed method produced an accuracy of 

98.61%. This study developed the proposed algorithm to work 

with TCREs, and shows it to be effective to detect seizures from 

rat’s tEEG signals. 
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I. INTRODUCTION  

Epilepsy is a disorder characterized by an unexpected and 

repeated malfunction of the brain called “seizure”, which 

reflects the clinical signs of an excessive and hyper 

synchronous activity of neurons in the brain [1]. The 

electroencephalogram (EEG) measures the electrical activity 

of the brain using electrodes that are placed on the scalp. The 

EEG is an important resource in determining the presence or 

absence of neurological disorders like epileptic seizures. 

Seizures are manifested in the EEG as paroxysmal events 

characterized by stereotyped repetitive waveforms that evolve 

in amplitude and frequency before eventually decaying [6]. 

Therefore, it is possible to detect seizure occurrences from 

significant parameters and dynamical changes in the EEG of 

patients with epilepsy, such as transient signals called spikes, 

sharp waves, and spike-and-wave activity. 
Time-frequency representations (TFRs) of signals are 

techniques that map a one-dimensional signal of time into a 
two-dimensional function of time and frequency [8]. TFRs 
have been developed for a wide range of problems with signals 
that contain highly localized events such as bursts, spikes, and 
discontinuities, which typically occur in EEG signals during 
seizures. Different algorithms, some using TFRs, were applied 
for spike detection during epilepsy [14]. There are various 
forms of TFRs: the Wavelet transform, short time Fourier 
transform, Wigner distribution (WD), pseudo Wigner-Ville 

distribution (PWV), smoothed pseudo Wigner-Ville 
distribution (SPWV) etc., and each has advantages and 
limitations [7].  

One method used to separate an oscillation from the 

original signal is the empirical mode decomposition (EMD). 

EMD is a signal processing technique introduced by Huang et 

al. [4] for multi-component nonlinear and non-stationary 

signals. The EMD decomposes the signal and extracts its local 

oscillations, referred to as intrinsic mode functions (IMFs) [6]. 

These IMFs can be considered as new non-stationary bands 

extracted from the original signal. The spectral content of the 

IMF extracted at a given iteration is lower than that of the IMF 

extracted from the previous iteration, which permits analyzing 

the signal at different frequencies. The EMD technique has 

been used in the field of biomedical signal processing, 

especially for seizure detection in EEG signals [9, 10]. 

Analysis of scalp EEG is used for seizure detection. 

Recently, improvements have been applied to EEG recording 

techniques, making it more accurate by increasing the spatial 

resolution. One such improvement is the application of the 

surface Laplacian to the EEG [5, 6]. Previously, we have 

shown that EEG signals recorded using the tripolar concentric 

ring electrode (TCRE, Fig. 1) configuration (referred to as 

tEEG signals) has significantly better spatial selectivity, 

signal-to-noise ratio, and mutual information than 

conventional EEG from disc electrodes [5, 6]. The TCREs 

also exhibit strong attenuation of common mode artifacts [6]. 

These findings suggest that new tEEG may be useful for 

seizure detection or other neurological disorders analysis [9].  
In this paper, an alternative approach for tEEG seizure 

detection is proposed. The analysis method consists of three 
steps. In the first step, the tEEG Baseline and Seizure segments 
are adaptively decomposed into IMFs using the EMD 
algorithm [4]. In this paper, three IMFs were selected using an 
algorithm proposed by Flandrin et al [16] and used for further 
analysis. In the second step, the SPWV TFR [8] is computed 
for the three selected IMFs for each segment. Thirdly, the 
localized energy estimate from the TFR was computed. This 
energy varies for each segment of the three selected IMFs 
components for the tEEG signal and will be used as a feature 
for automatic seizure detection. 

In Section 2 of this paper, we describe in detail the 

proposed method, the dataset and the techniques used. Then, 

in Section 3 we summarize the results obtained with an 

extended discussion. Finally, some conclusions are given.  
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II. MATERIALS AND METHODS 

A. Experimental setup  

The animal protocol used for recording the tEEG signal 

was approved by the University of Rhode Island IACUC. 

Approximately twenty-four hours before the induction of 

seizures caused by pentylenetetrazole (PTZ), an adult male 

Sprague-Dawley rat 220~320 g was given a combination of 80 

mg/kg of ketamine and 12 mg/kg xylazine (i.p) for anesthesia. 

The scalp was shaved and prepared with NuPrep abrasive gel 

(D. O. Weaver & Co., Aurora, CO, and USA). Three TCRE 

[11] were applied to the scalp (see Figure 1) using conductive 

paste 0.5 mm Ten20, Grass Technologies, RI, USA, and 

adhered with Teet’s dental acrylic (Pearson Lab Supply, 

Sylmar, CA, USA). The electrodes were made of gold-plated 

copper. After a 5 minute recording of baseline EEG, the PTZ 

was given (55 mg/kg, i.p.). The EEG signals were 

preamplified (gain 100 and 0.3 Hz high-pass filter) with a 

custom built preamplifier and then amplified using a Grass 

NRS2 Neurological Research System with Model 15A54 AC 

amplifiers (Grass Technologies, West Warwick, RI, USA) 

with a gain of 1,000 and band pass of 1.0-100 Hz with the 60 

Hz notch filter active, and digitized (16 bits, 256 

Samples/second). The two differential signals from the 

electrode elements (outer ring, inner ring, and center disc) 

were combined using an algorithm giving a Laplacian 

derivation of the signal as described by Besio
 
[11]. 

B. Data description 

In order to evaluate the performance of the proposed 
method for seizure detection, the recorded tEEG data from ten 
rats have been used. Two sets of tEEG data corresponding to 
the Baseline data and Seizure data were used as the 
investigational data set for seizure detection. The data set from 
the ten rats contained 65 single-channel tEEG Baseline 
segments and 70 single-channel tEEG Seizure segments. All 
selected tEEG segments had 30s duration, with sampling rate 
of 256 Hz. The selection of the Seizure periods was performed 
by an experienced behaviorist through visual inspection of the 
video recordings. Because of a large amount of artifacts and 
noise caused by grooming, chewing, and roaming of the rats 
during the recording, Baseline periods were selected after 
visual inspection where the tEEG data appeared to be relatively 
calm and noise free. Also, the numbers of baseline and seizure 

segments are not necessarily the same for each rat and there 
were more than one seizure segment selected for all the rats. 

C. Related work 

Different methods for automatic seizure detection have 

been proposed [2, 3, 5, 9, and 10]. In this paper, the detection 

is based on the decomposition of tEEG segments into several 

oscillating components via the EMD algorithm followed by 

TFR analysis. A localized energy estimate is extracted and 

considered as a feature for discrimination between Seizure and 

Baseline data. The different steps of the detection process are 

summarized as follow: (1) Downsample the tEEG signal to 

reduce the sampling rate from 256 Hz to 128 Hz to reduce the 

amount of data which will reduce the number of computations 

without losing the necessary data for analysis. The signal was 

filtered first using an anti-aliasing low-pass filter with a cutoff 

frequency 64 Hz to meet the Nyquist criteria and avoid 

aliasing. The MATLAB function downsample was used for 

the down-sampling procedure. (2) Decompose each tEEG 

signal into IMFs using the EMD algorithm [4]. The algorithm 

proposed by Flandrin et al [16] was used to select three IMFs 

for seizure detection. (3) The three selected IMFs from each 

signal were partitioned into one-second epochs using a non-

overlapping, sliding Hamming window to avoid redundancy 

caused by an overlap. In this study, several different epoch 

sizes from 1s to 5s were tested; one-second EEG epochs with 

a non-overlapping window provided the best detection 

accuracy. (4) The analytic signal for each epoch is used [19] to 

eliminate the negative frequencies for better cross term 

reduction in TFRs. For a given signal x(t), the corresponding 

analytic signal is define as: HT(x(t))x(t)y(t) j+= ; where 

HT() is the Hilbert transform. (5) The SPWV is computed for 

each analytic epoch [8, 21]. (6) An estimate of the localized 

TF energy is extracted for each epoch, used as a feature, and 

classified to determine whether a given epoch contains a 

seizure or not. 

III. FEATURES EXTRACTION PROCEDURE 

In this study, feature extraction methods consisted of three 
steps. First, the data segments were adaptively decomposed 
into oscillating components, the IMFs. The SPWV distribution 
was carried out for each epoch for selected IMFs (to be 
described later) and the estimate of the localized TF energy 
was calculated and used as a feature to discriminate between 
Seizure and Baseline. The method is briefly described in the 
following sections. 

A. Empirical Mode Decomposition (EMD) 

The principle of the EMD technique is to decompose a 
signal automatically into a set of band limited functions, called 
Intrinsic Mode Function (IMFs) [4]. An IMF is defined as a 
function that satisfies the following two conditions [4]: (1)   
The number of extrema and the number of zero crossings must 
be equal or differ by at most one. (2) The mean value of the 
envelope defined by the local maxima and by the local minima 
must be zero or close to zero at all points. The EMD has 
several advantages: (1) it is a decomposition method developed 
for non-linear and non-stationary signals which can provide a 

Figure 1. The location of the tripolar concentric ring electrodes on the rat 

scalp used to record the data. Electrode (1) is 1 cm dia. and used for 

stimulation and recording. Electrodes (2) and (3) are both 0.6 cm dia. and 
used only for recording. Electrode (r) is the reference. An example of a 

tripolar concentric ring electrode is shown to the left of the rat head. 

 



better numerical description of temporal patterns than 
traditional methods such as wavelet and Fourier methods [4]. 
(2) EMD can break down complex signals into a finite set of 
band limited signals or intrinsic mode functions (IMFs) without 
a need for basis functions in contrast to the traditional methods 
like wavelet decomposition where the basis functions are fixed.  
(3) Also, the EMD algorithm is considered as a type of filter 
bank decomposition method used to isolate different 
constituents from multi-component signals like the EEG [12]. 
Moreover, the EMD procedure allows for TF interpretation of 
transient signals, which is not the case for stationary, one-
dimensional Fourier transform based methods [13]. These 
properties make the EMD decomposition suitable in 
biomedical engineering applications like the case of detection 
of seizures from EEG signals. The EMD MATLAB code used 
in this paper is available at [22]. 

B. Selection of iMFs 

To identify which IMFs to use in the proposed analysis, 

we need to know whether a specific IMF contains useful 

information or primarily noise. A statistical model based on 

energy distribution of the noise between IMFs has been 

developed by Flandrin et al [16]. The method suggests 

decomposing of the noisy signal into IMFs, and then 

comparing the IMF energies with the theoretical estimated 

noise-only IMF energies. The model is based on studying the 

energy in the modes of fractional Gaussian noise (fGn) after 

EMD decomposition. fGn is a generalization of white noise; it 

exhibits a flat spectrum and its statistical properties are 

determined solely by a scalar parameter H known as Hurst 

exponents. In this paper, we take H = 0.5, so the process is 

reduced to uncorrelated white noise. We consider that the 

EMD of a discrete-time signal x[n] for Mn ,...,1=  results in 

a set of K IMFs [n]f k
 for  N1,...,k = . The signal x[n] is 

considered to be corrupted with white noise (fGn with H = 

0.5). The energy of the first IMF is: 

∑=
=

M

1n

2

1H [n]f[1]W                                                                (1) 

The energy of the noise in the other IMFs for a given Hurst 

exponent H = 0.5 is: 

,2.01
0.719

[1]W
[k]W kH

H

−= Nk ,...,3,2=                           (2) 

Moreover, there is a linear relationship between the logarithm 

of the confidence interval [k]TH
 and the number of the IMF 

k  given by: 

HHHH22 bka[k]))[k]/W(T(loglog +=                 (3) 

For a confidence interval of 99%: 0.45a H =  and 

1.95b H −= . The algorithm proposed by Flandrin et al. [16] 

is the following: (1) Assuming that the first IMF captures most 

of the noise, estimate the noise level in the noisy signal by 

computing [1]WH
 from equation 1. (2) Estimate the “noise 

only” model by using equation 2. (3) Estimate the 
corresponding model for a chosen confidence interval from 

equation 3. (4) Compute the EMD of the noisy signal, and 

compare the IMF energies by using the confidence interval as 

a threshold. (5) Compute a partial reconstruction by keeping 

only the residual and those IMFs whose energy exceeds the 

threshold (confidence interval). 

This technique works very well when the noise is in a 

different frequency band from the signal, so the noise is 

captured in specific IMFs. Its performance degrades when 

signal and noise share the same bandwidth. The Flandrin 

algorithm for IMF selection was run on each 30-second 

segment of the signal to identify which three IMFs should be 
selected for the next algorithmic step of TFR energy feature 

classification. In this study, the algorithm determined that 

IMF3 was the first IMF to cross the threshold for the vast 

majority of the data set used. Figure 2 shows an example using 

a 30-second Seizure segment; the figure shows that the IMF 

energy increases significantly at IMF3. Consequently, IMF 

numbers 3, 4, and 5 were used in subsequent analysis to best 

represent the dataset used in this study and to reduce algorithm 

computational complexity. 

 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

C. Time-frequency energy 

TFRs are the transformations of time-varying signals that 

illustrate how the spectral content of a signal is changing with 

time [7]. The EEG signal is considered a non-linear and non-

stationary signal, so it is helpful to select an appropriate TFR 

with good TF resolution and reduced interference terms. In 

this paper, we focus only on the SPWV distribution, since it 

offers good TF resolution and good interference reduction [8]. 

The SPWV distribution permits two independent smoothing 

windows, one in time and the other in the frequency domain to 

improve the readability of the Wigner-Ville distribution. The 

SPWV distribution is defined as follows: 

( ) dτ
j2π

)ds)e
2

τ
(s

*
x)

2

τ
t)x(sg(s( hf)(t,xSPWV

fττ −−∫ ∫ +−=        (4) 

where x is the signal, t is the time variable, f is the frequency 
variable: g() and h() are the smoothing (or cross-terms 
reduction) time and frequency windows, respectively.  

TF energy distributions are very important in analysis and 
processing of non-stationary signals like the EEG. An energy 
TFR f)(t,Tx

 combines the concepts of instantaneous power  

Figure 2. An example of IMF selection criteria using equation 3. The noise-

only model in red and the confidence interval in blue are presented. The 

IMFs numbers 3 to 10 have energies which exceed the confidence interval 

(or threshold). 



 

2
|x(t)|(t)xp = and spectral energy density 

2
|X(f)|(f)xP = , 

where X(f) is the Fourier transform of X(t). An energy TFR 
satisfies the following marginal properties [8]: 

2

xx |x(t)|(t)pf)df(t,T∫ ==                                              (5) 

2

xx |X(f)|(f)Pf)dt(t,T∫ ==                                             (6) 

df|X(f)|dt|x(t)|f)dtdf(t,TE 22

xx ∫=∫∫ ∫==             (7) 

 

Equations (5) and (6) indicate that if the TF energy density is 

integrated along one variable, the energy density 

corresponding to the other variable can be obtained. The total 

signal energy is derived by integrating the TFR f)(t,Tx over 

the entire TF plane (the total energy condition xE in equation 

(7)). Many TFRs, including SPWV distribution, do not strictly 

obey the marginal properties in (5-7); that is, the frequency 

and time integrals of the distribution do not exactly equal the 

instantaneous signal power and the spectral energy density, 

respectively [8]. However, some can still be used to generate 

estimates of localized signal energy [8]. The total energy can 

be a good feature to detect signal events in the SPWV 

representation because the energy in EEG seizure is usually 

larger than the one during normal activity [3]. The 
approximate localized energy extracted from TFRs was 

calculated for each epoch of the three selected IMFs 

components, IMF3, IMF4, and IMF5, to construct the feature 

vector used for automatic seizure detection.  

 
 

D. Classification and performance calculation 

In this study, three IMFs for each 30 second segment (for 

both Seizure and Baseline) were selected after EMD 
decomposition. Each thirty second IMF is partitioned into 

epoch of one second length and the time-frequency energy 

concentration is calculated for each epoch. This results in a 

feature vector set consisting of 90 samples (3 IMFs x 30 x 1 

second) for each segment. A ten-fold cross-validation 

technique was applied during the training periods to estimate 
how well the classification method will classify the new data 

which were not seen during the testing validation period. In 

ten-fold cross validation, the data set is split into 10 equal sub-

set partitions. Each time, one of the 10 subsets is used for 

testing whereas the other 9 subsets are used for training the 

dataset. The total data were randomly split into ten subsets. 

The whole procedure is repeated ten times. The final result is 

the average of all 10 repetitions. After selecting the training 

and testing features, they were then applied to a discriminant 

analysis classifier [17]. Discriminant analysis is a technique 

used to discriminate a single classification variable using 

various features. Discriminant analysis also assigns 
observations to one of the pre-defined groups based on the 

knowledge of the multi-features [20]. The usefulness of a 

discriminant model is based on its ability to predict the 

relationships between known groups in the categories of the 

dependent variable. In this paper, the MATLAB command 
“classify” was used and “diagQuadratic” was selected as a 

discriminant function type [17]. In order to evaluate the 

performance of the proposed method for seizure detection, the 

following statistical parameters were calculated [15]:  

Figure 3.   Top plots represent the third, fourth, and fifth IMF decompositions (IMF3, IMF4, and IMF5) of Baseline tEEG signal. Shown at the bottom are 

the corresponding SPWV TF distributions (two Hamming windows with 0.5s and 1s duration are used respectively, for the time and frequency domain 
smoothing) of IMF3, IMF4 and IMF5 decomposed from baseline data. They show that the frequency content of IMF3 is higher than the frequency of IMF4 

which has higher frequency content than that of IMF5.  



 

(1) Sensitivity: Is the percentage of epileptic seizure segments 
correctly classified by the algorithm. (2) Specificity: Is the 

proportion of segments without seizures correctly classified by 

the algorithm. (3) Accuracy: Is the percentage ratio of 

correctly classified segments to the total number of segments 

considered for classification. 

 

IV. RESULTS AND DISCUSSION 

In this study, a new method for automatic seizure 

detection is proposed. The method is based on TF analysis of 

several oscillating components broken down from the original 

signal via the EMD algorithm. Localized energy estimates 

were extracted and considered as features fed into a classifier 

for discrimination between Seizure and Baseline data. The 

SPWV distribution was used to calculate the localized energy 
distribution of the signal.  

After the EMD decomposition, the Baseline and Seizure 

segments may have different number of IMFs because the 

number of IMFs depends on the frequency content of each 

signal [4]. The method proposed by Flandrin et al. [16] was 
used to automate selection of the IMFs used to reduce impact 

of noise. Figure 2 show that IMFs 3 to 10 have energies which 

exceed the confidence interval (or threshold, blue). So, in this 

paper, the IMF3, IMF4, and IMF5 were selected for further 

analysis. The three selected IMFs from each signal were 

partitioned into one-second epochs using a non-overlapping, 

sliding Hamming window.  

TFR analysis of each epoch was applied using SPWV. 

The main reason we used TFR was to have more energy 

concentration. The idea is to analyze behaviors of the energy 

distribution, i.e., the concentration of energy at certain time 
instants or certain frequency bands or more generally, in some 

particular time and frequency region. The total energy can be a 

good feature to detect signal events in the SPWV 

representation because the energy in the EEG during seizures 

is usually larger than during normal activity. Figures 3 and 4 

show examples of SPWV distribution on 30-second duration 

Baseline and Seizure segments after the IMFs were selected 

(IMF3, IMF4 and IMF5) using two Hamming windows with 

0.5s and 1s duration respectively, for the time and frequency 

domain smoothing. From Figures 3 and 4 it can be seen that 

there is a higher concentration of energy in Seizure segments 

compared to Baseline and depends on the frequency content of 
each IMF. The best obtained accuracy is 98.61%, with 

sensitivity of 98.68% and specificity of 98.54%, achieved 

using two Hamming windows with 0.5s and 2s duration are 

used respectively, for the time and frequency domain 

smoothing. 

These results are very promising, and show that the 

proposed method has the ability to recognize and classify 

Seizure from Baseline tEEG segments. The same dataset used 

in this study has already been used and tested in our previous 

work [18] using different features; the obtained accuracy 

varied between 84.81 and 96.51%. Comparing the results from 

[18] with the results obtained in this current study achieving 

98.61% accuracy shows that the estimated time-frequency 

localized energy is a better feature to detect the presence of a 

seizure in a tEEG signal. Furthermore, the classifiers (SVM 

and AdaBoost) used in our previous work [18] using the same 

dataset were tested in this study with the new selected 

Figure 4.  Top plots shows IMF3, IMF4, and IMF5 and their SPWV distributions in the bottom (two Hamming windows with 0.5s and 1s duration are 

used respectively, for the time and frequency domain smoothing), of the tEEG signal with seizure. It is very clear from these SPWVs, that the frequency of 

IMF3 is higher than the frequency of IMF4 which has higher frequency content than that of IMF5.  



features. The obtained results with the classifier used in this 

paper gave better performance than SVM and AdaBoost.  

Furthermore, there are other studies based on EMD 

decomposition for seizure detection such as Tafreshi et al. [9] 

where they could distinguish non-Seizure from Seizure data 

with success rates up to 95.42%. Pachori & Bajaj [10] used the 

area measured from the trace of the analytic IMFs as features 

to analyze normal and epileptic human seizure EEG signals 

and they showed that those calculated areas gave good 
discrimination performance. Comparing our results to those in 

the literature which used EMD and TF for seizure detection, 

the high accuracy obtained from our method, with 98.61% 

accuracy, using data from freely moving rats’ shows that our 

proposed method for seizure detection is competitive with 

other methods disclosed. 

V. CONCLUSION 

Automatic detection of seizures is an important step in the 

diagnosis of epilepsy. In this paper, the proposed method for 

classification of Seizure and Baseline tEEG segments is based 

on the EMD method. The localized energy extracted from 

TFR was applied on some signal components. The EMD is 

applied to decompose the signal adaptively into oscillating 

components or IMFs. TFR is carried out on each epoch of a 

few IMFs selected, using Flandrin’s method, and the localized 

energy is calculated and used as a feature to discriminate 

between Baseline and Seizure data. The results showed that 

the proposed method has the ability to accurately recognize 

and classify tEEG segments taken from freely moving rats 
with an overall accuracy reached 98.61% in a ten-fold cross 

validation study. We believe these results are significant as the 

EEG data earn from freely moving rats, hence contained large 

amounts of noise and artifacts. These high accuracy results on 

highly contaminated rat data encourage us to further test the 

proposed method on a large population human datasets. Many 

of the other results using TFR methods published in the 

literature were applied to relatively noise free human data. 
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