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Abstract—For persons with severe disabilities, a brain–com-
puter interface (BCI) may be a viable means of communication.
Lapalacian electroencephalogram (EEG) has been shown to
improve classification in EEG recognition. In this work, the ef-
fectiveness of signals from tripolar concentric electrodes and disc
electrodes were compared for use as a BCI. Two sets of left/right
hand motor imagery EEG signals were acquired. An autore-
gressive (AR) model was developed for feature extraction with
a Mahalanobis distance based linear classifier for classification.
An exhaust selection algorithm was employed to analyze three
factors before feature extraction. The factors analyzed were 1)
length of data in each trial to be used, 2) start position of data, and
3) the order of the AR model. The results showed that tripolar
concentric electrodes generated significantly higher classification
accuracy than disc electrodes.

Index Terms—Brain–computer interface (BCI), electroen-
cephalogram (EEG) classification, Laplacian estimation, param-
eter selection, tripolar electrode.

I. INTRODUCTION

FOR PERSONS with severe disabilities (e.g., spinal cord
injury, amyotrophic lateral sclerosis, brainstem stroke,

etc.), a brain–computer interface (BCI) may be the only feasible
method for communicating with others and for environmental
control. The most common signal employed for BCI has been
the scalp-recorded electroencephalogram (EEG) [1], [2]. Un-
fortunately, the EEG lacks high spatial resolution primarily
due to the blurring affects of the volume conductor with disc
electrodes. It has also been shown that conventional EEG
signals recorded with disc electrodes have reference electrode
problems as idealized references are not available with EEG
[3]. A common average reference and concentric electrodes
have been proposed to resolve the reference electrode problems
as discussed by Nunez since concentric electrodes act like
closely spaced bipolar recordings [3]. However, in the common
average reference recordings, it is possible that components
present in most of the electrodes but absent or minimal in the
electrode of interest may appear as “ghost potentials” [4].
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Recently, the application of surface Laplacian to EEG was in-
troduced to help alleviate the blurring effects. Surface Laplacian
mapping has been shown to enhance the high spatial frequency
components and spatial selectivity of the electrical activity lo-
cated close to the observation point [5]. The Laplacian is the
second spatial derivative of the potentials on the body surface
which reduces the blurring effect. The application of the Lapla-
cian method to EEG began with Hjorth [6] utilizing a five-point
method (FPM). He [5] performed the surface Laplacian with
Hjorth’s technique derived from an array of disc electrodes mea-
suring surface potentials. Several other approaches have been
shown to perform well, including 1) the spline Laplacian al-
gorithm by Perrin et al. [7], 2) the ellipsoidal spline Laplacian
algorithm by Law et al. [8], 3) realistic Laplacian estimation
techniques by Babiloni et al. [9], [10], and 4) realistic geometry
Laplacian algorithms [11].

However, the gains from the aforementioned application of
the Laplacian depend on conventional disc electrodes which
are based on the same technology Hans Burger used in 1924.
There has been little effort put forth on improving the elec-
trodes. To our knowledge, Fattorusso and Tilmant [14] were the
first to report the use of concentric electrodes. Concentric elec-
trodes are symmetrical, alleviating electrode orientation prob-
lems [15]. They act as high-pass spatial filters reducing the low
spatial frequencies, accentuating localized activity increasing
the spatial selectivity [5]. Concentric electrodes outperform disc
electrodes with higher signal-to-noise ratio (SNR), higher spa-
tial selectivity, and lower mutual information (MI) which should
be beneficial for the field of EEG [5]–[16]. Further, McFarland
et al. concluded that the common average and the Laplacian
derivation yield good performance on EEG classification [17].
Babiloni et al. demonstrated that surface Laplacian transforma-
tion of EEG signals can improve the recognition scores of imag-
ined motor activity [18].

Since the tripolar concentric electrode has shown significant
improvements over disc electrodes, in this paper a comparison
of classification of left/right hand imagery was performed be-
tween signals from disc electrodes and tripolar concentric elec-
trodes. Two bipolar signals were acquired from each tripolar
concentric electrode and then combined to estimate the Lapla-
cian [19]. An autoregressive (AR) model [20] for feature extrac-
tion was built. A Mahalanobis distance based linear classifier
[21] was used for classification, which was previously estab-
lished for BCI classification by Cincotti et al. [22].

To make a fair comparison between the two electrode con-
figurations, the maximum classification ratio was searched for

1534-4320/$25.00 © 2008 IEEE



192 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 16, NO. 2, APRIL 2008

Fig. 1. (a) Configuration and dimensions of a tripolar concentric electrode and
(b) positions of the electrode on the scalp surface.

each data set. An exhaust search algorithm was utilized to find
the best factors for each subject that generated the highest classi-
fication ratio. The results showed that signals from tripolar con-
centric electrodes generated significantly higher classification
ratio compared to signals from disc electrodes.

II. METHODS

A. Data Recording

EEG signals of twelve healthy subjects (
, aged from 23 to 30) were recorded using

two tripolar concentric electrodes [23] (Fig. 1). All exper-
iments were conducted in accordance with Louisiana Tech
University institutional review board approved protocol. Two
sets of signals were recorded from each subject with tripolar
concentric electrodes [Fig. 1(b)]. The scalp was prepared once
with the abrasive Nuprep (D.O. Weaver & Co., Aurora, CO).
Then approximately 1.0 mm of Ten-20 electrode paste (D.O.
Weaver & Co.) was applied to each electrode prior to placing it
on the scalp at C3 and C4 of the 10/20 International Electrode
Placement System as shown in Fig. 1(a). The skin-to-elec-
trode impedance was approximately 2 K for each subject.
Preconditioning was provided with custom built pre-amplifiers

along with a Grass 15LT Bipolar AC Amplifier
System (Grass Technologies, West Warwick, RI) for a total gain
of 500 K (0.5–30 Hz). The data were acquired (14 bit) using a
DI-720 data acquisition system (DATAQ Instruments, Akron,
OH) with a sampling rate of 125 samples/s per channel.

For signal data set one, two bipolar signals were recorded
from each electrode (P1–P3 and P2–P3, where P1, P2, P3 were
the signals from the outer ring, middle ring, and center disc,
respectively). For signal data set two, the outer ring, middle ring
and center disc of the electrodes were shorted to make a virtual
disc electrode; one signal was recorded from each virtual disc
electrode with respect to the reference electrode on the forehead.

Fig. 2 is a timing diagram of the protocol followed for ac-
quiring trials of the signals. Each trial started with a visual fix-
ation on a cross displayed for two seconds on a computer mon-
itor followed by a warning beep alerting the subject that a cue
was about to be presented. After the cue, the subjects were re-
quired to imagine a left/right hand-lifting movement according
to the cue. A random pause was selected such that the length

Fig. 2. Timing diagram of the events during the experimental protocol.

TABLE I
RANGE AND INCREMENTAL STEP OF EACH FACTOR TESTED

of each trial was between 8 and 9 s. For each subject, 480 trials
were recorded, approximately 240 each of left and right hand re-
lated signals. Half of the total trials for each subject were used
for model training, and half for testing. The trials contaminated
with eye and head movements were removed. Approximately
160–200 artifact free trials including both left and right hand
related signals were recognized for each subject.

B. Data Preprocessing and Tripolar Algorithm

For data set one, two channels of bipolar signals were ac-
quired from the tripolar concentric electrodes and postprocessed
with a tripolar algorithm for Laplacian estimation [19]

(1)

where was the signal. For data set two, the recorded signals
were used directly after filtering. An AR model was developed
for feature extraction [20] with a Mahalanobis distance based
linear classifier for classification [21], [22].

C. Exhaust Search Algorithm for Factor Selection

Since all the factors were within a known range, an exhaust
search algorithm was used to analyze the factors for the best
classification. The event related potential (ERP) due to viewing
the arrow (cue) was 3.0–4.5 s (Fig. 2) [24]. To avoid overlap-
ping, imagined movement related signals with the ERP, the
imagined movement related EEG between 4.5 and 7.5 s was
selected. Therefore, the range of length of data (LOD) was set
for 0.1–3.0 s in each trial, and the range of the start position
of data (SPD) was 4.5–7.4 s. Extreme AR orders (AR Order)
have been shown not to best fit the signal [12]. Thus, the range
of AR Order was 3–15. The range and incremental step of each
factor tested are listed in Table I.

The exhaust search algorithm was performed for LOD, SPD,
and AR Order to find the factors that generated the highest clas-
sification ratio (CR) for the signals from the tripolar concentric
electrodes and virtual disc electrodes, respectively. The CR was
defined in (2), where the total trials recognized were approxi-
mately 160–200 for each subject

(2)
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TABLE II
CLASSIFICATION RATIOS FOR EACH SUBJECT FROM TRIPOLAR CONCENTRIC

ELECTRODES AND VIRTUAL DISC ELECTRODES, RESPECTIVELY

D. Statistical Analysis

ANOVA was performed to compare the CRs for the signals
generated from the tripolar concentric electrodes and virtual
disc electrodes. Statistics are reported as mean standard de-
viation with P-values designated to test significance.

III. RESULTS

A. Influence of Different Electrodes on the CRs

The CRs for data set one (tripolar) and data set two (virtual
disc) were % and %, respectively (Table II).
There was a significant difference between the CRs of data set
one using the signals from tripolar concentric electrodes com-
pared to the CRs of data set two using signals from the virtual
disc electrodes (ANOVA, ).

B. Influences of LOD, SPD, and AR Order on the CRs

Fig. 3 shows the influence of (a) LOD, (b) SPD, and (c)
AR Order on the CR for subject 1, which was indicative of all
the subjects. The CRs varied similarly with the factors in the
other subjects. In Fig. 3, it can be seen that the maximum CR
was achieved with the signals from the tripolar concentric elec-
trodes.

IV. DISCUSSION

With tripolar concentric electrodes, there was a 16% improve-
ment in the mean CR of the signals compared to that of the
signals from virtual disc electrodes. Using the Laplacian of the
potentials has been shown to be effective in EEG classification
[17], [18]. Since the tripolar concentric electrodes directly ac-
quire Laplacian potentials and are easily combined with simple
mathematics (1), they may be suitable for use in real-time BCI
applications.

Fig. 3. Influences of LOD, SPD, and AR Order on the CR of subject 1. The
solid traces are from data set one (tripolar concentric electrode) and the dashed
traces are from data set two (virtual disc electrode). (a) Influence of LOD. (b)
Influence of SPD. (c) Influence of AR Order.

For this work, only two sensing electrodes were used to ac-
quire the EEG. With basic signal processing, the CRs compa-
rable to those produced with more complex signal processing
were achieved [13]. Knowing that signal sources for imagery
are primarily localized to sensorimotor cortex, clustering con-
centric electrodes around those areas may produce more useful
features and higher CR. With more complex signal processing,
the CR of the signals from tripolar concentric electrodes can
possibly be increased further.

There is evidence that not all of the imagery signals come
from a single area [25]. Wang et al. reported methodology that
included coactivated areas of the brain during imagery [26].
They found that a three conventional electrode configuration
over C3, FCz, and C4 outperformed a conventional 30-electrode
system. They suggested that the signals at FCz act as a reference
to derive stronger differences in the left and right signals from
C3 and C4. The coactivated areas may have been one possibility
why McFarland et al. found that a larger Hjorth-type Laplacian
had higher SNR than a smaller configuration [17]. The coac-
tivated area may have been outside of the surface area of the
smaller Laplacian configuration. By placing tripolar concentric
electrodes at the C3 and C4 locations, they were approximately
6.0 cm apart similar to the spacing of the larger Laplacian used
by McFarland. With the electrode distance of 6.0 cm, the spatial
differences of the EEG signal were acquired between the two
electrodes. Tripolar concentric electrodes could also be placed
similarly to Wang et al. [26] to acquire signals from coactivated
areas.

V. SUMMARY

1) The CRs of signals using tripolar concentric electrodes
were significantly better than those of signals using virtual
disc electrodes.

2) With concentric electrodes, improvements in the CRs com-
parable to Burke et al. [12] were achieved without per-
forming complex feature extraction and classification al-
gorithms.

3) Each individual had a specific LOD, SPD, and AR Order,
which gave the best classification accuracy.

4) When building the BCI model for analysis of EEG, it may
be beneficial to consider subject variances with the factors
individually customized before feature extraction.
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