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Transcranial focal stimulation (TFS) is a noninvasive neuromodulation strategy that reduces seizure
activity in different experimental models. Nevertheless, there is no information about the effects of
TFS in the drug-resistant phenotype associated with P-glycoprotein (Pgp) overexpression. The present
study focused on determining the effects of TFS on Pgp expression after an acute seizure induced by 3-
mercaptopropionic acid (MPA). P-glycoprotein expression was analyzed by western blot in the cerebral
cortex and hippocampus of rats receiving 5 min of TFS (300 Hz, 50 mA, 200 ls, biphasic charge-
balanced squared pulses) using a tripolar concentric ring electrode (TCRE) prior to administration of a
single dose of MPA. An acute administration of MPA induced Pgp overexpression in cortex (68 ± 13.4%,
p < 0.05 vs the control group) and hippocampus (48.5 ± 14%, p < 0.05, vs the control group). This effect
was avoided when TFS was applied prior to MPA. We also investigated if TFS augments the effects of
phenytoin in an experimental model of drug-resistant seizures induced by repetitive MPA administra-
tion. Animals with MPA-induced drug-resistant seizures received TFS alone or associated with phenytoin
(75 mg/kg, i.p.). TFS alone did not modify the expression of the drug-resistant seizures. However, TFS
combined with phenytoin reducedseizure intensity, an effect associated with a lower prevalence of major
seizures (50%, p = 0.03 vs phenytoin alone). Our experiments demonstrated that TFS avoids the Pgp over-
expression induced after an acute convulsive seizure. In addition, TFS augments the phenytoin effects in
an experimental model of drug-resistant seizures. According with these results, it is indicated that TFS
may represent a new neuromodulatory strategy to revert the drug-resistant phenotype.

� 2020 Elsevier Inc. All rights reserved.
1. Introduction

Transcranial focal stimulation (TFS) via tripolar concentric ring
electrodes (TCRE) is a noninvasive neuromodulation strategy that
consists of the application of alternating current at 300 Hz on the
scalp [1]. Transcranial focal stimulation reduces the convulsive
activity induced by pilocarpine, penicillin, and pentylenetetrazole
[1–4]. Recently, it was described that TFS applied after each kin-
dling electrical stimulation delays epileptogenesis in cats, an effect
still evident a few weeks after TFS cessation [5]. Transcranial focal
stimulation combined with a suboptimal dose of diazepam reduces
the behavioral changes and neuronal damage induced by
pilocarpine-induced status epilepticus [6]. The anticonvulsive and
neuroprotective effects mediated by TFS [7] are partially explained
by a decrease in the normally high release of glutamate during sei-
zure activity [8].

The enhanced release of glutamate is a condition associated
with drug-resistant epilepsy [9,10] due to an induced P-
glycoprotein (Pgp) overexpression [11–13]. The overexpression of
Pgp in the blood–brain barrier limits the penetration of anti-sei-
zure drugs into the brain [14–16]. P-glycoprotein overexpression
and resistance to antiepileptic drugs are conditions progressively
induced during the induction of repetitive convulsive seizures
[17–20]. However, at present, it is unknown if the enhanced gluta-
mate release induced by a single convulsive seizure [21] facilitates
the Pgp overexpression.
convul-
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The blockage of Pgp expression and/or function is considered a
therapeutic strategy to control drug-resistant seizures
[19,20,22,23]. On the other hand, studies support that brain electri-
cal stimulation, with neuromodulatory effects, can revert the drug-
resistant phenotype, avoiding the Pgp function [10]. Supporting
this notion, it was described that electrical stimulation at 50 Hz
reduces the Pgp expression and its drug extrusion potency in
tumor cells more effectively than tariquidar [24]. This group of evi-
dence leads to suggest that under certain conditions, electrical
stimulation may reduce the Pgp overexpression and/or function.

Considering that TFS lessens the high glutamate release during
seizure activity [8], we hypothesized that this neuromodulatory
strategy might reduce the Pgp overexpression and/or function after
an acute seizure and in an experimental model of drug-resistant
seizures. We used the administration of 3-mercaptopropionic acid
(MPA) that results in clonic-tonic seizures as consequence of
enhanced degradation and low synthesis of c-aminobutyric acid
(GABA) [25]. The repetitive administration of MPA results in resis-
tance to phenytoin (PHT) through Pgp overexpression in brain
areas such as cortex and hippocampus [18,26,27].

2. Materials and methods

2.1. Animals and manipulation

Male Wistar rats (250–300 g body weight), individually housed
and maintained under environmentally controlled conditions (12-
h light/dark cycles, 22 �C) with food and water ad libitum, were
used in the present study. All experiments were approved by the
institutional ethics committee (CICUAL 125-15) and were carried
out according to the Mexican law for the care and use of laboratory
animals (NOM-062-ZOO-1999) and the National Institutes of
Health Guide for the Care and Use of Laboratory Animals. Rats were
habituated to the manipulation with the administration of saline
solution (SS, NaCl 0.9%, 1 ml/kg, i.p.) and 5 min of handling with
a TCRE of 10 mm diameter, on the scalp. This procedure was
applied every 24 h for 7 days.

2.2. Experiment 1. Pgp expression after an acute seizure and the effects
of TFS

This experiment was designed to investigate if Pgp is overex-
pressed in the cortex and the hippocampus as a consequence of
Fig. 1. Diagram of the experimental protocol used to evaluate P-glycoprotein (Pgp)
expression after an acute seizure induced by 3-mercaptopropionic acid (MPA) and
the effects of transcranial focal stimulation (TFS). A, Rats were submitted to 7 days
of habituation. Then, they were randomly distributed among the different exper-
imental groups. B, Diagram showing the parameters for TFS. C, Timeline of the
experimental procedure. The hippocampus and cerebral cortex of the rats were
obtained at the end of the experiment and used to determine the protein expression
of Pgp by Western Blot. g, grams; SS, Saline Solution; mA, milliamperes; ms,
microseconds; Hz, Hertz; TCRE, tripolar concentric ring electrode.
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an acute MPA-induced convulsive seizure and if this effect is
avoided by TFS (Fig. 1).

The prevalence and latency of the MPA-induced seizures were
evaluated for 30 min after the drug administration. The intensity
of the seizures was rated according to the following stages: 0, no
behavioral changes; 1, isolated myoclonic jerks; 2, atypical (unilat-
eral or incomplete) clonic seizures; 3, fully developed clonic sei-
zures; 4, generalized clonic-tonic seizures with suppressed tonic
phase; and 5, fully developed clonic-tonic seizures [28]. Stages 1
to 3 were considered minor seizures, whereas stages 4 and 5 were
major seizures.

2.3. Experimental groups

TFS-MPA (n = 6). Twenty-four h after the end of habituation,
rats received TFS (300 Hz, 50 mA, 200 ls, biphasic, and charge-
balanced squared pulses) for 5 min using TCREs. MPA (37.5 mg/
kg, i.p.) was applied 5 min after completion of TFS. Rats were sac-
rificed 4 h after the MPA administration. The cerebral cortex and
the hippocampus were immediately obtained and stored at
�70 �C until used to determine Pgp expression for western blot
analysis (see Section 2.4).

MPA (n = 6). In order to determine the effects of MPA alone, the
animals of this group were manipulated as the TFS-MPA group,
except that they did not receive TFS.

TFS (n = 6). This group was designed to investigate the effects of
TFS alone. Animals were manipulated as the TFS-MPA group,
except that rats received SS instead of MPA.

SS (n = 6). These animals were manipulated as the TFS group,
except that they did not receive TFS. The results obtained from this
group were considered as the control condition for the experiment.

2.4. Western blotting

Cerebral tissue samples were homogenized in Radio Immuno
Precipitation Assay buffer (50 mM Tris-HCl, 150 mM NaCl, 1 mM
Ethylene-Diamine-Tetra acetic Acid, and 0.1% Triton X-100, pH
7.5) with protease inhibitor cocktail (Roche Diagnostics GmbH,
Germany) in a cold bath at 4 �C. Then homogenates were cen-
trifuged at 14,000g for 30 min at 4 �C and the supernatant (total
protein extract) was immediately collected, aliquoted, and main-
tained at �70 �C. Protein concentration was determined in the
extracts according to the Bradford method (Bio-Rad Laboratories,
USA) using bovine serum albumin (Bio-Rad Laboratories, USA) as
standard.

Samples (50 mg) of total protein extract were denatured by boil-
ing for 5 min at 95 �C in Laemmli buffer (500 mM Tris-HCl pH 6.8,
2% Sodium Dodecyl Sulfate (SDS), 10% glycerol, 10% b-
mercaptoethanol and 0.1% bromophenol blue). Electrophoresis
was carried out in Tris/glycine/SDS running buffer (25 mM Tris,
192 mM glycine and 0.1% SDS, pH 8.3; Bio-Rad Laboratories, USA)
at 85 V for 30 min and 100 V for 2 h using SDS-polyacrylamide
gel electrophoresis (7.5%). Separated proteins were electroblotted
onto polyvinylidene difluoride membrane (Immun-Blot, Bio-Rad
Laboratories, USA) in a wet system at 0.6 A (constant current) for
30 min using transfer buffer (25 mM Trizma base, 250 mM glycine
and 20% methanol, pH 8.3). Membranes with blotted proteins were
incubated in 5% blocking solution (Blot-QuickBlocker, EMD Milli-
pore, USA) diluted in Tris-buffered saline-Tween (TBS-T) buffer
(20 mM Tris, 500 mM NaCl, 0.1% Tween 20, pH 7.5) for 1 h at
4 �C. Then, the membranes were washed 3 times in TBS-T for
5 min each. Next, the membranes were incubated overnight with
gentle shaking at 4 �C, with the following antibodies: rabbit mon-
oclonal anti-Pgp (1:1000; Cat. ab170904, Abcam, USA) and rabbit
monoclonal anti-actin (1:1000; Cat. ab179467; Abcam, USA). All
primary antibodies were diluted in TBS buffer (20 mM Tris,
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500 mM NaCl, pH 7.5). Then, membranes were washed 3 times in
TBS-T for 5 min each, followed by incubation with corresponding
secondary antibody HRP-goat anti-rabbit IgG (1:5000 and
1:10,000 for Pgp and actin, respectively) for 2 h at 4 �C diluted in
TBS. Finally, the membranes were incubated in peroxide/luminol
solution (Clarity Western ECL substrate, Bio-Rad Laboratories,
USA) at room temperature for 5 min. The chemiluminescent data
were normalized using actin as a constitutive protein, resulting
in a relative expression ratio. Each sample was evaluated by
duplicate.

2.5. Experiment 2. Effects of TFS on drug-resistant seizures induced by
repetitive MPA

Phenytoin has been shown to protect animals from acute MPA-
induced seizures [25]. However, the repetitive induction of gener-
alized seizures with MPA results in Pgp overexpression and
reduces brain bioavailability and anticonvulsant effects of pheny-
toin [18,27]. This PHT-resistant phenotype is reversed by the phar-
macological inhibition of Pgp [19,20,22,23,26].

This experiment was designed to test the hypothesis that TFS
can inhibit the drug resistance condition induced by the repetitive
MPA administration, thus enhancing the anticonvulsant effects of
PHT. For this purpose, rats (n = 13) received MPA administration
every 12 h for 10 administrations. Initially, MPA was administered
at 30 mg/kg, i.p. If the dose of MPA did not induce seizures greater
than or equal to stage 3, the subsequent dose of MPA was increased
by 2.5 mg/kg. This procedure was repeated up to a maximal dose of
37.5 mg/kg. Eight animals survived this experimental procedure
and were randomly assigned to a crossover protocol [29] starting
24 h after the 10th dose of MPA. During the crossover protocol,
each rat was exposed to one of four different treatments every
48 h. Twenty-four h after each treatment, the animals received a
dose of MPA to maintain the drug-resistant phenotype (Fig. 2). At
Fig. 2. Diagram of the experimental protocol used to evaluate different treatments in rats
were submitted to 7 days of habituation. Then, they received 3-mercaptopropionic acid (M
animals were submitted to the crossover protocol. B, Schematic representation of the cr
after completion of repetitive MPA administration, the animals were randomly assigned
four h after each treatment, the animals received a dose of MPA to maintain the drug-re
treatments applied during the crossover protocol. Initially, phenytoin (PHT, 75 mg/kg, i.p
ring electrode (TCRE) was used to apply transcranial focal stimulation (TFS) or manipulat
activity was evaluated for 30 min after MPA injection.
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the end of the experiment, each animal crossed through all four
different treatments. This strategy was used to evaluate the effects
of different treatments in the same animal and reduce the number
of experimental subjects. The different treatments during the
crossover protocol were as follows:

PHT-TFS-MPA: TFS was applied in rats (see Section 2.2) pre-
treated with phenytoin (75 mg/kg, i.p., 50 min before TFS). Then,
MPA (37.5 mg/kg, i.p.) was administered 5 min after the end of
the TFS. Prevalence and latency of the MPA-induced behavioral
changes were evaluated according to the same criteria as in exper-
iment 1.

PHT-MPA: This treatment was designed to confirm that PHT did
not induce anticonvulsant effects in animals with drug-resistant
seizures. The manipulation was similar to PHT-TFS-MPA treat-
ment, except that TFS was not applied.

TFS-MPA: This treatment was similar to PHT-TFS-MPA treat-
ment, except that SS (pH 11.4) was applied instead of PHT. The
results obtained were used to determine if TFS was able to modify
the drug-resistant phenotype.

MPA: This treatment was similar to TFS-MPA treatment, except
that TFS was not applied. This treatment was considered the con-
trol condition for experiment 2.
2.6. Statistical analysis

The sample size for continuous and categorical data was chosen
according to Allgoewer & Mayer [30]. This strategy reduced the
number of animals used in the experiments. Categorical variables
are indicated as a percentage and interval variables are indicated
as mean ± standard error. We used one-tailed Fisher’s exact test,
one-way ANOVA followed by pairwise t test with false discovery
rate correction or Kruskal–Wallis, as necessary. We considered a
statistically significant difference if the p-value was equal to or less
with drug-resistant seizures. A, Timeline of the complete protocol. Initially, animals
PA) every 12 h for 5 days (days 8–12) to induce drug-resistant seizures. On day 13,

ossover treatments used for 8 rats with drug-resistant seizures. Twenty-four hours
to a crossover protocol during which they received 4 different treatments. Twenty-
sistant phenotype. C, Diagram showing the timeline of procedures for the different
.) or saline solution (SS, 1 ml/kg, i.p.) was administered. Then, a tripolar concentric
ion, for 5 min. MPA (37.5 mg/kg, i.p.) was administered 5 min after TFS. The seizure
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than 0.05. All analyseswere performed using GraphPad Software
version 6 (La Jolla, California, USA).

3. Results

3.1. TFS avoids the Pgp overexpression induced by a single MPA-
induced convulsive seizure

In experiment 1, rats from the SS group did not show behavioral
changes after manipulation. P-glycoprotein expression in their
cerebral cortex and hippocampus was used as a control condition
(100%) for further comparisons. The TFS-SS group presented no
behavioral alterations during and after TFS. This group showed
an increase of the Pgp expression in the cerebral cortex
(67 ± 31.1%, p = 0.03) and no changes in the hippocampus
(8.9 ± 15.9%, p > 0.05) (Fig. 3).

All animals (100%) from the MPA group presented minor and
major seizures after MPA administration, with a latency of
306.5 ± 35 and 417.3 ± 75 s, respectively. In contrast to the SS
group, the MPA group showed Pgp overexpression in both, cerebral
cortex (68 ± 13.4%, p < 0.05) and hippocampus (48.5 ± 14%,
p < 0.05) (Fig. 3). In the TFS-MPA group, MPA induced seizures as
follows: minor seizures in 100% of rats with latency of
372.5 ± 37 s; major seizures in 83% of animals, with latencies
455.6 ± 71 s. These values were not significantly different when
compared with those of the MPA group (p > 0.05). However, west-
ern blot experiments revealed that the Pgp expression of TFS-MPA
group was similar to SS group in both, cerebral cortex (p > 0.05)
and hippocampus (p > 0.05), and significantly lower when com-
pared with MPA group (cerebral cortex, 68%, p = 0.002; hippocam-
pus, 59%, p = 0.003) (Fig. 3).

3.2. TFS augments the effects of phenytoin in animals with drug-
resistant seizures

In Experiment 2 and during the crossover protocol, the MPA
treatment induced minor and major seizures in all animals
(100%), with latencies of 474.5 ± 84 s and 481.6 ± 83.2 s, respec-
tively. Rats with this treatment achieved a maximum seizure stage
of 4.3 ± 0.2. The TFS-MPA treatment produced similar changes
Fig. 3. Representation of the P-glycoprotein (Pgp) expression in the cerebral cortex and
(TFS) administration, and after the induction of a single 3-mercaptopropionic acid (MPA)
the percentage of change of the Pgp/actin expression, considering the values of the SS gr
dot represents an independent value. Values were analyzed with a one-way ANOVA follow
under different experimental conditions. * p < 0.05.
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when compared with the MPA treatment: 100% (p > 0.05) showed
minor seizures at 474 ± 29.3 s (p > 0.05), whereas 87.5% (p > 0.05)
presented major seizures at 451.1 ± 19.9 s (p > 0.05). The highest
seizure stage achieved under the TFS-MPA treatment was 4 ± 0.2
(p > 0.05 vs MPA) (Figs. 4 and 5).

The PHT-MPA treatment induced minor seizures in all the ani-
mals (100%) with a latency of 456.6 ± 55.7 s (p > 0.05 vs MPA).
Although this treatment induced major seizures in all animals
(100%), they had a longer latency (756 ± 64 s, p = 0.04 vs MPA).
The maximal seizure stage achieved under PHT-MPA treatment
was 4.4 ± 0.2 (p > 0.05 vs MPA) (Figs. 4 and 5). Finally, the PHT-
TFS-MPA treatment induced the following changes: minor seizures
in all the animals (100%) at 541.7 ± 57.7 s (p > 0.05 vs PHT-MPA);
major seizures in 50% of the rats (p = 0.03 vs PHT-MPA) at
840 ± 97 s (p > 0.05 vs PHT-MPA) (Fig. 4). Under this treatment,
rats achieved an average seizure stage of 3.2 ± 0.4, equivalent to
minor seizures. This result was significantly lower when compared
with MPA (p = 0.04) and PHT-MPA (p = 0.02) groups (Fig. 5).

4. Discussion

Our experiments revealed that Pgp is overexpressed in the cere-
bral cortex and hippocampus of rats after an acute convulsive sei-
zure, an effect avoided by TFS. In addition, the data obtained
support that TFS facilitates the effects of PHT in an experimental
model of drug-resistant seizures.

The overexpression of ATP-binding cassette transporters such
as Pgp is considered a mechanism of drug-resistance in epilepsy
since it limits access of anti-seizure drugs to the brain [14–16].
P-glycoprotein overexpression is mediated by several circum-
stances such as excessive glutamate release [11,12,31], hypoxic-
mimicking conditions [32], oxidative stress [12,13], and neuroin-
flammation [33]. P-glycoprotein overexpression is a condition pro-
duced by MPA-induced repetitive convulsive seizures [18,27]. Our
results indicate for the first time that Pgp is overexpressed as a
result of a single MPA-induced convulsive seizure. This effect can
result from the changes induced by acute convulsive seizures such
as excessive glutamate release [21], hypoxia [34], the activation of
COX-2/prostaglandin E2 pathway [35], and high oxidative stress
[36,37]. It is known that the repeated induction of convulsive sei-
the hippocampus under different experimental conditions: after vehicle (SS) or TFS
-induced seizure alone (MPA) and associated with TFS (TFS-MPA). Graphs represent
oup as a control condition (100%). The values are presented as mean ± S.E. and each
ed by pairwise t test. Lower panels show representative blots of the Pgp expression



Fig. 4. Prevalence (percentage of animals) and latency (seconds) of the minor and major seizures of rats with drug-resistant seizures and under different treatments: 3-
mercaptopropionic acid (MPA) alone; Transcranial Focal Stimulation (TFS) plus MPA; phenytoin plus MPA (PHT-MPA) and phenytoin plus Transcranial Focal Stimulation (TFS)
plus MPA (PHT-TFS-MPA). Prevalence values were analyzed with a one-sided Fisher’s exact test. Latency values are presented as mean ± S.E. and each dot represents an
independent value. They were analyzed with a one-way ANOVA followed by pairwise t test. *p < 0.05; **p < 0.01.

Fig. 5. Representation of the maximal seizure stage achieved by rats with drug-
resistant seizures under different treatments (see legend of Fig. 3). Values are
presented as mean ± S.E. and each dot represents an independent value. They were
analyzed with Kruskal–Wallis test plus Connover test. *p < 0.05.
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zures can increase the brain excitability probably as a consequence
of changes in local network susceptibility [17,38]. It is possible that
the overexpression of Pgp as a consequence of a single convulsive
seizure is involved in this phenomenon. We also found that TFS
avoids the Pgp overexpression induced by an acute MPA-induced
convulsive seizure. This effect can be explained since TFS lessens
the seizure-induced augmented glutamate release [8], a condition
essential for the Pgp overexpression [11,12,31].

On the other hand, the results obtained indicate that TFS aug-
ments the Pgp expression in the cortex of sham animals. This find-
ing can result as a consequence of an excitatory effect induced by
TFS in the cortex of nonconvulsive animals. Similarly, transcranial
magnetic stimulation enhances cortical excitability in healthy sub-
jects [39,40], an effect that depends on the brain excitability state
[41,42]. Previous studies support that TFS does not induce brain
damage [7] or changes in the short- and long-term memory of
healthy rats [43]. However, further studies are necessary to deter-
mine the consequences of TFS in healthy subjects.
5

Despite these effects, we found that TFS applied before the MPA
administration did not significantly modify the expression of the
convulsive seizures in naive animals (TFS-MPA group of experi-
ment 1). These findings are in contrast with the anticonvulsant
effects of TFS in other experimental models of seizures (penicillin,
pentylenetetrazol, and pilocarpine) [1,2,4]. The MPA-induced con-
vulsive seizures are a consequence of lower GABAergic neurotrans-
mission due to the reversible inhibition of glutamate
decarboxylase (GAD) and activation of GABA-a-oxoglutarate
aminotransferase (GABA-T) [25]. The results obtained indicate that
TFS alone is not enough to block the MPA-induced effects on GAD
and GABA-T. In contrast with other proconvulsant drugs, the MPA-
induced seizures present a very sudden onset with violent running
fits followed by clonic-tonic seizures, suggesting a higher seizure
intensity [25]. It is possible that MPA enhances the excitability of
brain areas in which TFS does not induce significant changes. Fur-
ther experiments using Fos staining, an indirect procedure of neu-
ronal activity, may allow us to investigate this issue.

Our experiments revealed that TFS alone did not revert the
drug-resistant phenotype of the animals (TFS-MPA treatment of
experiment 2). However, TFS combined with PHT (PHT-TFS-MPA
treatment of experiment 2) was able to reduce the expression of
the MPA-induced major seizures. This finding is in agreement with
our previous study in which TFS augmented the effects of subeffec-
tive doses of diazepam when applied in rats during pilocarpine-
induced status epilepticus [6].

For the present study, we applied PHT at 75 mg/kg i.p. It is
known that PHT at 100 mg/kg i.p. has a half-life of 2.6 hours
[44]. If 5 half-life periods of a drug are necessary for complete wash
out [45], then, 13 hours are the period necessary to wash out the
PHT. Therefore, a one-day interval between crossover maneuvers
is proper to avoid the effects of previous treatments. However,
studies suggest accumulation kinetics of PHT during its chronic
administration [44]. On the other hand, additional experiments
are necessary to determine the rate at which the TFS effects are
washed out after stimulation has finished. These conditions may
represent a limitation of the results obtained in the crossover
protocol.
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It is known that minor seizures (myoclonus as well as atypical
and typical clonus) are induced by the activation of forebrain struc-
tures. They may progress to major seizure components (general-
ized clonic and tonic-clonic seizures) when the neuronal
hyperactivity involves thalamus [46,47] and/or brain stem [48].
The results obtained from the present study revealed that TFS com-
bined with PHT reduced the prevalence of major, but not minor,
seizure components induced by MPA in animals with drug-
resistant seizures. Future experiments are essential to determine
how TFS alone and in combination with anti-seizure drugs modi-
fies the neuronal activity of these brain areas, reducing the behav-
ioral manifestations of the major seizure components. It is
indicated that a high seizure severity is a relevant condition to
develop drug resistance in epilepsy [49,50]. According to this
notion, the reduced seizure severity induced by TFS in combination
with pharmacotherapy can represent a novel strategy to avoid the
drug-resistant phenotype.

In drug-resistant epilepsy, Pgp overexpression limits the brain
penetration of anti-seizure drugs from blood to cerebral parench-
yma [51]. The blockage of Pgp expression and/or function is con-
sidered a therapeutic strategy to control drug-resistant seizures
[52]. The administration of Pgp inhibitors such as tariquidar or
nimodipine reverses the drug-resistant phenotype [19,20,22,23].
However, these drugs induce side effects and their clinical use is
inconclusive [53–56]. The results obtained from the present study
support that TFS represents a novel therapeutic strategy to reduce
Pgp expression and function.

Electrical modulation of the brain maybe applied in combina-
tion with anti-seizure drugs to get good control of seizures. How-
ever, the potential advantages of such combination may depend
on the mechanisms underlying the inhibitory effects. Studies indi-
cate that anti-seizure drugs enhancing GABAergic neurotransmis-
sion augment the effects induced by deep-brain stimulation,
whereas Na+ channel blockers avoid its protective effects [57].
We previously reported that TFS augmented the effects of subeffec-
tive doses of diazepam when applied in rats during pilocarpine-
induced status epilepticus [6]. The present study revealed that TFS
combined with PHT (PHT-TFS-MPA treatment of experiment 2)
was able to reduce the expression of the MPA-induced major sei-
zures. This group of evidence suggests that TFS can be combined
with different anti-seizure drugs with diverse mechanisms. This
situation represents a potential condition of TFS over other types
of electrical modulation of the brain, especially in drug-resistant
epilepsy.

Our previous studies support that short TFS is effective in con-
trolling acute seizures [1–4] and status epilepticus when combined
with a subeffective dose of diazepam [6,8]. In the present study, we
found that 5min of TFS was effective to reduce drug-resistant sei-
zures. However, 5min may be too short a period of TFS to abort sei-
zures in subjects with drug-resistant epilepsy. Further studies are
essential to determine if TFS is effective in experimental models
of drug-resistant epilepsy with short, on and off, stimulation proto-
cols such as vagal nerve stimulation and deep-brain stimulation
[58,59].
5. Conclusion

The overall effects of TFS make it a valuable Pgp modulator. Fur-
ther, TFS in combination with anti-seizure drugs can be advanta-
geous as a therapeutic alternative for drug-resistant epilepsy
over pharmacologic Pgp-inhibitors since it is noninvasive, non-
pharmacologic, and does not appear to have side effects. Neverthe-
less, more research is needed to elucidate the most effective clini-
cal indications.
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