
Microarchitecture Support for

Interconnect Power-aware

Instruction Permutation

Hui Lin, Md. Sajjad Rahaman and

Prof. Masud H Chowdhury

ECE Department, University of Illinois at Chicago

Outline

 Introduction & Background

 Problem Statement

 Detail Design to Reorder Instructions

 Experiments Analysis

Introduction

Power Consumption Interconnect Bus

 VLSI technology steps into the deep sub-
micrometer (DSM) level

 Resulting in reduction on component spacing

 Resulting in complication of interconnect network

 Self and coupling capacitance badly affects
power consumption

 Effective values are affected by physical features
as well as dynamic bit values

Background Work

 Physical approaches to reduce the power

consumption on interconnect bus

 Shielding line

 Reformat the physical interconnect lines

 Logic approaches

 Encoding/decoding: operation can change the resulting bits

values as well as the switching activity

 Compiler design: change the instructions order or register

name

Separating Program Behavior in Processor

and at Interconnect

 Processor execute instructions from the binary code

stored in memory

 It only retrieves instructions from the Cache.

 Interconnect bus transmits instructions, data values,

as well as commands

 Reorder instructions in the memory which reduces

the switching activity during transmission

 Operations is performed during every cache miss

Problem Statement

Interconnect Bus Model

 RC interconnect model is used describe

interconnect bus connecting processor and memory

 Dynamic power is represented as

 P=α(Cc+Cg)Vdd
2f or

 P=(1+Ncλ)αCgVdd
2f

 Nc is used to describe dynamic factor as bit values

change

Design Objective

 Reorders program’s binary code stored in

memory in the size of cache line into the

power efficient format

 Reduce the overhead of index table which is

used to reinstate the instruction in the cache

Detail Design to Reorder

Instructions

Overview of Permutation Algorithm

 When instructions are stored in the memory, reorder

instructions according to cache line size

 No consideration on data or control dependency

 Could be done offline

 Construct 1D index table which is used to recover

instructions original order

 How to manage such index table?

 Its transmission requires extra power consumption. In the

same level of transmission of reformatted instruction block

Framework of Power Efficient Instruction

Rescheduling

Disk Drive

Application’s

executable code

Instruction block #1

Instruction block #2

…

Instruction block #n

Instruction #1

Instruction #2

….

Instruction #r

Cache

Transmitting
1.instructions in power
 efficient format
2. index table for restoring

Scheduling to power
efficient before
loading to the
memory

Main Memory

Instruction Permutation

 Bit values within instructions are correlated to

each other

 Divided into several field: opcode, source register,

destination register

 RISC instruction set is adopted

 Reorder instruction from field to field

Instruction Permutation (cont’d)

 Grouping instructions with same opcode

 Number of opcode used is very limited

 Efficient algorithm existed

 Further algorithm design does not jeopardize the

power reduction done before

 Reordering within each group

 With small size, inefficient algorithm can be used

Index Table Construction

 The index table contains relationship between

instructions in its original format and ones in its

power efficient format

 Relative location of instructions are recorded

ADD r0, r1, r2

ADD r2, r3, 5

ADD r2 r0, r2

SUB r3, r2, r1

SUB r4, r5, r0

MUL r2, r2, 4

LW r1, 4 (r2)

LW r3, 3 (r4)

001

100

010

101

111

110

000

011

LW r1, 4 (r2)

 ADD r0, r1, r2

 ADD r2 r0, r2

LW r3, 3 (r4)

ADD r2, r3, 5

SUB r3, r2, r1

MUL r2, r2, 4

SUB r4, r5, r0

Index Table

Index Table Overhead Analysis

 Power consumption

 Index table is sent before instructions

 Transmission of Index table itself will cause same
level of power consumption as the reordered
instructions do

 Reduce the frequency of transmission: store all of
them into processor

 Storing index table also introduces extra power
consumption
 Not dominating as technology goes to small level

Index Table Overhead Analysis (Cont’d)

 Area overhead

 Reorder operations is much easier than the

encoding/decoding circuit

 Storing space is small comparing to the cache

size

 Performance overhead

 The performance comes from accessing index

table

 Increase the cache miss penalty

Experiments Analysis

Power Reduction Achieved

 Switching activity is counted for both original

instructions format and the power efficient

format

 Self and coupling capacitance are calculated

separately

 The effect of grouping and intra-group

permutation are compared

 Overall complexity can be regarded as

O(Nlog2N)

Power Reduction Result

0

10

20

30

40

50

60

bzip2 crafty eon gcc gzip parser vortex

R
ed

uc
tio

n
of

 s
w

itc
hi

ng

ac
tiv

ity
 fo

r s
el

f-c
ap

ac
ita

nc
e

(%
)

Opcode permutation Intra-group permuation

0

5

10

15

20

25

30

35

40

bzip2 crafty eon gcc gzip parser vortex

R
ed

uc
tio

n
of

 s
w

itc
hi

ng

ac
tiv

ity
 fo

r c
ou

pl
in

g-
ca

pa
ci

ta
nc

e
(%

)

Opcode permutation Intra-group permutation

Index Table Overhead

 In order to reduce the frequency to transmit

index table during the runtime, storing all of

them in the processor

 Implemented as a level-2 cache: 20k byte

size can meet most application programs

 Area, power consumption and access latency

are get from the simulation under CACTI 5.0

Area, Power & Access Time Overhead

Technology

node

Overhead

criterion

L2 Cache

(256k)

Index Table

(20k)

Overhead

90nm Area (mm^2) 7.6317 1.0682 14.0%

Power (W) 0.62060 0.16960 27.3%

Access time (ns) 1.6857 0.86934 51.6%

65nm Area (mm^2) 3.9857 0.55717 14.0%

Power (W) 0.47897 0.13750 28.7%

Access time 1.1932 0.58601 49.1%

32nm Area (mm^2) 0.96800 0.13506 14.0%

Power (W) 0.43274 0.08099 18.7%

Access time (ns) 0.60690 0.25402 41.9%

Any questions?

Thanks

