Microarchitecture Support for

Interconnect Power-aware
Instruction Permutation

Hui Lin, Md. Sajjad Rahaman and
Prof. Masud H Chowdhury
ECE Department, University of lllinois at Chicago

‘ Outline

= Introduction & Background

= Problem Statement

= Detall Design to Reorder Instructions
= Experiments Analysis

Introduction

Power Consumption Interconnect Bus

= VLSI technology steps into the deep sub-
micrometer (DSM) level

o Resulting in reduction on component spacing
o Resulting in complication of interconnect network

= Self and coupling capacitance badly affects
power consumption

o Effective values are affected by physical features
as well as dynamic bit values

‘ Background Work

= Physical approaches to reduce the power
consumption on interconnect bus
o Shielding line
o Reformat the physical interconnect lines

= Logic approaches

o Encoding/decoding: operation can change the resulting bits
values as well as the switching activity

o Compiler design: change the instructions order or register
name

Separating Program Behavior in Processor
and at Interconnect

= Processor execute instructions from the binary code
stored in memory
o It only retrieves instructions from the Cache.

= Interconnect bus transmits instructions, data values,
as well as commands

= Reorder instructions in the memory which reduces
the switching activity during transmission

= Operations is performed during every cache miss

Problem Statement

Interconnect Bus Model

= RC interconnect model is used describe
Interconnect bus connecting processor and memory

= Dynamic power is represented as
0 P=a(C+C)Vt or
0 P=(1+NA)aC V
o N, Is used to describe dynamic factor as bit values
change

‘ Design Objective

= Reorders program’s binary code stored in
memory In the size of cache line into the
power efficient format

= Reduce the overhead of index table which iIs
used to reinstate the instruction in the cache

Detail Design to Reorder
Instructions

‘Overview of Permutation Algorithm

= When instructions are stored in the memory, reorder
Instructions according to cache line size

2 No consideration on data or control dependency
o Could be done offline

o Construct 1D index table which is used to recover
Instructions original order

= How to manage such index table?

o Its transmission requires extra power consumption. In the
same level of transmission of reformatted instruction block

Framework of Power Eftficient Instruction

Rescheduling

Disk Drive Main I\/lemorv

Cac.he
o ¢ o
o I Instruction block #1 ———
- nstruction
Application’s N : Z Instructlon.block #2 Instruction £2
executable code /J __
Scheduling to power | Instruction block #n Instruction #r
) efficient ~ before o A .
o loading to the ® | Transmitting °
memory L.instructions in power
- / efficient format
2. index table for restoring

N _

Instruction Permutation

= Bit values within instructions are correlated to
each other

o Divided into several field: opcode, source register,
destination register

o RISC instruction set is adopted
o Reorder instruction from field to field

Instruction Permutation (cont d)

= Grouping instructions with same opcode
o Number of opcode used is very limited
o Efficient algorithm existed

o Further algorithm design does not jeopardize the
power reduction done before

= Reordering within each group
a2 With small size, inefficient algorithm can be used

‘ Index Table Construction

= The index table contains relationship between
Instructions in its original format and ones in its
power efficient format

= Relative location of instructions are recorded

Index Table
ADDrO,rl,r2 > 001 LW rl. 4 (r2)
ADDr2,r3,5 [—¥» 100 ADD 0, rl, r2
ADD r2 r0, r2 » 010 ADD r2 r0. 12
SUBr3, r2,r1 [—” 101 LW r3, 3 (r4)
SUBr4,r5r0 [» 111 ADD r2, r3, 5
MULIr2,r2,4 [> 110 SUBr3,r2,rl
LWrl,4(r2) [000 MUL r2, r2, 4
LWr3,3(r4) [——*_ 011 SUB r4, r5, r0

Index Table Overhead Analysis

= Power consumption

a
a

Index table I1s sent before instructions

Transmission of Index table itself will cause same
level of power consumption as the reordered
Instructions do

Reduce the frequency of transmission: store all of
them into processor

Storing index table also introduces extra power
consumption
= Not dominating as technology goes to small level

Index Table Overhead Analysis (Cont d)

= Area overhead

o Reorder operations is much easier than the
encoding/decoding circuit

o Storing space is small comparing to the cache
size
= Performance overhead

o The performance comes from accessing index
table

o Increase the cache miss penalty

Experiments Analysis

Power Reduction Achieved

= Switching activity is counted for both original
Instructions format and the power efficient
format

= Self and coupling capacitance are calculated
separately

= The effect of grouping and intra-group
permutation are compared

= Overall complexity can be regarded as
O(Nlog,N)

‘ Power Reduction Result

Opcode permutation H Intra-group permuation

MANNNN

O O O O O O O
©O O < MO N «

(05) doUENORdRD-J|8S J0) AlIAIOR
Buiyonms Jo uononpay

parser vortex

crafty eon gcc gzip

bzip2

Opcode permutation H Intra-group permutation

omnmoumowmouwmo
ST MM NN A

(95) @ouenoedes-Huidnoa Joj Aianoe
BuIyaNMS JO uonanpay

crafty eon gcc gzip parser vortex

bzip2

‘ Index Table Overhead

= |n order to reduce the frequency to transmit
iIndex table during the runtime, storing all of
them in the processor

= Implemented as a level-2 cache: 20k byte
size can meet most application programs

= Area, power consumption and access latency
are get from the simulation under CACTI 5.0

Area, Power & Access Time Overhead

Technology Overhead L2 Cache Index Table Overhead

node criterion (256Kk) (20k)

90nm Area (mm”2) 7.6317 1.0682 14.0%
Power (W) 0.62060 0.16960 27.3%
Access time (ns) 1.6857 0.86934 51.6%

65nm Area (mm~”2) 3.9857 0.55717 14.0%
Power (W) 0.47897 0.13750 28.7%
Access time 1.1932 0.58601 49.1%

32nm Area (mm~”2) 0.96800 0.13506 14.0%
Power (W) 0.43274 0.08099 18.7%
Access time (ns) 0.60690 0.25402 41.9%

Any questions?

Thanks

