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Abstract—This paper proposes a new instruction permutation 
encoding mechanism to deal with power dissipation issue on 
interconnect bus between processor and memory. When 
program executable code is loaded into memory, instructions 
are re-scheduled, block by block, into a power efficient format. 
As a result, on cache miss when instruction block from memory 
is required, power consumption during transmission of 
instruction between memory and processor end on interconnect 
bus is reduced. Reorder operation does not require any 
encoding/decoding circuitry. In order to restore instructions into 
its original order, an index table is employed with a reasonable 
area, power and access time overhead. Results based on the 
SPEC CPU2000 benchmark suit show that self- and coupling 
capacitance switching is reduced by 40% and 30%, respectively, 
with an area overhead of 14% at 65 nm technology node. It is 
also shown that intra-group instruction permutation after 
opcode permutation does not reduce self- and coupling switching 
activities by a significant amount. 
 

I. INTRODUCTION 
With advancement of VLSI technology into the deep sub-

micrometer (DSM) level, large reduction on component 
spacing and complication of interconnect network increases 
self and coupling capacitance, which badly affects the power 
and energy efficiency. Many researches turn to encoding to 
reduce power consumption in interconnect bus. Cheng and 
Pedram provide a summary on the different types of encoding 
design, most of which introduce complicated 
encoding/decoding circuit [1]. Murgai et al. first design a 
theory model of a permutation encoding with no circuit 
overhead [5]. They generalize Data Ordering Problem (DOP), 
prove its equivalency to the TSP problem and provide three 
different heuristic algorithms to solve it. Many researches 
encode instruction bus data based on a DOP problem. 
Macchiarulo et al. presents a permutation mechanism on the 
physical interconnects buses [4]. Their work largely depends 
on circuit’s work-loads, which requires reprogram-able circuit. 
Kuo et al. provide post compiler level approach to use code 
optimization methods to reduce the number of 4C and 3C 
crosstalk effect [2][3]. But their algorithm is effective within a 
basic block range and works only for delay latency reduction. 
Petrov and Orailoglu provide another original encoding on the 
instruction bus which focuses on single bit stream occurred on 
every individual bus line [6]. However, decoding circuit is 
comparatively complex in this approach.  

Former researches usually ignore a fact that interconnect 
bus transmits instruction as well as data. Interleaving of 
instruction and data makes bus behavior less predictable. We 
focus on every instruction cache miss during which a block of 

instructions transmits sequentially. Such a block is stored in a 
cache line. Within this period, instruction order and type 
becomes deterministic based on executable code itself.  

We reformat missed instructions block such that it can 
reduce the power consumption transmitted in interconnect bus. 
After instructions reach processor end, we recover the original 
executable code based on an index table constructed during 
former reorder operation. The idea in this paper is to separate 
bus behavior to behavior in the processor. Our contributions in 
this paper are as follows: 

• Instruction permutation encoding breaks data and control 
dependencies. With little restriction to reorder algorithm, 
a big potential budget to reduce switching activity and 
crosstalk can be made.  

• Instruction is usually divided into several parts, such as 
opcode, register and functions fields. Since operation and 
register used is usually limited in a program, we propose a 
heuristic to reduce the bit switching activity on each 
instruction field recursively.  

• There is no encoding/decoding hardware overhead in our 
technique. Later in the paper, we will show that Index 
table only introduces a reason area, power and 
performance overhead.  

The rest of paper is organized as follows. In Section II, we 
describe bus as RC interconnect model and provides our 
objective. In Section III, we include details on permutation 
algorithm and introduce index table. The experiment setup and 
result are presented in the Section IV. Finally, we conclude at 
Section V. 

 
II. PROBLEM STATEMENT 

In this paper, we use RC interconnect model to describe 
interconnect bus connecting processor chip and memory. Cg 
describes self capacitance while Cc is used to represent 
coupling capacitance. As technology goes to sub-micron level, 
Cc is contributing more to power dissipation than Cg is. In RC 
interconnect model, dynamic power, contributed by both type 
of capacitances, is given by:  
 P=α(Cc+Cg)Vdd

2f (1) 
where α describes average number of transmission,  Vdd is the 
supply voltage and f is the clock frequency. 

As Cg, Vdd are fixed for a given technology process, 
effective values of Cc is also affected by switching activity 
occurred on the adjacent bus lines. With defined ratio λ=Cc/Cg, 
power consumption expression is function of λ, such as  
 P=(1+Ncλ)αCgVdd

2f (2) 



where Nc is used to describe dynamic factor as bit values 
change.  

The problem is defined as: setting power model as the 
objective function, our approach reorders program’s binary 
code stored in memory in the size of cache line into the power 
efficient format. Since instruction size and cache line size are 
known beforehand, algorithm can be made offline. To restore 
instructions into its original format, the algorithm constructs 
an index table during the instructions permutation process.  

 
III. POWER REDUCTION OF INSTRUCTION RESCHEDULING IN 

INTERCONNECT BUS 

A. Overview of permutation algorithm 
A program usually follows similar execution procedure: 

first load executable binary code from disk into main memory; 
then the processor begins execution by fetching instructions 
from cache. If cache miss happens, processor fetches needed 
instructions from memory. We define program’s processor 
behavior as instruction traces that are executed in processor 
core [10]. Processor behaviors are different with different 
executable code and restricted by data and control dependency. 

Similarly, we define interconnect bus behavior by 
observing bit values transmitted via the bus. The bus behavior 
is triggered by cache miss and its values are defined by 
instructions in program’s address. However, bus behavior is 
different from processor behavior in following aspects: 1) bits 
values transmitted via bus is interleaved by the instruction bit, 
data bits and other management data, such as the page table 
information; 2) When cache miss occurs, processor follows 
the locality rule and requires transmission of a instruction 
block instead of a single missed one. Processor stores fetched 
block in cache as a cache line or cache block.  

As long as instructions stored in cache line matches the 
code in memory, proper execution is guaranteed. Based on 
this observation, we separate interconnect bus behavior from 
the processor behavior. While processor behavior decides 
program’s function, interconnect bus behavior is rearranged to 
reduce power consumption. Although bus behavior becomes 
unpredictable due to interleaving of data and instructions, it 
becomes deterministic during instruction cache miss. Memory 
searches required instruction block and transmits it without 
interruption. In this paper, we focus on bus behavior from 
instruction block. Since instructions are known from 
executable file before processor loads them into the memory, 
we can easily apply the algorithm during the compiler level, 
which further reduce performance overhead. Similarly, our 
algorithm can also apply on data block during runtime, which 
increases data cache miss penalty.  

The algorithm starts when processor loads program’s 
executable code into main memory. We divide program into 
different sections based on size of a cache line. Then we 
perform rescheduling operation on each section. 
Aforementioned power consumption model decides 
algorithm’s optimization objective. In order to restore original 
instruction set for the proper execution, we construct an index 
table during permutation. The index table is an one 
dimensional (1D) table which is described in detail later in the 

paper. By introducing a small area overhead, index table 
eliminates complex encoding/decoding circuitry both in the 
memory end and processor. Fig. 1 shows the basic procedure 
to perform the instruction permutation.  
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Figure 1 Framework of Power Efficient Instruction Rescheduling 

 

B. Instruction permutation 
Re-sequencing instructions block is equivalent to TSP 

problem, which is NP-complete. Usually, instructions’ 
structure is divided into several fields to represent opcode, 
register, function, etc. Our heuristic adopts “divide & 
conquer” concept to reduce switching actively on each field of 
instruction recursively. For better explanation, we use RISC 
instruction set in which instructions share the same length. To 
apply the algorithm in CISC is also applicable by considering 
about alignment of different instructions.  

1) Grouping same opcode 
First, we group instructions with the same opcodes 

together. For example, first 6 bits of MIPS and Alpha 
instructions are opcodes. Although, a program can have 
thousands instructions, the number of opcodes values is 
restricted to 64 (26) in this situation.  

On the other hand, modern assembler will also do some 
optimization which can help reduce the number of opcodes 
values. For instance, many assemblers will transform the 
operations such as, LI (load immediate) and SUBU (subtract 
unsigned), to the adding operation directly [11].  

Two benefits are achieved by grouping instructions with 
same opcode. Firstly, adjacent instructions within the group 
have exactly zero self- and coupling-capacitance for opcode 
field. Crosstalk effect only happens between different groups. 
This already reduces large number of switching activities.  

The second benefit is that further recursive permutation 
made within a group will not affect adjusted crosstalk effect 
on the opcode field, and only further reduce switching activity 
on other field, such as destination or function field.  

We are using existing sorting algorithm to group 
instructions in O(Nlog2N) running time. The reason is that 
sorting opcode value puts instructions with same opcode 
together.  

2) Intra group permutation 
The size on every instruction group is thus reduced after 

the first stage of permutation and this provides larger 
flexibility to make the intra group permutation. At this stage, 
if group size is still large, we can simply recursively apply 
grouping on other field. For example, for the alpha instruction 
set, bit 21 to bit 25 indicates the destination register for the 
most (except PALcode) instructions [12]. Once group size 



becomes small enough, an intra-group permuation is applied 
to explore the possibility of further reduction of both self- and 
coupling switching activities within the group. In this case, a 
greedy algorithm is applied. Starting from the first instruction 
in the group, the next instruction is selected based on the 
minimum number of switching in this exhaustive search 
method.  

Table I shows the pseudo code for our complete heuristic, 
which includes both the grouping on opcodes and the intra 
group permutation. 

TABLE I.  INSTRUCTION PERMUTATION ALGORITHM 
Procedure Grouping(I, field) 
Sort I according to the values in the designated field. 
Group the instruction with the same field values 
 
input: I = (I1, I2,…, Ik) is the block of instructions with the size of k. 
Define constant Groupsize 
procedure PowerFormat(I) 
Grouping(I, “opcode”) 
while 1 do 
for each group G in I 
if size of G is larger than Groupsize then 
Grouping(I, next-filed) 
else 
intra-group permutation()   //exhaustive search in the group 
endfor 
endwhile 
Output: I = (I1, I2,…, Ik) block of instructions in power efficient format 
               
 

 

ADD r0, r1, r2 
ADD r2, r3, 5 
ADD r2 r0, r2 
SUB r3, r2, r1 
SUB r4, r5, r0 
MUL r2, r2, 4 
LW r1, 4 (r2) 
LW r3, 3 (r4) 

001 
100 
010 
101 
111 
110 
000 
011 

LW r1, 4 (r2) 
 ADD r0, r1, r2 
 ADD r2 r0, r2 

 
LW r3, 3 (r4) 

 
ADD r2, r3, 5 

 SUB r3, r2, r1 

 MUL r2, r2, 4 

 SUB r4, r5, r0 

 

Index Table 

 
Figure 2 Index Table Example 

 

C. Constructing index table for instruction restoration 
1) Index table structure 

During instruction permutation, a one dimensional index 
table is constructed. The index table contains relationship 
between instructions in its original format and ones in its 
power efficient format.   

Fig. 2 shows an example of index table with the eight 
instructions block. The table contains the same number of the 
entries as the instruction block. Each entry records original 
location of an instruction in power efficient format. In order to 

describe relative location, number of bits in every entry has to 
be at least log2N, with N as the size of instruction block. In this 
example, cache line contains 8 instruction, the table size is 8 
entries with each entry has log28=3 bits.   

2) Index table overhead analysis 
After instructions reach processor, index table is consulted. 

As a result, memory has to send index table before sending the 
instructions. We propose to store index table in the processor 
end to reduce power consumption of transmitting index table 
itself on the bus. By introducing small area overhead in the 
processor, index table eliminates complicated 
encoding/decoding circuit on both processor and memory.  

Storing index table also introduces extra power 
consumption in processor. As technology advances into 
smaller scale, such consumption becomes smaller while 
interconnect bus power becomes dominating. Later in the 
paper, we show that our approach trade-off only small power 
increase in the processor while reduce large part of the power 
in the interconnect bus.  

Finally, when cache miss occurs, instruction block 
accesses index table. This also results in extra clock cycles in 
instruction cache miss. Since we focus performance loss only 
in instruction cache miss penalty, this introduces ignorable 
performance loss for program’s execution.  

IV. SIMULATION RESULTS 
In this section, we provide experiment result of power 

reduction from our heuristic and then analyze overhead made 
by index table.  
A. Interconnect bus power dissipation 

We count switching activities on on-chip interconnect for 
both self- and coupling capacitances. The executable file is 
divided into different blocks and block size (thus the cache 
line size) is varied from 32 instructions to 256 instructions. 
Power consumption is calculated block by block and the 
average value is calculated to make comparison. SPEC CPU 
2000 suite is used for simulation here [9]. The benchmark is 
directly compiled to little-endian alpha-executables. Seven 
integer program benchmarks (bzip2, crafty, eon, gcc, gzip, 
parser and vortex) are chosen. As seen in the Fig. 3 self- and 
coupling capacitance switching are reduced by about 40% and 
30%, respectively. Besides, it is shown that intra-group 
permutation within blocks does not reduces power dissipation 
by a greater margin. 
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Figure 3. Percentage of self- and mutual-capacitance switching reduction with respect to original and scheduled instruction technique on SPEC CPU2000 
benchmark for instruction buses 



As mentioned before, the complexity for the heuristic that 
groups the instructions based on the opcode fields is O(Nlog2N) 
and  the intra-group permutation imposes a  complexity of 
O(N2). Since the each group size is very small in size 
compared to the entire executable file, the complexity for the 
intra-group permutation can be neglected. Thus, the entire 
heuristic basically has a complexity of O(Nlog2N). 

 
B. Index table overhead 

To recover instruction block to its original format, index 
table is stored in the processor end. We construct an index 
table as an extra level-2 cache. As mentioned before, each 
entry is log2N bits, so table size is (a*log2N)/8 bytes, in which 
N is cache line size and a is number of blocks in the 
executable file. For the benchmark that we experiment, vortex 
requires largest index table with the size of 19.75k bytes. 
Consequently, we choose table size as 20k bytes. Even with 
larger executable files, this size can also reduce table 
transmission to only 3 or 4 times. We simulate area, power 
consumption and access time of index table under CACTI 5.0 
[13] and provide result in Table II.  

 
TABLE II.  AREA, POWER AND ACCESS TIME OVERHEAD FOR INDEX 

TABLE 
Technology 
node 

Overhead 
criterion 

L2 Cache 
(256k) 

Index Table 
(20k) 

Overhead 

90nm 
 

Area (mm^2) 7.6317 1.0682 14.0% 
Power (W) 0.62060 0.16960 27.3% 
Access time (ns) 1.6857 0.86934 51.6% 

65nm 
 

Area (mm^2) 3.9857 0.55717 14.0% 
Power (W) 0.47897 0.13750 28.7% 
Access time 1.1932 0.58601 49.1% 

32nm 
 

Area (mm^2) 0.96800 0.13506 14.0% 
Power (W) 0.43274 0.08099 18.7% 
Access time (ns) 0.60690 0.25402 41.9% 

 
 
We choose the size of level-2 cache as 256k bytes, with 1-

set associativity and 1 bank. This cache size is smaller than 
what is used in current processor design. Area overhead stays 
at the level of 15%. At present technology nodes, interconnect 
bus power dissipation dominates total chip power level as 
processor’s power consumption is decreasing. Even though 
index table requires power, a net power reduction is achieved 
with increasing level of power dissipation on interconnect. 
Besides, it is also seen that access time for index table 
decreases with technology nodes. Even with largest delay of 
access time of 0.86934 nsec, in a processor with 2 GHz 
frequency, this is equivalent to not more than 2 clock cycles. 
This access delay is less than 10% of the original cache-miss 
penalty. As a result, accessing index table delay overhead has 
very little impact on the program’s execution. 

   
V. SUMMARY AND CONCLUSION 

In this paper, we present an original instruction 
permutation heuristic to reduce self- and mutual-capacitance 

switching activity. We break all data and control constraints 
on instruction execution order and transfer them into a totally 
different power efficient format. A linear-dimension index 
table is constructed to restore instruction’s original order. So 
permutation reduces power consumption in interconnect bus 
while maintaining program’s proper execution. Index table is 
built as an extra cache in processor side and every time a 
block of reordered instructions is transmitted, it consults the 
corresponding index table and restores instruction order.  

With different cache line size, our heuristic shows great 
reduction on switching activities, resulting in promising 
reduction in power consumption. Our simulation on SPEC 
CINT 2000 benchmark shows that self- and coupling 
capacitance switching are reduced by 40% and 30%, 
respectively. On the other hand, the index table only 
introduces a reasonable area overhead by comparing its size to 
the cache size. Our estimation is actually pessimistic and in 
the general purpose computer the large level-2 cache will 
make the area overhead ignored.   
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