
Microarchitecture Support for Interconnect Power-
aware Instruction Permutation

Hui Lin, Md. Sajjad Rahaman and Masud H Chowdhury
ECE Department, University of Illinois at Chicago, Chicago, IL 60607, USA

Email: {hlin, mrahaman, masud}@ece.uic.edu

Abstract—This paper proposes a new instruction permutation
encoding mechanism to deal with power dissipation issue on
interconnect bus between processor and memory. When
program executable code is loaded into memory, instructions
are re-scheduled, block by block, into a power efficient format.
As a result, on cache miss when instruction block from memory
is required, power consumption during transmission of
instruction between memory and processor end on interconnect
bus is reduced. Reorder operation does not require any
encoding/decoding circuitry. In order to restore instructions into
its original order, an index table is employed with a reasonable
area, power and access time overhead. Results based on the
SPEC CPU2000 benchmark suit show that self- and coupling
capacitance switching is reduced by 40% and 30%, respectively,
with an area overhead of 14% at 65 nm technology node. It is
also shown that intra-group instruction permutation after
opcode permutation does not reduce self- and coupling switching
activities by a significant amount.

I. INTRODUCTION
With advancement of VLSI technology into the deep sub-

micrometer (DSM) level, large reduction on component
spacing and complication of interconnect network increases
self and coupling capacitance, which badly affects the power
and energy efficiency. Many researches turn to encoding to
reduce power consumption in interconnect bus. Cheng and
Pedram provide a summary on the different types of encoding
design, most of which introduce complicated
encoding/decoding circuit [1]. Murgai et al. first design a
theory model of a permutation encoding with no circuit
overhead [5]. They generalize Data Ordering Problem (DOP),
prove its equivalency to the TSP problem and provide three
different heuristic algorithms to solve it. Many researches
encode instruction bus data based on a DOP problem.
Macchiarulo et al. presents a permutation mechanism on the
physical interconnects buses [4]. Their work largely depends
on circuit’s work-loads, which requires reprogram-able circuit.
Kuo et al. provide post compiler level approach to use code
optimization methods to reduce the number of 4C and 3C
crosstalk effect [2][3]. But their algorithm is effective within a
basic block range and works only for delay latency reduction.
Petrov and Orailoglu provide another original encoding on the
instruction bus which focuses on single bit stream occurred on
every individual bus line [6]. However, decoding circuit is
comparatively complex in this approach.

Former researches usually ignore a fact that interconnect
bus transmits instruction as well as data. Interleaving of
instruction and data makes bus behavior less predictable. We
focus on every instruction cache miss during which a block of

instructions transmits sequentially. Such a block is stored in a
cache line. Within this period, instruction order and type
becomes deterministic based on executable code itself.

We reformat missed instructions block such that it can
reduce the power consumption transmitted in interconnect bus.
After instructions reach processor end, we recover the original
executable code based on an index table constructed during
former reorder operation. The idea in this paper is to separate
bus behavior to behavior in the processor. Our contributions in
this paper are as follows:

• Instruction permutation encoding breaks data and control
dependencies. With little restriction to reorder algorithm,
a big potential budget to reduce switching activity and
crosstalk can be made.

• Instruction is usually divided into several parts, such as
opcode, register and functions fields. Since operation and
register used is usually limited in a program, we propose a
heuristic to reduce the bit switching activity on each
instruction field recursively.

• There is no encoding/decoding hardware overhead in our
technique. Later in the paper, we will show that Index
table only introduces a reason area, power and
performance overhead.

The rest of paper is organized as follows. In Section II, we
describe bus as RC interconnect model and provides our
objective. In Section III, we include details on permutation
algorithm and introduce index table. The experiment setup and
result are presented in the Section IV. Finally, we conclude at
Section V.

II. PROBLEM STATEMENT

In this paper, we use RC interconnect model to describe
interconnect bus connecting processor chip and memory. Cg
describes self capacitance while Cc is used to represent
coupling capacitance. As technology goes to sub-micron level,
Cc is contributing more to power dissipation than Cg is. In RC
interconnect model, dynamic power, contributed by both type
of capacitances, is given by:
 P=α(Cc+Cg)Vdd

2f (1)
where α describes average number of transmission, Vdd is the
supply voltage and f is the clock frequency.

As Cg, Vdd are fixed for a given technology process,
effective values of Cc is also affected by switching activity
occurred on the adjacent bus lines. With defined ratio λ=Cc/Cg,
power consumption expression is function of λ, such as
 P=(1+Ncλ)αCgVdd

2f (2)

where Nc is used to describe dynamic factor as bit values
change.

The problem is defined as: setting power model as the
objective function, our approach reorders program’s binary
code stored in memory in the size of cache line into the power
efficient format. Since instruction size and cache line size are
known beforehand, algorithm can be made offline. To restore
instructions into its original format, the algorithm constructs
an index table during the instructions permutation process.

III. POWER REDUCTION OF INSTRUCTION RESCHEDULING IN

INTERCONNECT BUS

A. Overview of permutation algorithm
A program usually follows similar execution procedure:

first load executable binary code from disk into main memory;
then the processor begins execution by fetching instructions
from cache. If cache miss happens, processor fetches needed
instructions from memory. We define program’s processor
behavior as instruction traces that are executed in processor
core [10]. Processor behaviors are different with different
executable code and restricted by data and control dependency.

Similarly, we define interconnect bus behavior by
observing bit values transmitted via the bus. The bus behavior
is triggered by cache miss and its values are defined by
instructions in program’s address. However, bus behavior is
different from processor behavior in following aspects: 1) bits
values transmitted via bus is interleaved by the instruction bit,
data bits and other management data, such as the page table
information; 2) When cache miss occurs, processor follows
the locality rule and requires transmission of a instruction
block instead of a single missed one. Processor stores fetched
block in cache as a cache line or cache block.

As long as instructions stored in cache line matches the
code in memory, proper execution is guaranteed. Based on
this observation, we separate interconnect bus behavior from
the processor behavior. While processor behavior decides
program’s function, interconnect bus behavior is rearranged to
reduce power consumption. Although bus behavior becomes
unpredictable due to interleaving of data and instructions, it
becomes deterministic during instruction cache miss. Memory
searches required instruction block and transmits it without
interruption. In this paper, we focus on bus behavior from
instruction block. Since instructions are known from
executable file before processor loads them into the memory,
we can easily apply the algorithm during the compiler level,
which further reduce performance overhead. Similarly, our
algorithm can also apply on data block during runtime, which
increases data cache miss penalty.

The algorithm starts when processor loads program’s
executable code into main memory. We divide program into
different sections based on size of a cache line. Then we
perform rescheduling operation on each section.
Aforementioned power consumption model decides
algorithm’s optimization objective. In order to restore original
instruction set for the proper execution, we construct an index
table during permutation. The index table is an one
dimensional (1D) table which is described in detail later in the

paper. By introducing a small area overhead, index table
eliminates complex encoding/decoding circuitry both in the
memory end and processor. Fig. 1 shows the basic procedure
to perform the instruction permutation.

Disk Drive

Application’s
executable code

Instruction block #1
Instruction block #2

 …

Instruction block #n

Instruction #1
Instruction #2

….
Instruction #r

Cache

Transmitting
1.instructions in power
 efficient format
2. index table for restoring

Scheduling to power
efficient before
loading to the
memory

Main Memory

Figure 1 Framework of Power Efficient Instruction Rescheduling

B. Instruction permutation
Re-sequencing instructions block is equivalent to TSP

problem, which is NP-complete. Usually, instructions’
structure is divided into several fields to represent opcode,
register, function, etc. Our heuristic adopts “divide &
conquer” concept to reduce switching actively on each field of
instruction recursively. For better explanation, we use RISC
instruction set in which instructions share the same length. To
apply the algorithm in CISC is also applicable by considering
about alignment of different instructions.

1) Grouping same opcode
First, we group instructions with the same opcodes

together. For example, first 6 bits of MIPS and Alpha
instructions are opcodes. Although, a program can have
thousands instructions, the number of opcodes values is
restricted to 64 (26) in this situation.

On the other hand, modern assembler will also do some
optimization which can help reduce the number of opcodes
values. For instance, many assemblers will transform the
operations such as, LI (load immediate) and SUBU (subtract
unsigned), to the adding operation directly [11].

Two benefits are achieved by grouping instructions with
same opcode. Firstly, adjacent instructions within the group
have exactly zero self- and coupling-capacitance for opcode
field. Crosstalk effect only happens between different groups.
This already reduces large number of switching activities.

The second benefit is that further recursive permutation
made within a group will not affect adjusted crosstalk effect
on the opcode field, and only further reduce switching activity
on other field, such as destination or function field.

We are using existing sorting algorithm to group
instructions in O(Nlog2N) running time. The reason is that
sorting opcode value puts instructions with same opcode
together.

2) Intra group permutation
The size on every instruction group is thus reduced after

the first stage of permutation and this provides larger
flexibility to make the intra group permutation. At this stage,
if group size is still large, we can simply recursively apply
grouping on other field. For example, for the alpha instruction
set, bit 21 to bit 25 indicates the destination register for the
most (except PALcode) instructions [12]. Once group size

becomes small enough, an intra-group permuation is applied
to explore the possibility of further reduction of both self- and
coupling switching activities within the group. In this case, a
greedy algorithm is applied. Starting from the first instruction
in the group, the next instruction is selected based on the
minimum number of switching in this exhaustive search
method.

Table I shows the pseudo code for our complete heuristic,
which includes both the grouping on opcodes and the intra
group permutation.

TABLE I. INSTRUCTION PERMUTATION ALGORITHM
Procedure Grouping(I, field)
Sort I according to the values in the designated field.
Group the instruction with the same field values

input: I = (I1, I2,…, Ik) is the block of instructions with the size of k.
Define constant Groupsize
procedure PowerFormat(I)
Grouping(I, “opcode”)
while 1 do
for each group G in I
if size of G is larger than Groupsize then
Grouping(I, next-filed)
else
intra-group permutation() //exhaustive search in the group
endfor
endwhile
Output: I = (I1, I2,…, Ik) block of instructions in power efficient format

ADD r0, r1, r2
ADD r2, r3, 5
ADD r2 r0, r2
SUB r3, r2, r1
SUB r4, r5, r0
MUL r2, r2, 4
LW r1, 4 (r2)
LW r3, 3 (r4)

001
100
010
101
111
110
000
011

LW r1, 4 (r2)
 ADD r0, r1, r2
 ADD r2 r0, r2

LW r3, 3 (r4)

ADD r2, r3, 5

 SUB r3, r2, r1

 MUL r2, r2, 4

 SUB r4, r5, r0

Index Table

Figure 2 Index Table Example

C. Constructing index table for instruction restoration
1) Index table structure

During instruction permutation, a one dimensional index
table is constructed. The index table contains relationship
between instructions in its original format and ones in its
power efficient format.

Fig. 2 shows an example of index table with the eight
instructions block. The table contains the same number of the
entries as the instruction block. Each entry records original
location of an instruction in power efficient format. In order to

describe relative location, number of bits in every entry has to
be at least log2N, with N as the size of instruction block. In this
example, cache line contains 8 instruction, the table size is 8
entries with each entry has log28=3 bits.

2) Index table overhead analysis
After instructions reach processor, index table is consulted.

As a result, memory has to send index table before sending the
instructions. We propose to store index table in the processor
end to reduce power consumption of transmitting index table
itself on the bus. By introducing small area overhead in the
processor, index table eliminates complicated
encoding/decoding circuit on both processor and memory.

Storing index table also introduces extra power
consumption in processor. As technology advances into
smaller scale, such consumption becomes smaller while
interconnect bus power becomes dominating. Later in the
paper, we show that our approach trade-off only small power
increase in the processor while reduce large part of the power
in the interconnect bus.

Finally, when cache miss occurs, instruction block
accesses index table. This also results in extra clock cycles in
instruction cache miss. Since we focus performance loss only
in instruction cache miss penalty, this introduces ignorable
performance loss for program’s execution.

IV. SIMULATION RESULTS
In this section, we provide experiment result of power

reduction from our heuristic and then analyze overhead made
by index table.
A. Interconnect bus power dissipation

We count switching activities on on-chip interconnect for
both self- and coupling capacitances. The executable file is
divided into different blocks and block size (thus the cache
line size) is varied from 32 instructions to 256 instructions.
Power consumption is calculated block by block and the
average value is calculated to make comparison. SPEC CPU
2000 suite is used for simulation here [9]. The benchmark is
directly compiled to little-endian alpha-executables. Seven
integer program benchmarks (bzip2, crafty, eon, gcc, gzip,
parser and vortex) are chosen. As seen in the Fig. 3 self- and
coupling capacitance switching are reduced by about 40% and
30%, respectively. Besides, it is shown that intra-group
permutation within blocks does not reduces power dissipation
by a greater margin.

0
10
20
30
40
50
60

bzip2 crafty eon gcc gzip parser vortex

R
ed

uc
tio

n
of

 s
w

itc
hi

ng
ac

tiv
ity

 fo
r s

el
f-c

ap
ac

ita
nc

e
(%

)

Opcode permutation Intra-group permuation

(a)

0
5

10
15
20
25
30
35
40

bzip2 crafty eon gcc gzip parser vortex

R
ed

uc
tio

n
of

 s
w

itc
hi

ng
ac

tiv
ity

 fo
r c

ou
pl

in
g-

ca
pa

ci
ta

nc
e

(%
)

Opcode permutation Intra-group permutation

(b)

Figure 3. Percentage of self- and mutual-capacitance switching reduction with respect to original and scheduled instruction technique on SPEC CPU2000
benchmark for instruction buses

As mentioned before, the complexity for the heuristic that
groups the instructions based on the opcode fields is O(Nlog2N)
and the intra-group permutation imposes a complexity of
O(N2). Since the each group size is very small in size
compared to the entire executable file, the complexity for the
intra-group permutation can be neglected. Thus, the entire
heuristic basically has a complexity of O(Nlog2N).

B. Index table overhead

To recover instruction block to its original format, index
table is stored in the processor end. We construct an index
table as an extra level-2 cache. As mentioned before, each
entry is log2N bits, so table size is (a*log2N)/8 bytes, in which
N is cache line size and a is number of blocks in the
executable file. For the benchmark that we experiment, vortex
requires largest index table with the size of 19.75k bytes.
Consequently, we choose table size as 20k bytes. Even with
larger executable files, this size can also reduce table
transmission to only 3 or 4 times. We simulate area, power
consumption and access time of index table under CACTI 5.0
[13] and provide result in Table II.

TABLE II. AREA, POWER AND ACCESS TIME OVERHEAD FOR INDEX

TABLE
Technology
node

Overhead
criterion

L2 Cache
(256k)

Index Table
(20k)

Overhead

90nm

Area (mm^2) 7.6317 1.0682 14.0%
Power (W) 0.62060 0.16960 27.3%
Access time (ns) 1.6857 0.86934 51.6%

65nm

Area (mm^2) 3.9857 0.55717 14.0%
Power (W) 0.47897 0.13750 28.7%
Access time 1.1932 0.58601 49.1%

32nm

Area (mm^2) 0.96800 0.13506 14.0%
Power (W) 0.43274 0.08099 18.7%
Access time (ns) 0.60690 0.25402 41.9%

We choose the size of level-2 cache as 256k bytes, with 1-

set associativity and 1 bank. This cache size is smaller than
what is used in current processor design. Area overhead stays
at the level of 15%. At present technology nodes, interconnect
bus power dissipation dominates total chip power level as
processor’s power consumption is decreasing. Even though
index table requires power, a net power reduction is achieved
with increasing level of power dissipation on interconnect.
Besides, it is also seen that access time for index table
decreases with technology nodes. Even with largest delay of
access time of 0.86934 nsec, in a processor with 2 GHz
frequency, this is equivalent to not more than 2 clock cycles.
This access delay is less than 10% of the original cache-miss
penalty. As a result, accessing index table delay overhead has
very little impact on the program’s execution.

V. SUMMARY AND CONCLUSION

In this paper, we present an original instruction
permutation heuristic to reduce self- and mutual-capacitance

switching activity. We break all data and control constraints
on instruction execution order and transfer them into a totally
different power efficient format. A linear-dimension index
table is constructed to restore instruction’s original order. So
permutation reduces power consumption in interconnect bus
while maintaining program’s proper execution. Index table is
built as an extra cache in processor side and every time a
block of reordered instructions is transmitted, it consults the
corresponding index table and restores instruction order.

With different cache line size, our heuristic shows great
reduction on switching activities, resulting in promising
reduction in power consumption. Our simulation on SPEC
CINT 2000 benchmark shows that self- and coupling
capacitance switching are reduced by 40% and 30%,
respectively. On the other hand, the index table only
introduces a reasonable area overhead by comparing its size to
the cache size. Our estimation is actually pessimistic and in
the general purpose computer the large level-2 cache will
make the area overhead ignored.

REFERENCES
[1] W. Cheng, and M. Pedram, “Memory bus encoding for low

power: a tutorial,” in International Symposium on Quality
Electronic Design, 2001, p. 199–204.

[2] W. Kuo, Y. Chiang, T. Hwang and A. Wu, “Performance-
driven crosstalk elimination at post-compiler level,” in Proc. of
ISCAS, 2006.

[3] W. Kuo, Y. Chiang, T. Hwang and A. Wu, “Performance-
Driven Crosstalk Elimination at Postcompiler Level—The Case
of Low-Crosstalk Op-Code Assignment,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
vol. 26, pp. 564–573, Mar. 2007.

[4] L. Macchiarulo, E. Macii, and M. Poncino, “Low-energy
encoding for deep-submicron address buses,” in International
Symposium on Low Power Electronics and Design, 2001, p.
176–181.

[5] R. Murgai, M. Fujita, and A. Oliveria, “Using complementation
and resequencing to minimize transitions,” in Proc. of DAC,
1998, p. 694–697.

[6] P. Petrov and A. Orailoglu, “Low-power instruction bus
encoding for embedded processors,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 12, pp. 812–
826, Aug. 2004.

[7] M. Stan and W. Burleson, “Bus-invert coding for low-power
I/O,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 3, pp. 49–58, Mar. 1995.

[8] “International Technology Roadmap for Semiconductor
(ITRS)”, Semiconductor Industry Association, 2001 Edition,
2001.

[9] SPEC CPU2000 benchmark. [online]. Available at:
http://www.spec.org/

[10] W. Stallings, Operating Systems: Internals and Design
Principles, 6th ed., Prentice Hall, 2008

[11] (2009) MARS (MIPS Assembler and Runtime Simulator): An
IDE for MIPS Assembly Language Programming,
http://courses.missouristate.edu/KenVollmar/MARS/

[12] “Alpha Architecture Handbook,” Compaq Computer
Corporation, Oct. 1998

[13] Available at: http://www.hpl.hp.com/research/cacti/

	Introduction
	Problem Statement
	Power reduction of instruction rescheduling in interconnect bus
	Overview of permutation algorithm
	Instruction permutation
	Grouping same opcode
	Intra group permutation

	Constructing index table for instruction restoration
	Index table structure
	Index table overhead analysis

	Simulation Results
	Interconnect bus power dissipation
	Index table overhead

	Summary and Conclusion
	References

