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ABSTRACT 
When SCADA systems are exposed to public networks, attackers 
can more easily penetrate the control systems that operate 
electrical power grids, water plants, and other critical 
infrastructures. To detect such attacks, SCADA systems require 
an intrusion detection technique that can understand the 
information carried by their usually proprietary network protocols.  

To achieve that goal, we propose to attach to SCADA systems a 
specification-based intrusion detection framework based on Bro 
[7][8], a runtime network traffic analyzer. We have built a parser 
in Bro to support DNP3, a network protocol widely used in 
SCADA systems that operate electrical power grids. This built-in 
parser provides a clear view of all network events related to 
SCADA systems. Consequently, security policies to analyze 
SCADA-specific semantics related to the network events can be 
accurately defined. As a proof of concept, we specify a protocol 
validation policy to verify that the semantics of the data extracted 
from network packets conform to protocol definitions. We 
performed an experimental evaluation to study the processing 
capabilities of the proposed intrusion detection framework.  
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K.6.5 [Security and Protection] 
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Security 
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1. INTRODUCTION 
SCADA (Supervisory Control And Data Acquisition) systems 
monitor and control geographically distributed assets found in 
power grids, water plants, and other critical infrastructures. 
Modern SCADA systems are increasingly adopting Internet 
technology to boost control efficiency. Exposing such control 
systems to public networks increases the risk of attacks and 
failures inherited from the commodity network infrastructure.  

What makes things even worse is that many companies operating 

critical infrastructures lack sufficient protections against failures 
caused by accidental events and malicious attacks. Consequently, 
industrial control operations are subject to serious cyber threats, 
and not just in theory. For example, in 2011, an attacker 
penetrated the control system of a water plant in Texas; in a 
similar 2012 incident, an intruder broke into a company operating 
gas pipelines.  

The major challenge of applying traditional intrusion detection 
systems (IDSes) is that they usually lack sufficient capabilities to 
investigate network traffic based on unique proprietary protocols 
found in SCADA systems. This drawback prevents in-depth 
analysis of network activities, making traditional IDSes blind to 
attacks specific to SCADA systems.  

In this paper, we propose a specification-based intrusion detection 
framework to provide high visibility of the semantics of the data 
carried by the proprietary network protocols. Specifically, we 
adapted Bro [7][8], a real-time network traffic analyzer, to 
integrate parsers of proprietary network protocols, such as DNP3, 
used in electrical power grids [3]. The built-in parsers generate 
network events related to SCADA systems, which are further 
analyzed to detect violations of defined security policies using the 
proposed intrusion detection framework.  

Furthermore, we specify a protocol validation policy to maintain 
appropriate communication patterns defined by the DNP3 
protocol. Abnormal communication patterns, which can be caused 
by malformed or replayed network packets, may indicate device 
failures, system misconfigurations, denial-of-service attacks, or 
malicious operations that put control environments into unstable 
states. The main purpose of proposing this policy is to 
demonstrate that the proposed intrusion detection framework is 
able to analyze the SCADA-related semantics from DNP3 
network traffic. Other scenario-specific policies can be similarly 
specified and applied in various SCADA systems. The DNP3 
parser and the proposed policy that we have built will be included 
in Bro’s source code repository [8].  

2. Related Work 
Traditional signature-based intrusion detection techniques are not 
widely used in control environments, because little analysis of real 
attacks is available to public. Instead, anomaly-based intrusion 
detection techniques were initially used in the area. The work in 
[5] uses destination host addresses, port numbers, and other 
attributes of network packet headers to detect abnormal network 
traffic in SCADA systems. However, that technique is not 
effective in detecting malicious control operations hidden in the 
network payload. 

The work in [2] detects intrusions based on violations of defined 
models characterizing the knowledge specific to the Modbus 
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protocol. Modbus is another proprietary protocol used in SCADA 
systems [9]. Compared to Modbus, many other proprietary 
protocols, such as DNP3, are much more complex and contain 
more diverse semantics. Work presented in [1] applies a 
specification-based technique to the advanced metering 
infrastructure (AMI), which is a very different wireless 
communication environment. Both [1] and [2] emphasize the 
design of system models or specifications and their formal 
verification. Although our work also proposes a protocol 
validation policy for DNP3, we focus on the design of an 
applicable framework that can be used in real SCADA systems to 
provide various runtime semantic analyses.  

3. DNP3 ANALYZER 
In this section, we present three main components of the DNP3 
analyzer, the proposed intrusion detection framework based on 
Bro [7][8].  

Bro is a real-time network traffic analyzer widely used in forensic 
analysis, intrusion detection, and other network-related analysis. 
The modifications that we made to adapt Bro into SCADA 
systems are highlighted in Figure 1. We built a new parser of the 
DNP3 protocol to generate SCADA system-specific events. The 
semantics related to each event were delivered into the 
corresponding event handler. To analyze the semantics, we 
implemented the protocol validation policy by defining event 
handlers in terms of Bro scripts. The policy script interpreter 
executed the scripts to produce analysis results, such as alerts on 
abnormal network activities. 

 
Figure 1: DNP3 Analyzer Based on Bro 

3.1 DNP3 Parser 
The main responsibility of the network packet parser is to decode 
byte streams into meaningful data fields according to the protocol 
definition. The main body of Bro is written in C++. The DNP3 
parser, however, exploits a compiler-assisted tool named binpac 
to shorten the development period and to ensure logical 
correctness [6].  

To design the new parser, we represented the syntax of the DNP3 
protocol by the binpac scripts, which are specifically designed to 
represent the hierarchical structure of a network protocol. With 
the help of the binpac compiler, the binpac scripts were 
automatically translated into C++ and integrated into Bro. 

3.2 Event Handlers 
Event handlers are used to analyze network events generated from 
parsing of each DNP3 network packet. The semantic information 
related to each event is extracted during parsing. For example, a 
dnp3_crob (Control Relay Output Block) event is generated by 
the DNP3 parser if an operation to control relay outputs is found 
within a DNP3 request. The parameters associated with this 
operation, such as the type and the duration of the operation, are 

extracted from the packet and delivered to the corresponding 
event handler. 

A declaration of an event handler, including its name and 
arguments, provides an interface between the DNP3 parser and 
the policy script interpreter. During the parsing at runtime, the 
value of each argument is updated by the semantic information 
related to this event. We declared and associated an event handler 
with each type of data field defined in the DNP3 protocol; thus the 
DNP3 analyzer can cover all semantic information from any type 
of DNP3 network packet. Although the declarations of event 
handlers are fixed, their definitions are left to be implemented in 
terms of Bro scripts written by security experts. In specific 
operational contexts such as operations in power grids, system 
policies can be dynamically adjusted by including definitions of 
different event handlers.  

3.3 Protocol Validation Policy 
Other than defining the hierarchical structure of a network packet, 
the DNP3 protocol introduces additional requirements regarding 
network traffic. Specifically, dependencies between data fields 
within a single network packet are defined, and certain 
communication patterns between different network packets have 
to be maintained. The purpose of this policy is to use intra- and 
inter-packet validation to ensure observance of such requirements. 

3.3.1 Intra-Packet Validation  
The intra-packet validation is used to ensure dependencies 
between different data fields within a single network packet. 
Similar to teardrop attacks, malformed network packets can be 
used to directly perform denial-of-service attacks. During our 
experiment, such an attack occurred; malformed DNP3 network 
packets crashed Wireshark [10], an open source network traffic 
monitor.  

A DNP3 network packet consists of different data fields, such as 
the object type and the function code. The structure of some data 
fields depends on the value of others. For example, the “length” 
field in the link layer header defines the length of the following 
payload field. As a result, we should verify that the value of the 
“length” field is consistent with the real payload length.  

During the validation process, the value ranges for certain data 
fields are also analyzed, because out-of-bound values can be used 
to detect attacks. For example, the DNP3 protocol uses an 8-bit 
integer to represent the function code, and 37 out of 256 possible 
combinations are defined. However, in a real control system, only 
a subset of the 37 values are supported. So a DNP3 request with 
an abnormal function code may indicate a reconnaissance scan 
from an adversary. 

3.3.2 Inter-Packet Validation 
In addition to defining rules for data fields within a network 
packet, DNP3 defines communication patterns between different 
packets. For example, an “OPERATE” packet is almost always 
issued right after a “SELECT” packet to control remote field 
devices chosen by the previous “SELECT” packet. 

The unmatched requests and responses are often the result of 
denial-of-service attacks or replay attacks, such that an adversary 
can flood a communication channel with previously transmitted 
network packets in an attempt to unexpectedly repeat certain 
operations. The DNP3 analyzer can maintain states from the 
parsed network packets. Based on the states, the incoming packets 
are further correlated and analyzed to guarantee appropriate 
communication patterns. 



4. EXPERIMENTAL EVALUATION 
The DNP3 analyzer, which includes the DNP3 parser and the 
sample protocol validation policy, is evaluated in this section.  

4.1 Evaluation of the DNP3 Parser 
First, we focus on robustness evaluation of the DNP3 parser. An 
unexpected hanging of a parser would prevent it from analyzing 
DNP3 packets. As a result, the DNP3 analyzer would fail to detect 
potential attacks.  

The DNP3 parser is constructed by the binpac scripts, which 
express the structure of a network protocol following a certain 
BNF grammar [6]. 

Table 1:  A Part of the DNP3 Parser in the binpac Scripts 
type Dnp3_Request = record { 
   app_header : Dnp3_App_Req_Header ; 
   data : case ( app_header.function_code ) of { 
       0x01 -> read_requests :  Read_Req_Object [ ] ; 
       0x02 -> write_requests : Write_Req_Object [ ] ; 
            ...... 
       }; 
}; 
type Dnp3_App_Req_Header = record { 
      application_control : uint8; 
      function_code : uint8; 
} &length = 2 ; 

Table 1 shows a part of the binpac scripts that represent a DNP3 
request. In binpac, a record data structure, which is a user-defined 
composite type, describes a production rule in a BNF grammar. 
For example, the “Dnp3_App_Req_Header” record can be 
regarded as the following production rule: 
Dnp3_App_Req_Header  ::=     application_control   function_code 

After the “app_header” of the type “Dnp3_App_Req_Header” has 
been defined, the “data” part can be defined by different new 
record types, whose internal structure is varied according to the 
function code field in the “app_header” (implemented by a “case” 
statement). Similarly, whenever defining a new field inside the 
“data” part, we explicitly made a new record type for this field 
instead of using predefined ones (even if this new field has the 
same structure as the predefined ones). As a result, the DNP3 
parser avoids using recursive production rules, such as production 
rules with the form of A ::= Ax or A ::= Bx ; B ::= A.  

We evaluated the DNP3 parser using a sample traffic trace 
collected from a real electrical power grid located in Ohio. We 
then evaluated it further using malformed synthetic network traffic 
with the protocol validation policy. The latter experiment is 
described in the next section. 

4.2 Evaluation of Protocol Validation Policy  
In this paper, the protocol validation policy is specifically defined 
based on the context of SCADA systems operating electrical 
power grids. Its implementation includes the definitions of three 
event handlers: dnp3_app_request_header, 
dnp3_app_response_header, and dnp3_object_header. These 
event handlers extract values of the function code, the object type, 
and other semantic information from the DNP3 request/response 
headers and object headers.  

For example, an object with the group number 12 and variation 
number 1 describes a CROB (Control Relay Output Block) object. 
This type of object can only be initiated by requests with function 

codes 3, 4, 5, and 6. Consequently, we included the following Bro 
scripts in the policy to validate this rule.  

    if ( ( Obj_Type == 0x0c01 )  &&  
           ( ( FunCode < 0x03 )  ||  ( FunCode > 0x06 ) ) ) 
   ALERT ....;  

Other rules defined by the DNP3 protocols were verified through 
similar scripts. The implementation details will be included in 
Bro’s source code repository [8].  

We evaluated the implementation of the policy in a simulated 
SCADA testbed (Figure 2). A Windows XP workstation 
simulated a control center that collected measurement data from a 
field site and issued operations to it. The field site was simulated 
by a data aggregator and a relay. The data aggregator worked as a 
mediator that aggregated measurement data from the relay and 
forwarded an operation from the control center to this relay. The 
relay monitored the status of an electrical transmission line. The 
monitor machine was a separate commodity workstation in which 
the proposed DNP3 analyzer ran independently without affecting 
the operations of the control center and the field site. All the 
components were connected to a network switch. The switch was 
configured such that all network traffic was “mirrored” to the 
monitor machine. 

 
Figure 2: Simulated SCADA Testbed 

We used Protocol Test Harness [11], the software running in the 
control center, to generate DNP3 network packets of different 
structures. A “Fuzzy Engine” is a self-developed program based 
on the TCP/IP socket. In each round of communication, the 
“Fuzzy Engine” replaced each byte of the generated packet with a 
random value. As a result, the control center issued both well-
formatted and malformed packets to the data aggregator (Figure 
2). Corresponding error detection codes (CRC values) were 
recalculated to simulate modifications made by an attacker. 

4.2.1 Robustness Evaluation  
For comparison, both Wireshark [10] and our DNP3 analyzer 
were used to monitor the testbed at runtime. Notably, the two 
tools handled malformed network packets differently. In one of 
our experiments, Wireshark looped for more than three hours 
when processing a malformed packet that is shown in Figure 3. 
The 5th byte of the packet represented the qualifier field that 
defines the hierarchical structure of the remaining part of the 
packet. After it was replaced with the value 0x09, Wireshark hung 
for over three hours. Although it is not clear what exactly caused 
the loop, we suspect that the injected errors resulted in the misuse 
of a loop statement or a recursive procedure.  

 
Figure 3: The DNP3 Network Packet that Crashes Wireshark 
Our proposed DNP3 analyzer did not introduce such unreliable 
behavior during any of our experiments. The DNP3 parser avoids 
using recursive production rules in its implementation. The 



protocol validation policy is implemented by less than 400 lines of 
Bro scripts. Consequently, we can easily verify that the policy 
scripts avoid loop statements and recursive function calls. 

4.3 Performance Evaluation  
As the DNP3 analyzer is used to analyze industry control 
environments passively, it must process network packets in real-
time to provide useful detection results.  

In this section, we evaluate the throughput of the DNP3 analyzer 
in terms of the number of packets processed per second. We used 
the experimental setup shown in Figure 2 to generate a 1 GB 
packet trace. The packet trace contained both well-formatted and 
malformed DNP3 network packets along with the TCP packets 
needed to open and close communication sessions. The whole 
trace included a total of 3,789,120 DNP3 packets.  

The DNP3 analyzer processed the packet trace off-line on the 
monitor machine. The purpose of the off-line analysis is to 
evaluate the ultimate processing capabilities of the DNP3 
analyzer. The analysis results can suggest how the proposed 
DNP3 analyzer might fit into real SCADA systems.  

The monitor machine was a VMware virtual machine with a 
single logical processor with two 3.07GHz cores and a 1GB 
RAM. During the processing, we ran the monitor machine 
exclusively without starting other virtual machines in the same 
host to avoid possible interferences. We performed 10 
experimental runs to measure the average execution time. 

Table 2 presents the throughputs of the DNP3 parser (first row) 
and the DNP3 analyzer with the protocol validation policy 
(second row). With the policy loaded, the DNP3 analyzer 
processed approximately 30% less network traffic every second. 
The reason is that the protocol validation policy performed intense 
analysis on almost all fields of each DNP3 network packet and 
generated a large number of alerts from malformed packets. Even 
under those circumstances, more than 9000 DNP3 network 
packets were processed every second. In an industrial control 
environment such as the power grid, legacy devices usually issue 
one or two DNP3 network packets every second [4]. Based on 
those figures, we anticipate that the proposed DNP3 analyzer can 
monitor a field site consisting of 4500 to 9000 devices. When 
more DNP3 analyzers are distributed into different host machines 
to form a monitor cluster, a larger-scale control environment can 
be monitored. Furthermore, it is possible to design an intrusion 
prevention system based on the proposed DNP3 analyzer to stop 
malicious operations. 

Table 2: Throughput for the DNP3 Analyzer 
Evaluation Target Throughput (packets/second) 

DNP3 Parser 13950 
DNP3 Parser & Policy 9427 

 

5. CONCLUSIONS  
In this paper, we propose a DNP3 analyzer that is an intrusion 
detection framework based on Bro. With the help of the DNP3 
parser, the analyzer is able to observe all DNP3 events related to 
SCADA systems. A sufficient number of event handlers are 
declared and associated with data fields in network packets to 
cover all semantic information carried by DNP3 network traffic.  

Based on the extracted semantic information, we can accurately 
design security policies to perform analysis. As a proof of 
concept, we proposed a protocol validation policy that ensures 
that network traffic follows predefined communication patterns. 

The proposed DNP3 analyzer was evaluated in scenarios 
involving both well-formatted and malformed network packets, 
the latter of which triggered intense analysis and a large amount 
of alerts. Based on that “worst-case” experiment, we believe that 
the proposed DNP3 analyzer holds promise to work in real 
SCADA systems.  

In future work, we plan to apply the DNP3 analyzer to detect 
well-formatted control operations from malicious users. In order 
to reveal the purpose of the suspicious network traffic, we must 
carefully select and correlate semantics related to different control 
operations as well as host activities in the control center. 
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