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Abstract— Though attackers aim to introduce different physical 
perturbations on power grids, they need to rely on periodic data 
acquisitions performed by control centers to estimate the physical 
state of the grid and thus to prepare for destructive activities. In 
this paper, we present Raincoat, which randomizes data 
acquisitions to disrupt and mislead attackers’ preparations. We 
transform one data acquisition into multiple rounds. In each 
round, we dynamically manipulate network flows in the control 
networks so that randomly selected “online” devices respond with 
real measurements. Meanwhile, we intelligently spoof 
measurements for other “offline” devices to mislead attackers into 
designing ineffective strategies. Based on experiments using large-
scale power systems and six real wide area networks, Raincoat is 
effective against false data injection and control-related attacks 
with small overhead. The probability of successful attacks can be 
reduced from 70% to 1%; attacks introduce little damage even if 
they are executed. Network latency of data acquisition increases 
on average by less than 6%. 

Index Terms—moving target defense, decoy attacks, SCADA, 
software-defined networking  

I. INTRODUCTION 

YBER-attacks on SCADA (supervisory control and data 
acquisition) systems used by industrial control systems 

(ICSes), e.g., power grids, can cause severe damage. In 
December 2015, remote intruders penetrated a Ukrainian power 
grid and caused a blackout that affected 225,000 residents [1]. 
To prepare and launch attacks that cause physical damage, 
attackers can rely on SCADA applications used in ICSes, in 
which two primary functions are data acquisition and control. 
Based on real attack incidents [1][2], we can classify 
adversaries’ behavior into three stages, as shown in Figure 1. In 
the “penetration” stage, attackers establish footholds in 
SCADA communication networks, e.g., in human-machine 
interfaces (HMI) or remote terminal units (RTU) in a power 
system’s control network, as shown in Figure 2. After they have 
obtained accesses to the SCADA networks, in the “preparation” 
stage, attackers can use information from communication 
networks, e.g., taken via periodic data acquisitions, to study the 
physical measurements of the power grids and determine 
effective attack strategies, e.g., malicious control operations 
that can cause physical damage. Finally, in the “execution” 
stage, attackers execute the strategies on ICS devices, e.g., 
intelligent electronic devices, sensors, or breakers (shown in 
Figure 2), by injecting or modifying the control operations used 

by system administrators. 
To detect attacks in SCADA systems, previous work has 

focused on in-depth analysis of network and system activities 
when attackers execute their strategies. These efforts include 
using (i) anomalies in communication patterns, (ii) the physical 
impact predicted by state estimation algorithms (e.g., whether 
execution of a given command could cause an overload of a 
transmission line), and (iii) inconsistencies in compromised 
measurements [3][4][5]. These approaches are effective against 
specific malicious activities. However, once attacks evolve and 
use different execution channels based on new vulnerabilities, 
the detection methods can become less effective. Also, 
detecting attacks during their execution can leave system 
administrators little time to prevent damage from happening (by 
either delaying or reversing malicious activities) [3]. As shown 
in [1], it took attackers a few hours to perform the malicious 
operations, but the big concern is that “the strongest capability 
of the attackers is their capability to perform long‐term 
reconnaissance operations required to learn the environment,” 
which last around six months. 

 
Figure 1. Three stages of attacks that introduce physical damage. 

Instead of focusing on the execution stage, we detect attacks 
in their “preparation” stage. Towards this goal, we obfuscate 
SCADA data acquisitions based on which attackers develop 
their strategies to cause physical damage. Detecting attacks 
during their preparations brings two major benefits that are 
difficult to achieve at attack execution stage (e.g., when 
attackers execute malicious commands). First, we can cover a 
wide spectrum of attacks including unknown ones. Though 
attackers may adopt diverse execution activities to cause 
different types of physical damage, they need to rely on 
measurement data to estimate the current physical state of the 
target system, based on which they plan effective attack 
strategies. Second, we can detect and mislead attacks before 
adversaries execute their strategies and inflict damage. 
Detecting attacks at this early stage makes it possible to remove 
potential threats and prevent damage.  

To obfuscate attackers’ knowledge, we propose Raincoat, a 
technique that randomizes data acquisitions in power systems. 
Raincoat aims to expose and mislead attackers while they are 
preparing attack strategies. At runtime, Raincoat transforms a 
single data acquisition operation issued by the control center to 
all substation devices into multiple rounds of data delivery. In 
each round, we enable network connectivity to a subset of 
randomly selected devices, i.e., online devices. We allow the 
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network traffic to reach online devices, which send real 
measurements upon receiving data acquisition requests. 
Meanwhile, we disallow traffic to offline devices (i.e., a subset 
of devices for which we disable network connectivity) but 
intelligently spoof the measurements for these devices.  

Current moving target defense (MTD) mechanisms for 
SCADA systems can introduce disruptions in power systems 
that are visible to both system operators and attackers [27][28]. 
These MTD methods can affect grid’s control operations, e.g., 
change the susceptance of transmission lines [17][24][36][37] 
or reduce the accuracy of state estimation [26]. However, 
Raincoat only disrupts attackers’ knowledge without affecting 
power system’s physical operations applying to field sites. The 
control center continuously collects the complete set of real 
measurements with the same rate and the accuracy of normal 
operations, such as state estimation and contingency analysis, 
remains unchanged. Only attackers’ observations are limited 
because they are unable to distinguish the real and spoofed 
measurements. 

So that Raincoat can further deter attackers’ ability to 
compromise systems, we design an algorithm that includes 
decoy values in the spoofed measurements of offline devices. 
Consequently, when mixed with real measurements, the 
spoofed measurements present attackers with a valid power 
system state that is different from the real state. Using this 
crafted state information, attackers will always end up with 
ineffective attack strategies that expose the malicious activities 
but cause little or no harm to the real power system. 

Even though we can implement Raincoat by any network 
manipulation techniques, we take advantage of network 
management and programming paradigm by implementing and 
deploying software-defined networking (SDN) in switches at 
the edge of power systems’ communication infrastructure 
[12][29][30]. SDN can manipulate network flows related to 
data acquisition in SCADA systems while making little change 
to data acquisition procedure performed at control centers or the 
configurations of substation devices. 

Specifically, Raincoat makes the following contributions:  
1) Disrupts attacks at the preparation stage. To the best of our 

knowledge, Raincoat is the first technique to disrupt and 
mislead attackers as they prepare malicious activities in 
power systems. The randomized data acquisition exposes 
the attackers when they attempt to access offline devices, 
even before they carry out any destructive activities.  

2) Mitigates damage by misleading attackers. We include in 
Raincoat an algorithm to generate decoy measurements for 
offline devices. The decoy measurements mislead attackers 
into designing ineffective attack strategies of both false data 
injection attacks and control related attacks. These 
strategies fail to introduce physical damage to power 
systems even if attackers execute them. 

3) Has little overhead on control networks. We construct a 
cyber-physical testbed to evaluate performance overhead of 
Raincoat. In the testbed, we used MATPOWER to simulate 
power systems of more than 1000 buses, which provide 
measurements to communication networks. To mimic the 
communication, we used the GENI testbed to construct six 

real wide area networks (WAN), including one consisting 
of more than 100 nodes distributed at different geographical 
locations [7]. We implemented Raincoat as SDN controllers 
in ONOS, an open-source network operating system [6]. 
Compared to the default SDN controller, Raincoat 
introduces on average less than 6% additional latency in 
data acquisition.  

II. BACKGROUND & THREAT MODEL 

A. Threat model 

In Figure 1, we show a hierarchical communication 
architecture used by SCADA systems in the context of an 
electric power grid, where IP-based networks provide 
connectivity between a control center and substation devices. 

 
Figure 2. Control network setup in power systems. 

Definition 1 (end device). Intelligent electronic devices 
(IED) in substations located at the edge of the communication 
path based on IP-based networks connecting the control center 
and substations. 

By definition 1, end devices connect to sensors or circuit 
breakers through hardwired connections in their downstream 
communication. In their upstream communication, multiple end 
devices connect to an up-level IED, e.g., RTU (remote terminal 
unit), which forwards information (e.g., aggregate 
measurements or commands) to/from the control center. ∎ 

Definition 2 (edge switch). Network switches located as the 
first or the last hop of communication paths that connect the 
control center and end devices. ∎ 

In this work, we consider the remote insider threat model. We 
assume that attackers can bypass the barrier (or perimeter 
protection) between corporate networks and control networks 
and establish footholds in the control network connecting 
control center and end devices.  

By using Figure 1, we present the assumptions of the threat 
model used in this paper. 
 In control networks, we assume that attackers can penetrate 

computing devices on any communication path that connects 
the control center and end devices. Those computing devices, 
such as human-machine interfaces (HMI) or RTUs, are often 
installed at substations located over a large geographical 
area. Because it is challenging to maintain computing 
devices in a wide area, we often find unpatched 
vulnerabilities in those devices, e.g., an old TCP 
vulnerability found in substation devices [8]. In most well-
known attacks targeting industrial control systems, e.g., 
Stuxnet and attacks against Ukrainian power system [1][2], 
attackers targeted vulnerable computing devices and used 
them as footholds to prepare and execute attacks. 

 In substations, we assume that attackers do not have physical 



1949-3053 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2018.2870362, IEEE
Transactions on Smart Grid

 

 

3 

access to the devices on the downstream of end devices. 
Under this assumption, attackers need to use computing 
devices on the upstream of end devices, including control 
networks and the control center, to monitor system state and 
launch malicious operations. We argue that this is a 
reasonable assumption as substations are located in large 
geographical areas, and simultaneous physical breaking into 
those substations is not practical.  

 In the control center, we trust the integrity of the state 
estimation software or data historians used in the control 
center. Under this assumption, attackers are not able to 
observe measurements or physical configurations of the 
target power systems by compromising the state estimation 
software or data historians; they need to penetrate into the 
control networks or other devices in the control center to 
learn the system state. We argue that this is a reasonable 
assumption, as it is practical to protect those critical software 
components by running them in a dedicated or a separate 
machine or by using attestation mechanisms, e.g., TPM 
(trusted platform module), to verify their integrity 
periodically. Also, we can use much existing research work 
that protects power systems against false data injection 
attacks to ensure the integrity of state estimation software 
[4]. 

We assume that attackers can remotely penetrate the local 
area network environment of the control center. For example, 
by exploiting the vulnerabilities in workstations and 
employee’s devices, e.g., laptops, smartphones, or USB 
drives, that are connected to control centers [2], attackers can 
further obtain the privileges necessary to install malware, 
sniff, inject, and even modify measurements delivered to 
state estimation software and commands issued to 
substations. Consequently, even if we can trust the state 
estimation software, attackers can still monitor system state 
and launch malicious commands in the control center. 

 We trust the functionality of Raincoat. Raincoat uses edge 
switches and SDN controllers to randomize data acquisitions 
in SCADA systems; we trust SDN controllers and the edge 
switches. This is a reasonable assumption for two reasons. 
First, maintaining the integrity of SDN controllers and edge 
switches (e.g., being patched or upgraded) can be more 
practical to achieve, compared to computing devices in 
substations and control networks. Second, trusting edge 
switches can reduce the range of trusted computing base, as 
compared to trusting all computing devices in the control 
networks. Also, SDN controllers connect to switches through 
ports different from the data ports that are used to exchange 
information. Consequently, it is not practical for attackers to 
penetrate SDN controllers and thus to monitor network traffic 
between the controllers and the edge switches. Even if 
attackers compromised edge switches and SDN controllers, 
they would obtain the same privilege as if they penetrated 
control networks devices (e.g., RTUs or HMIs). 
Under those assumptions, attackers can perform both active 

and passive monitoring from the compromised devices to 
collect system information, based on which they develop attack 
strategies. The active monitoring relies on attackers’ ability to 

issue a valid and even authenticated request to end devices to 
retrieve measurements. To be stealthy (i.e., hide their presence), 
attackers can passively monitor the measurements when they 
go through the compromised devices, even if the measurements 
are transmitted between devices in encrypted traffic. Under our 
threat model, with information gained via passive and active 
monitoring, attackers can compromise measurement data, i.e., 
in false data injection attacks, and compromise commands, i.e., 
in control-related attacks, when measurements or commands go 
through the penetrated devices. 

B. Learning the physical state 

In this section, we discuss the physical measurements and 
system state information that attackers need in order to launch 
two types of attacks against power systems: (i) false data 
injection attacks (FDIA), whereby attackers compromise 
measurements sent to the control center, and (ii) control-related 
attacks (CRA), whereby attackers compromise commands sent 
to end devices at substations to change the system state and 
cause physical damage. Recent high-profile attacks against 
power grid infrastructures fall into these two broad categories 
[1][3][9][10].  

A power system is composed of buses (representing 
substations) that are connected by transmission lines. The state 
of the system is specified by the voltage magnitude and the 
angle for each bus, i.e., ሺ ௝ܸ,  ௝ሻ in equations (1)–(4). For eachߠ
bus j, two power flow equations, i.e., equations (1) and (2), are 
formulated based on the fact that the generated power ( ௝ܲ

ீ and 

ܳ௝
ீ), the consumed power ( ௝ܲ

௅ and ܳ௝
௅), and the power delivered 

to other buses (indexed by k) are balanced at each timestamp 
[11]. In addition, we can formulate equations (3) and (4) to 
describe the power flow corresponding to each transmission 
line ( ௝ܲ௞ and ܳ௝௞). 

௝ܲ
ீ െ ௝ܲ

௅ ൌ ∑ ௝ܸ ௞ܸ൫ܩ௝௞ cos൫ߠ௝ െ ௞൯ߠ ൅ ௝௞ܤ sin൫ߠ௝ െ ௞൯൯௞ߠ   (1)
ܳ௝
ீ െ ܳ௝

௅ ൌ ∑ ௝ܸ ௞ܸሺܩ௝௞ sin൫ߠ௝ െ ௞൯ߠ െ ௝ߠ௝௞cosሺܤ െ ௞ሻሻ௞ߠ   (2)

௝ܲ௞ ൌ െ ௝ܸ
ଶܩ௝௞ ൅ ௝ܸ ௞ܸܩ௝௞ ௝ߠ൫ݏ݋ܿ െ ௞൯ߠ ൅ ௝ܸ ௞ܸܤ௝௞sin	ሺߠ௝ െ ௞ሻ (3)ߠ

ܳ௝௞ ൌ ௝ܸ
ଶܤ௝௞ ൅ ௝ܸ ௞ܸܩ௝௞ ௝ߠ൫݊݅ݏ െ ௞൯ߠ െ ௝ܸ ௞ܸܤ௝௞ ௝ߠሺݏ݋ܿ െ ௞ሻ  (4)ߠ

In Table 1, we list the targets of the two attack types (FDIA 
and CRA) along with the measurements that attackers need in 
order to design effective attack strategies. Attackers use 
existing state estimation algorithms to analyze the collected 
measurements (e.g., the measurements for preparations in 
Table 1) and determine the attack strategy, e.g., to change the 
measurements seen by the control center or to issue a command 
to open a transmission line [11]. Note that there are two classes 
of state estimation approaches for solving equations (1)–(4): AC 
state estimation, which employs iterative algorithms; and DC 
state estimation, which solves the linear approximations of the 
equations. 

TABLE 1: TARGETS AND PREPARATIONS OF FDIA AND CRA. 

Type 
Measurements for 

Preparations 
Target 

FDIA 
Bjk, susceptance of all 
transmission lines 

௝ܲ
ீ and ௝ܲ

௅ of all substations; ௝ܲ௞ of 
all transmission lines 

CRA 
௝ܲ
ீ, ܳ௝

ீ, ௝ܲ
௅, ܳ௝

௅ of all 
substations; ௝ܲ௞, ܳ௝௞ of 
all transmission lines 

Control commands that can 
disconnect transmission lines or 
substations in a power grid 
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III. RAINCOAT APPROACH 

Raincoat objective. Our design is to obfuscate the cyber-
physical infrastructure to prevent attackers from obtaining 
correct measurements of the system state, i.e., the 
measurements used for preparations as listed in Table 1, by (i) 
randomizing the data acquisition procedure and (ii) spoofing 
measurements. 

High-level procedure. Traditional SCADA systems perform 
data acquisitions by issuing requests from the control center to 
all end devices in substations periodically. According to IEEE 
standard 1646 [13], the period, represented by T, ranges from 1 
to 10 seconds. 

 
Figure 3. Raincoat approach.  

We illustrate the Raincoat approach in Figure 3, which 
consists of the following steps: 
 Step ○1 : Raincoat does not change the procedure that the 

control center uses to issue data acquisition requests. The 
control center still issues the requests to all devices as in the 
case without Raincoat. In the example in Figure 3, there are 
6 end devices as the destinations of the requests. We use 
square boxes of different colors to represent requests 
destined to different devices. 

 Step ○2 : when data acquisition requests reach the edge 
switch at the control center, we divide them into multiple 
rounds of data acquisition requests. In each round, we 
randomly select a subset of end devices and only issue the 
requests to these devices. In the example shown in Figure 3, 
we divide data acquisition requests into three rounds. In each 
round, we send requests to 4 randomly selected devices, out 
of the total of 6 end devices. 

 Step ○3 : When each round of data acquisition requests reach 
the edge switch at substations, we again randomly specify 
two sets of devices. The first set consists of online devices, 
whose network connectivity is enabled and which are 
allowed to respond with real measurements. All other 
devices not included in this set are offline devices, whose 
network connectivity is disabled. In the example shown in 
Figure 3, we randomly select 2 online devices in each round 
of data acquisition. 

 Step ○4 : Raincoat does not change the physical 
configurations of end devices; each online device responds 
with the collected measurement as in the case that Raincoat 
is not used (represented by colored circles).  

 Step ○5 : We use the edge switch at substations to forward the 
responses of real measurement data from online devices to 
the control center. Meanwhile, we spoof the responses on 
behalf of offline devices and use the edge switch to send them 

to the control center (represented by grey circles in the 
figure). Under our threat model, attackers, who can 
compromise any device in the control networks, are not able 
to distinguish between online and offline devices.  

 Step ○6 : We use the edge switch at the control center to 
combine responses from multiple rounds of data 
acquisitions. Consequently, the state estimation software in 
the SCADA systems receives both real and spoofed 
measurements. With the knowledge of randomized device 
connectivity, the state estimation software can distinguish 
real and spoofed measurements, and thus still collect real 
measurements from all devices with the same period as in the 
case without Raincoat.  
When using Raincoat, we acquire the measurements in k 

rounds so that the original data acquisition interval T is divided 
into k rounds, each of which has a duration p, where ݇ ⋅ ݌ ൑ ܶ. 
In each round, Raincoat collects real measurements from 
different devices, but not from all devices. Consequently, the 
interval that it takes each individual device to respond with real 
measurements is still on the order of T, not p. According to [13], 
T ranges from 1 to 10 seconds, and the communication latency 
observed in wide area networks should be less than 100 
milliseconds. Consequently, for data acquisitions from SCADA 
systems, which are the focus of this paper, the control center 
will have sufficient time to collect measurements from each 
device. 

When using Raincoat, we can collect all measurements with 
the same accuracy and within a predefined time T. Even though 
each device responds with measurements at slightly different 
times within the data acquisition interval, Raincoat introduces 
little impact on operations that rely on SCADA measurements, 
e.g., state estimation, contingency analysis, and optimal power 
flow analysis (see Section V.B for evaluations).  

By using Raincoat, we can disrupt both active and passive 
monitoring performed by attackers.  
 Disrupting active monitoring. Under our threat model, any 

attempt by attackers to access offline devices while they 
monitor the target system, e.g., by scanning end devices or 
directly sending data acquisition requests to specific end 
devices, exposes the attackers’ presence and results in raising 
an alert to the system operator.  

 Disrupting passive monitoring. Raincoat includes two 
designs to disrupt passive monitoring. First, Raincoat has 
two rounds of randomization of data acquisitions: Step ○2  
randomly selects a subset of end devices to which the data 
acquisition requests are sent, and Step ○3  randomly selects 
online devices, which receive requests and respond with 
measurements. In other words, Raincoat forwards data 
acquisition requests (via the edge switch at the control 
center) not only to online devices but also to randomly 
selected offline devices, to prevent attackers from learning 
device connectivity by monitoring data acquisition requests. 
Second, Raincoat constructs spoofed measurements for 
offline devices to disrupt attackers’ passive monitoring, as 
attackers cannot distinguish between online and offline 
devices.  
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Furthermore, under our threat model, attackers cannot 
compromise edge switches. As a result, they are unable to 
distinguish between real and spoofed measurements by 
passively monitoring (i) network packets between the edge 
switches in substations and end devices, or (ii) network 
packets between the edge switches and the corresponding 
SDN controllers. In addition, we present in Section IV a 
method to include decoy measurements in the spoofed 
responses to further prevent attackers from designing 
strategies that can cause physical damage. 
Implementation. Raincoat achieves randomized data 

acquisition by manipulating the network flow on edge switches. 
To manipulate the network flows in edge switches, we can use 
SDN technology. Note that SDN-enabled switches are being 
designed and deployed for power system substations, making it 
practical to deploy Raincoat [12].  

When the control center issues data acquisition requests, the 
edge switches in the substations are at the last hop of the 
communication; they filter in requests destined for online 
devices and redirect the requests destined for offline devices to 
SDN controllers (Step ○3  in Figure 3). In responding to data 
acquisitions, the edge switches in the substations are at the first 
hop of the communications. We use SDN controllers to forward 
responses from online devices and craft spoofed responses and 
send them through these edge switches (Step ○4  in Figure 3). 

In using SDN controllers to randomize data acquisition, 
Raincoat does not make any changes to: (i) data acquisition 
procedure in the control center, (ii) physical configurations of 
end devices in substations, and (iii) existing network 
routing/forwarding configurations in the control networks. 

IV. CRAFT DECOY MEASUREMENTS TO MISLEAD ATTACKERS 

For Raincoat, we can have multiple options on what to 
include in spoofed measurements. One option is to include 
random values in the spoofed measurements. Attackers, without 
the knowledge of device connectivity, cannot distinguish 
between real and spoofed random measurements. However, 
while the random measurements can hide the real 
measurements, they do not directly follow the physical model 
of power systems; they can easily attract attackers’ suspicion.  

In addition to hiding real measurements, we propose a 
method to include decoy values in the spoofed measurements, 
which further mislead attackers into designing ineffective 
strategies. To craft decoy measurements, we simulate a power 
system that has the same topology as the transmission network 
of the real power system under protection. We can implement 
that power system simulation in any simulation tool, e.g., 
MATPOWER which is what we use [14], and run it at the SDN 
controller, which is responsible for sending spoofed 
measurements on behalf of offline devices. 

We craft decoy measurements in two steps to achieve two 
corresponding objectives: 
 Step 1. We can set different initial values based on the attacks 

that we want to mislead. In this paper, we mislead FDIAs and 
CRAs, by crafting the measurements used for preparations 
listed in Table 1 such that the compromised “target” 
measurements fail to introduce physical damage. 

Specifically, we determine the susceptance of transmission 
lines in the simulated power systems, based on which the 
designed FDIAs become detectable in real power systems (in 
Step 1.a). We determine the power flows of the transmission 
lines in simulated power systems to mislead CRAs (in Step 
1.b) into targeting non-critical devices in real power systems. 

 Step 2. We further refine the values such that the decoy 
measurements follow physical models. Specifically, we 
iteratively put decoy measurements in the state estimation 
algorithm and use the obtained calculation results to adjust 
the measurements determined in Step 1, until the decoy 
measurements can observe the bad-data detection criteria 
used in the state estimation. 
Note that the values of decoy measurements vary according 

to the types of attacks that we are trying to mislead. In this 
paper, we use the FDIAs and CRAs as two examples, because 
they are commonly found in the research literature and real 
incidents [1][9][10]. However, the proposed algorithm to craft 
decoy measurements is not restricted by the types of attacks, as 
long as their preparations rely on measurements observed in 
communication networks. For example, to mislead FDIAs 
based on the AC power flow model, we can craft decoy 
measurements based on the attack procedures discussed in [10]. 
We will leave this for future work. 

A. Step 1.a: mislead FDIAs 

Background. We use the DC power flow model to discuss 
misleading FDIAs. In this model, we relate state variables, i.e., 
௝ߠ  in equations (1)–(4), and active power measurements at 

substations and transmission lines, i.e., ௝ܲ
ீ , ௝ܲ

௅ , and ௝ܲ௞ , by 
using linear approximations of equations (1) and (3): 
ݖ  ൌ ݔܪ ൅ ݁, (6) 
where ݖ ൌ ൫ݖଵ, ,ଶݖ … , ௤൯ݖ  represents q measurements. For 
measurements of power flow along transmission lines, we have 
௟ݖ ൌ െ ௝ܲ௞ ; for measurements on substation j, we have ݖ௟ ൌ

௝ܲ
ீ െ ௝ܲ

௅; ݔ ൌ ൫ߠଵ, ,ଶߠ … ,  ௣൯, which represents p physical stateߠ
or p phasor angles at all buses; and ݁ ൌ ሺ݁ଵ, ݁ଶ, … ݁௤ሻ is the 
collection of q measurement errors. ܪ ൌ ሺ݄௜௞ሻ௤ൈ௣ is a q-by-p 
Jacobian matrix; all entries in H are determined based on entries 
 ௝௞, the susceptance of transmission lines connecting bus j andܤ
bus k (the detailed derivation of H can be found in [9]).  

 When measurement errors follow a normal distribution with 
zero mean, the estimation of state variable ݔො can be obtained 
through statistical criteria, e.g., the weighted least-square 
criterion. When estimating ݔො , the state estimation further 
detects and removes bad data or measurements to ensure that 
the estimated state variable comes “closer” to that of the actual 
state. The state estimation uses an L2-norm of the measurement 
residual, i.e., ݖ‖ െ ‖ොݔܪ , to detect the presence of bad 
measurements. If the residual is larger than a threshold, i.e., 
ݖ‖ െ ‖ොݔܪ ൐ ߬, we declare the presence of bad measurements. 

In false data injection attacks, attackers maliciously 
compromise the measurements so that the estimated state 
variable ݔො differs from the actual state without triggering alerts 
from bad-data detectors [9][10]. If attackers intend to make the 
state estimation describe a system state that is different from the 
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real one, i.e., ݔො௔ ൌ ොݔ ൅ ܿ, they can inject an attack vector a into 
the original measurement z. With the full knowledge of H, 
attackers can construct a such that ܽ ൌ ܿܪ  and make the 
corresponding compromised measurements, i.e., ݖ௔ ൌ ݖ ൅ ܽ . 
In that case, the L2-norm of the measurement residual becomes: 
௔ݖ‖ െ ‖ො௔ݔܪ ൌ ݖ‖ ൅ ܽ െ ොݔሺܪ ൅ ܿሻ‖ ൌ ݖ‖ െ ‖ොݔܪ ൑ ߬. 
Consequently, based on the L2-norm of the measurement 

residual of ݖ௔ , the state estimation cannot detect that the 
measurements are compromised.  

Preparations. As illustrated by [9][10], to conduct successful 
FDIAs, attackers must obtain the measurement matrix H of a 
power grid, which includes power systems’ topological aspects, 
e.g., the susceptance of transmission lines. In this paper, we 
consider FDIAs based on the DC power flow model presented 
in [9], which relies on complete system topological information 
to prepare attacks. Based on [9][10], variations of FDIAs have 
emerged, e.g., [38][39], that rely on partial topological 
information to prepare attacks. We believe that Raincoat can 
mislead those FDIAs by adjusting the design presented in this 
section based on the varied attack procedures.  

In our threat model, we assume that attackers rely on 
measurements exchanged over communication networks to 
prepare effective FDIAs. However, today’s SCADA systems do 
not use communication networks to deliver power systems’ 
topological information, e.g., the susceptance of transmission 
lines, periodically. Many research efforts have shown that in 
order to prepare attacks, attackers can indirectly estimate the 
topological information based on measurements that can be 
observed in networks, e.g., voltage magnitudes, power 
injections at the two ends of the transmission lines [15], and the 
historical profile of those measurements [39][40]. 

Protection. Raincoat can use device connectivity to limit the 
number of measurements that attackers can compromise and 
mislead attackers into using a decoy Jacobian matrix ܪ′ . 
Specifically, we determine the decoy values of the susceptance 
of transmission lines in ܪ′ such that it becomes challenging for 
the attack strategy based on ܪ′ to bypass the state estimation 
based on H. 

We represent the decoy Jacobian matrix ܪ′ as ܪᇱ ൌ ܪ ൅ Δܪ. 
Based on their knowledge of ܪ′ , attackers choose injected 
measurements ܽ ൌ ᇱܿܪ ൌ ሺܪ ൅ Δܪሻܿ, where c is decided by 
the attackers and is unknown to us. For attackers to bypass the 
state estimation of the protected power system, the following 
condition needs to be satisfied: ܽ ൌ ᇱܿܪ ൌ ሺܪ ൅ Δܪሻܿ ൌ  ,′ܿܪ

where ܿ′  is a nonzero p-by-1 vector. Here, we analyze two 
cases, i.e., ܿ ൌ ܿ′  or ܿ ് ܿ′ . In each case, we determine the 
condition of ܪ′ that make FDIAs challenging to be successful 
and to bypass state estimation.  

Case 1: ࢉ ൌ ܪTo make ሺ .′ࢉ ൅ Δܪሻܿ ്  is equivalent to ܿܪ
make Δܿܪ ് ૙  for all nonzero vectors c. Consequently, we 
have the following lemma. 

Lemma 1. To disrupt the attack strategy for FDIAs (reflected 
in c), we determine Δܪ  such that equation Δݕܪ ൌ 0  has a 
unique solution ݕ ൌ 0. 

Proof. Because Δݕܪ ൌ 0 has a unique solution, ݕ ൌ 0, then 
when ݕ ് 0, Δݕܪ ് 0. 

When ݌ ൑ ݕܪΔ ,ݍ ൌ 0 has a unique solution if and only if 
ሻܪሺΔ݇݊ܽݎ ൌ ݊ െ 1, where n is the number of buses. When 

attackers target a different state, i.e., ݔොܽ ൌ ොݔ ൅ ܿ with ܿ ് 0, 
they will try to determine the corresponding attack vector a to 
satisfy the condition ܽ ൌ  .to bypass the bad data detection ,ܿ′ܪ
As we represent the decoy Jacobian matrix as ܪᇱ ൌ ܪ ൅ Δܪ, 
the condition ܽ ൌ ܽ ᇱܿ becomesܪ ൌ ሺܪ ൅ Δܪሻܿ ൌ ܿܪ ൅ Δܿܪ. 
Because Δܿܪ ് 0, we always have ܽ ്   .ܿܪ

When ݌ ൐ ݍ , Δݕܪ  always has more than one nontrivial 
solution. This case should not happen in real power systems, as 
there aren’t enough measurements available in real power 
systems to solve state estimation, even without attacks. ∎  

Case 2: ࢉ ്  By satisfying Lemma 1, we guarantee that .′ࢉ
attackers’ original strategy does not succeed. However, this 
does not ensure that attackers’ activities are always detected. If 
ܽ ൌ ′ܿܪ  with ܿ ് ܿ′ , the corrupted measurements can still 
bypass the bad data detector in the state estimation, even though 
attackers fail to make state estimation estimates a malicious 
state that they intended to make (as c ് c′). 

In Lemma 2, we present the condition when the 
compromised measurements based on the decoy Jacobian 
matrix can bypass the bad-data detectors used in the real power 
system. 

Lemma 2. An attack strategy based on the decoy Jacobian 
matrix, i.e., ܽ ൌ  can bypass the bad-data detection if it ,ܿ′ܪ
satisfies the condition ݇݊ܽݎሺܪሻ ൌ   .ሿሻܿ′ܪ	ܪሺሾ݇݊ܽݎ

Proof. If ݇݊ܽݎሺܪሻ ൌ ሿሻܿ′ܪ	ܪሺሾ݇݊ܽݎ  and ܽ ൌ ܿ′ܪ , the 
linear equation ݕܪ ൌ ܽ is consistent (i.e., the equation has at 
least one solution). The solution of this equation is the change 
of system state ܿ′ that can bypass the state estimation. ∎  

If attackers use the decoy Jacobian matrix, they need to 
ensure that compromised measurements fall into the column 

 
(a) (b) (c) 

Figure 4. Procedure to craft decoy measurements in a 5-bus power system. 
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space of H, to avoid detection. Even though we cannot find a 
sound proof to ensure that the condition ݇݊ܽݎሺܪሻ ൌ
 ሿሻ always fails, this condition can be challengingܿ′ܪ	ܪሺሾ݇݊ܽݎ
to satisfy in practice. In our experiments, we have not found any 
FDIAs that can bypass the bad-data detectors (see Section V.A 
for details). 

Combining the analyses from those two cases, we formulate 
the following procedure for Step 1.a, which aims to satisfy 
Lemma 1. 

The procedure of Step 1.a. We determine the decoy values 
of the susceptance of the transmission lines by randomly 
changing the corresponding line susceptance of the protected 
power systems, such that ݇݊ܽݎሺΔܪሻ ൌ ݊ െ 1, where n is the 
number of buses. 

To prepare FDIAs, attackers will need to use SCADA 
measurements, e.g., the power flow of transmission lines, to 
indirectly estimate the topological information. To make 
attackers use the decoy Jacobian matrix, we use the decoy 
values for line susceptance, as determined in this section, to 
calculate other SCADA measurements that can be observed 
over communication networks. In other words, when attackers 
observe those measurements, they will prepare compromised 
measurements based on the decoy Jacobian matrix. 
Furthermore, in Step 1.b, we also use the decoy Jacobian matrix 
to generate the misleading measurements of power flow on 
transmission lines, which allows the decoy measurements to 
mislead both FDIAs and CRAs. 

B. Step 1.b: mislead CRAs 

 Background. In CRAs, attackers compromise commands 
delivered to end devices to change the physical states of power 
systems. In this paper, we focus on control-related attacks that 
seek to disconnect transmission lines. These operations are also 
used in real attacks [1]. Note that attackers can also use the 
commands to disconnect a substation, which is equivalent to 
disconnecting all the transmission lines that connect to that 
substation. 

In this paper, we focus on CRAs that target power systems’ 
steady states. Specifically, we consider an attack scenario 
similar to the one discussed in [3]: a power system is in an 
insecure state if at least one transmission line violates its 
physical constraints as determined by the power flow limit. In 
[3], we qualitatively presented the impact of CRAs on systems’ 
dynamic states, which is affected by the parameters of the 
generators’ physical model and feedback control. To mislead 
CRAs targeting a power system’s dynamic states, we need to 
craft decoy measurements related to generators and feedback 

control approaches in addition to power flows on substations 
and transmission lines. In future work, we will quantitatively 
study the impact of CRAs on system dynamic states and how to 
mislead them correspondingly. 

Preparations. Based on the study in [3], to cause physical 
disturbance of power systems (i.e., cause overload on 
transmission lines), attackers can target transmission lines that 
carry heavy power flows. Disconnecting those lines can cause 
overloading of other remaining transmission lines. To identify 
those critical transmission lines, attackers need to collect 
measurements of power flows of transmission lines and the 
power generations and consumptions of substations (the 
“measurements for preparations” of CRAs in Table 1). 

In today’s SCADA systems, measurements of the power 
usage of transmission lines and substations are periodically 
delivered to the control center. Consequently, under the threat 
model discussed in Section II.A, attackers can use the 
compromised devices in SCADA control networks to observe 
network packets and extract the measurements from the 
application-layer payloads.  

Protection. To protect a power grid from CRAs, we craft 
decoy measurements such that the transmission lines with 
heavy loads correspond to the lines that carry light power flow 
in real power systems. Consequently, attack strategies that rely 
on decoy measurements ultimate target lightly loaded 
transmission lines and have little impact on the real power grid, 
even if the attack strategies are successfully executed. 

The procedure of Step 1.b. We first list, in descending order, 
the active power of transmission lines that are controlled by 
offline devices in the real power system: ூܲభ ൒ ூܲమ ൒ ⋯ ூܲ೟ , 
where ܫଵ, … ,  ௧ represents the indices of transmission lines. Weܫ
assign the initial decoy values of the active power of line 

,ଵܫ … , ௧ as the values (in reverse order) ூܲభܫ
ௗ௘௖௢௬ ൌ ூܲ೟, ூܲమ

ௗ௘௖௢௬ ൌ

ூܲ೟షభ, …, ூܲ೟
ௗ௘௖௢௬ ൌ ூܲభ. 

C. Step 2: refine measurements 

In Step 2, we decide on the remaining decoy measurements, 
e.g., active and reactive power generations and consumptions 
in substations, and adjust the existing decoy measurements such 
that the decoy measurements become “legitimate.” We regard 
the measurements as legitimate if they can pass bad-data 
detection in AC state estimations. In other words, when 
attackers use state estimation, they will not obtain results that 
indicate the existence of bad data.  

The procedure of Step 2. We iteratively use AC state 
estimation on decoy measurements. In each iteration, we update 

 
(a) (b) (c) 

Figure 5. Decoy measurements misleading attackers.  
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the decoy measurement from offline devices with the results 
from the AC state estimation while keeping the measurements 
from online devices unchanged. Using the results of state 
estimation can bring the decoy measurements “closer” to being 
legitimate. 

To reduce the duration of Step 2, we use a “cut-short” version 
of AC state estimation, similar to the method in [3]. 
Specifically, we reduce the number of iterations spent in each 
state estimation. Consequently, we make decoy measurements 
move “faster” towards being legitimate. 

D. Case study 

 We illustrate the procedure for crafting the decoy 
measurements in a case study of a 5-bus system that contains 5 
transmission lines, 3 generators, and 3 load units. 

Figure 4 illustrates the procedure, including Step 1.b and Step 
2. Figure 4(a) depicts the state of the real/original system. To 
simplify the discussion, we attach to each transmission line an 
end device (denoted by a pie chart in the figure) that measures 
the active power flow of the transmission line. We assume that 
the measurement of P12 is collected from an online device 
(shown in blue), while all other measurements are collected 
from offline ones (shown in red). In Step 1.b, we assign initial 
values of the decoy measurements in the reverse of the order of 

the real measurements: ൫ ଷܲସ
ௗ௘௖௢௬ ൌ ସܲହ൯ ൏ ൫ ଷܲଶ

ௗ௘௖௢௬ ൌ ଵܲହ൯ ൏

൫ ଵܲହ
ௗ௘௖௢௬ ൌ ଷܲଶ൯ ൏ ൫ ସܲହ

ௗ௘௖௢௬ ൌ ଷܲସ൯, as shown in Figure 4(b).  
In Step 2, we perform state estimation iteratively. The 

ultimate result is shown in Figure 4(c). After Step 2, 
measurement P12 remains unchanged. The decoy 

measurements, i.e., ଷܲଶ
ௗ௘௖௢௬ , ଷܲସ

ௗ௘௖௢௬ , ଵܲହ
ௗ௘௖௢௬ , and ସܲହ

ௗ௘௖௢௬ , 
change slightly compared to their initial values shown in Figure 
4(b). However, the final decoy measurements can still map 
transmission lines with heavy power flows to the lines that carry 
light power flow in the real grid. 

To assess the impact of attack strategies based on decoy 
measurements, we show an example attack on the 5-bus system. 
Figure 5(a) shows the consequences of an attack done with the 
knowledge of all the real measurements, which are shown in 
Figure 4(a). Attackers determine that the line connecting buses 
3 and 4 carries the most power flows. After that line is 
disconnected, a transmission line connecting buses 2 and 3 is 
overloaded (as indicated by the red pie chart) and can be 
disconnected automatically. This can have a cascading effect on 
the whole power grid. Figure 5(b) shows that if attackers 
designed an attack strategy based on decoy measurements, as 
shown in Figure 4(c), they would target the transmission line 
connecting buses 1 and 5, which appears to carry the most 
power flow (as determined using the decoy measurements). 
Attackers would disconnect that line with the goal of 
overloading two other transmission lines. However, Figure 5(c) 
shows that the attackers would actually be disconnecting a 
transmission line that carries light power flow in the real power 
grid. Even if the attackers successfully disconnected this 
transmission line, they would not cause the overload of any 
transmission lines. 

V. EVALUATION 

To evaluate Raincoat, we develop a testbed to simulate both 
the physical and cyber infrastructures of power systems.  
 Power Grid Simulation. We use MATPOWER to simulate 

power systems’ physical infrastructures [19]. When a 
command is issued from the control center to end devices 
(simulated in the corresponding communication networks), 
we estimate the impact of the command and provide 
measurements to build network traffic. 

 
Figure 6. Cyber-physical testbed to evaluate Raincoat. 

In our experiment, we simulated IEEE 24-bus, IEEE 30-
bus, and IEEE RTS-96 (which includes 73 buses) systems, 
and three power systems representing three areas of Polish 
400-, 220-, and 110-kV networks, which include a 286-bus, 
a 406-bus, and an 1153-bus system. The baseline 
configurations of the latter three systems are included in 
MATPOWER as examples of large-scale power systems.  

To simulate the normal variability of operations in the 
simulated power grids, we created a benchmark profile based 
on one month of real data on power generation at our 
campus. In Figure 7, we show the power generation on the 
month’s 12th day, which was the day power generation 
experienced the biggest variations. On the y-axis, we show 
the normalized power generation, where each data point 
corresponds to a ratio between the actual power generated at 
the time specified on the x-axis and the peak value for this 
month. For each simulated system, we randomly selected 
power generators and load units and adjusted baseline 
measurements for each unit by scaling them down according 
to the ratio selected from the benchmark data. 

 
Figure 7: Recording of power generation on local campus. 

 Communication Networks. We used the GENI testbed, a 
nationwide network experiment platform, to construct 
communication networks of the kinds used by SCADA 
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systems to deliver commands and measurements. We used 
real SDN-enabled hardware switches and virtual machines in 
different physical locations to build control networks, which 
support communications between the control center and 
substations.  

To build a control network, we follow two steps. The first 
step is to construct a backbone network. To do this, we used 
one of three topologies of communication networks: a 
dumbbell topology and two topologies from the 
TopologyZoo dataset, namely ARPANET and NSF, which 
are the names of two WANs used in the U.S. [18]. The 
second step is to connect different numbers of edge switches 
to the switches in the backbone network. Following these 
two steps, we built six different control networks in our 
experiment. When indicating a network in the following 
paragraphs, we include the name of the backbone network 
and the number of nodes (including switches and end 
devices) in parentheses. For example, Figure 6 includes the 
(Dumbbell, 21) network, which is a 21-node network whose 
backbone network uses the dumbbell topology. 

In all constructed communication networks, a control 
center communicated to end devices by DNP3 protocol, 
which is the protocol widely used in U.S. power grids. 
Specifically, we used the open DNP3 library to implement a 

DNP3 master in the simulated control center and DNP3 
slaves in all simulated end devices [19].  

 Raincoat Implementation. We implemented Raincoat as an 
SDN controller in ONOS, an open source network operating 
system [6]. To generate decoy measurement, we 
implemented the procedure presented in Section IV as a 
MATLAB module and connected the module to ONOS. 
Because we used DNP3 as the protocol to deliver 
measurements, we included in ONOS an encoder to 
encapsulate decoy measurements in DNP3 packets. 

When attackers collect decoy measurements, they can use 
the state estimation to determine the system state, based on 
which they prepare attacks. We regard the decoy 
measurements as valid if they can pass the bad-data 
detections in the state estimation. In our experiments, we 
collected over 13,000 sets of decoy measurements for all 
simulated power systems. Over 88% of the decoy 
measurements are valid. For invalid decoy measurements, 
attackers can find bad measurements in them based on the 
results of the state estimation, which can raise suspicions. 
However, because attackers cannot obtain the real system 
state and design effective strategies, they may abandon their 
attacks. Alternatively, attackers can randomly select target 
devices to compromise, which can raise alerts if they access 

                  
(a) IEEE 24-bus (b) IEEE 30-bus 

                 
(c) IEEE RTS-96 (d) Poland 208-bus 

                
(e) Poland 406-bus (f) Poland 1153-bus 

Figure 8. Comparing the probabilities of successful attacks in different evaluation scenarios.  
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any offline devices. 

A. Security evaluation 

In this section, we evaluate how Raincoat disrupts FDIAs and 
CRAs by using randomly selected online/offline devices and 
decoy measurements. 

Mislead FDIAs. For each simulated power system, we 
implemented the false data injection attacks by changing the 
target measurements listed in Table 1 based on the procedure in 
[9]. We regard the FDIA as successful if the compromised 
measurements based on the decoy Jacobian matrix pass the bad-
data detections based on the real Jacobian matrix. In other 
words, the L2-norm of the measurement residual satisfies the 
condition ‖ݖ௔ െ ‖ො௔ݔܪ ൑ ߬.  

In our experiment, the state estimation of all simulated power 
systems was able to detect all compromised measurements that 
had been determined based on decoy Jacobian matrix ܪ′. The 
experiment results show that the L2-norm of the measurement 
residual can be at least 50 times larger than the bad-data 
detection threshold, i.e., ‖ݖ௔ െ ‖ො௔ݔܪ ൐ 50 ⋅ ߬ . In this paper, 
we discuss how we crafted decoy measurements of susceptance 
of transmission lines to mislead FDIAs based on the DC power 
flow model; however, the experimental results also show that 
the L2-norm of the measurement residual calculated based on 
the AC power flow model can be at least 1000 times larger than 
the bad-data detection threshold. 

Mislead CRAs. We simulated control-related attacks as 
disconnections of multiple transmission lines in the power 
system. For each attack, we analyzed its physical consequence. 
If the attack caused an overload on at least one transmission 
line, we regarded the power system to be in an insecure state, 
and thus the attack was deemed successful.  

To demonstrate how Raincoat disrupts and misleads CRAs, 
we considered three scenarios: 

Scenario 1: Random attacks (baseline), in which attackers 
randomly disconnect transmission lines to cause physical 
perturbations. In this scenario, we simulated attackers who had 
little or no knowledge of the power flows on the transmission 
lines. Note that we use the result of Random attacks to 
demonstrate the effectiveness of Raincoat. Random attacks can 
also be detected and mitigated by the randomized device 
connectivity. 

Scenario 2: Targeted attacks, in which attackers identify the 
top 15 heavily loaded transmission lines that carry most power 
flows and randomly disconnect some of them.  

Note that in this paper, we use power flows as an example 
metric to determine the criticality of transmission lines. In 
practice, system operators can select different metrics to 
determine the criticality of other physical devices. The 
proposed algorithm for crafting decoy measurements will not 
be restricted by the selection of those metrics. The system 
operator can follow the same concept to craft decoy 
measurements such that critical devices identified based on 
decoy measurements correspond to the noncritical devices in 
real power systems. 

Scenario 3: Raincoat, in which attackers use decoy 
measurements to identify the top 15 transmission lines that 

carry heavy power flows and randomly disconnect some of 
them.  

In each scenario, we made 2000 attack attempts and 
calculated the probability of successful attacks, denoted by pa. 
We show in Figure 8 how pa changes with the number of 
disconnected transmission lines. We present the result for each 
simulated power system in a separate plot. The three scenarios 
are indicated by different line patterns. 

One can observe that attackers with full knowledge of the 
target power systems (for Scenario 2, Targeted attacks) can 
easily put the system into an insecure state. For example, in the 
mid-scale IEEE RTS-96 system, disconnecting seven 
strategically selected transmission lines (out of a total of 120) 
can be sufficient to put the system into an insecure state (i.e., 
overloading at least one transmission line). If the attackers have 
little knowledge, the probability of a successful attack (in 
Scenario 1, Random attacks) is significantly smaller. 

Comparison of the pa of Scenario 3 (Raincoat) with that of 
Scenario 2 (Targeted attacks) indicates that the proposed 
algorithm for crafting decoy measurements can mislead 
attackers into targeting lightly loaded transmission lines and 
significantly reduces the probability of successful attacks. For 
the Polish 1153-bus system (the largest system simulated), the 
value of pa dropped from 70% (for Scenario 2, the Targeted 
attack) to less than 1% (for Scenario 3, Raincoat) when 8 lines 
were disconnected.  

More importantly, the pa observed in Scenario 3 (Raincoat) 
was of the same magnitude as, or less than, the probability 
observed in Scenario 1 (Random attacks). Consequently, 
Raincoat can successfully hide the real system state and 
obfuscate device connectivity to mislead attackers into 
designing ineffective strategies.  

B. Performance evaluation 

In this section, we evaluate the impact of Raincoat on (i) the 
accuracy of the state estimation performed at the control center, 
and (ii) the performance of the control networks by which 
measurement data are collected. 
1) Impact on the state estimation 

Using Raincoat, we collect measurements from all end 
devices within the same predefined data acquisition period of T 
time units. However, the time at which each device responds 
with measurements is slightly affected by Raincoat. In the 
original data acquisition procedure (when Raincoat is not used), 
measurements from all end devices are collected at the same 
time. When Raincoat is used, the measurements are collected at 
different times within the window of T time units.  

TABLE 2: IMPACT ON ACCURACY OF STATE ESTIMATION. 
(a) Under normal variations.  

Case Accuracy Case Accuracy 
24-bus 0 Poland 208-bus 0 
30-bus 0 Poland 406-bus 0 
RTS-96 0 Poland 1153-bus 0 
(b) Under 100 times speed-up variations (with 99% confidence interval) 

Case Accuracy Case Accuracy 
24-bus 1.1% (0.03%) Poland 208-bus 1.4% (0.07%) 
30-bus 1.3% (0.04%) Poland 406-bus 1.4% (0.06%) 
RTS-96 1.4% (0.02%) Poland 1153-bus 1.5% (0.06%) 

In Table 2, we show the impact of Raincoat on the accuracy 
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of state estimation if measurements are collected at slightly 
different times within the window of T time units (where T is 
on the range of 1 to 10 seconds). The accuracies were calculated 
as the differences between measurements estimated by the state 
estimation when Raincoat was and was not used. Because of 
mechanical inertia, the generation of a power system changes 
slowly, as shown in Figure 7. Under that normal variation in 
power generation, we find no impact of Raincoat on state 
estimation, as shown in Table 2(a). Even if we experimentally 
speed up the variations in power generation in the simulation 
by 100 times, which we would consider a worst-case scenario, 
we observe a less than 1.5% difference in the accuracy of the 
state estimation.  
2) Impact on the network performance 

In Figure 9, we show the average round-trip time (RTT) (with 
99% confidence interval) between the control center and end 
devices when we use Raincoat to manipulate data acquisition. 
We compare its performance with the default ONOS 
Forwarding controller, which forwards packets to output ports 
chosen at runtime and static routing/forwarding rules preloaded 
into the edge switches without interacting with any SDN 
controller (Base). We normalized the results with respect to the 
RTT of the Base flow-manipulation method.  

 
Figure 9. Comparing RTTs under three flow control mechanisms. 

As shown in Figure 9, compared to the Forwarding 
controllers, the Raincoat controllers add a small latency, which 
is less than 6% on average, to encode decoy measurements in 
the form of DNP3 packets. Figure 9 also shows that use of 
Forwarding controller can add communications between an 
edge switch and an SDN controller. The resulting latency 
causes a 30% increase in the RTTs relative to the Base case for 
the first five networks, and an almost 100% increase for the last 
network (NSF, 111). The reason is that we were sharing 
computing resources in the GENI testbed with other projects. 
As the scale of the networks increased, we could not allocate 
sufficient computing resources for the SDN controllers to 
handle more traffic from the edge switches, and thus additional 
latency was introduced in the data acquisition. However, even 
with the limited computing resources, the RTTs of the data 
acquisitions in the (NSF, 111) network were around 120 to 150 
ms, which is less than 200 ms (the required maximum time 
specified by IEEE standard to deliver measurements from 
substations to the control center [13]). To remedy the 
communication latency between controllers and switches, we 
can increase the number of controllers or allocate more 
computing power to run controllers when deploying Raincoat 
in real power systems. Based on the figures from studies on 
networks in data centers, the latency between the controller and 
switches are typically around 15 ms [31]. 

VI. DISCUSSION 

Integrating with power system applications. Because SDN 
controllers can manipulate network flows based on their 
application-layer payloads, we can create multiple views of 
online/offline devices for different power system applications. 
For example, we can manipulate the network flows such that a 
device is offline for data acquisitions but online for other power 
system applications, e.g., commands that operate end devices.  

Integrating with real-time measurement collection. The 
ability to manipulate network flows for different applications 
makes Raincoat suitable for data acquisitions with short 
periods. For example, smart grids can collect PMU (phasor 
measurement unit) measurements 200 times per second. 
Dividing one such data acquisition into multiple rounds can 
become challenging. To overcome these challenges, we can 
adjust the randomization procedure in SDN controllers by 
prioritizing the measurements that have experienced significant 
changes since the last sampling timestamp and randomizing 
only the remaining measurements. Note that many network 
protocols used in power grids, such as DNP3, support 
unsolicited responses, which are used to deliver measurements 
that have big changes. Raincoat can use SDN controllers to 
forward the unsolicited responses directly while randomizing 
other responses. 

The differences between real and spoofed measurements. 
Because spoofed measurements are changed when Raincoat 
changes the set of online/offline devices, there can be multiple 
spoofed measurements from each end device. Consequently, in 
the long term, attackers can observe different measurements 
from the same end device, i.e., the real measurement and 
different spoofed measurements generated at different times. 
The differences between those measurements may make 
attackers suspicious, but the attackers will not be able to 
distinguish real measurements from spoofed measurements. 
Consequently, attackers may abandon the attacks or randomly 
select devices as targets, which can still reduce the impact of 
the attacks. 

VII. RELATED WORK 

Moving target defense (MTD) on cyber-physical systems. In 
the last two decades, moving target defense mechanisms have 
been proposed to protect computing and network environments 
[20]. In [21][22], the authors assign random IP addresses and 
port numbers to end hosts to disrupt attackers’ knowledge of 
target network infrastructure. As such MTDs randomize only 
network infrastructure and still deliver the true measurement 
over communication networks, attackers can still learn the 
physical state. Further, based on the measurements, it is 
possible for attackers to identify devices’ identities [23]. In 
Raincoat, we obfuscate both network infrastructure and 
physical measurements; we can not only hide the cyber-
physical characteristics of power systems but also use 
intelligently crafted measurements to mislead attackers into 
designing ineffective strategies. 

Recent research has begun using MTDs to detect attackers in 
ICSes. Based on their impacts on existing physical operations, 
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we categorize these MTD approaches as either passive or 
intrusive. Some “passive” MTD approaches disrupt 
measurements while adversaries execute their attack strategies. 
In [25], Miao et al. rely on a lightweight matrix to encode sensor 
measurements of linear time-invariant systems, such that the 
state estimation module can detect stealthy false data injection 
attacks. Compared to this work, Raincoat serves a different 
objective: it relies on SDN controllers to obfuscate 
measurements in power systems to disrupt and mislead 
attackers into designing ineffective strategies for both FDIAs 
and CRAs, before they launch malicious activities. Other 
“passive” MTD approach, as shown in [26], uses randomly 
selected measurements in state estimation to detect FDIAs. This 
approach can randomly remove some compromised 
measurements and reduce the effectiveness of the FDIAs 
against state estimation. However, because fewer 
measurements are used, the passive MTD approach reduces the 
measurement redundancy, which can downgrade the accuracy 
of existing power system applications, e.g., state estimation. In 
Raincoat, we randomize measurements only for potential 
attackers; legitimate users, e.g., the control center, can still 
collect the complete set of real measurements, which can 
maintain the accuracy of state estimation.  

The “intrusive” MTD approach, as shown in [17][27][28], 
intentionally injects into ICSes some perturbations, e.g., by 
changing the communication paths or adjusting the admittance 
of transmission lines. System operators would use the 
deviations from the expected consequences of the perturbations 
to detect attackers. In [36], Liu et al. enhanced the MTD 
approach based on topology perturbations in [17] by optimizing 
reactance perturbations in order to identify maliciously 
compromised measurements in addition to detecting attacks. 
[37] mainly focused on improving the stealthiness of the 
approaches based on topology perturbation such that it becomes 
difficult for attackers to detect the activation of the approaches. 
Those approaches can expose attackers when they perform 
malicious activities. However, such approaches themselves 
heavily rely on the deployment of domain-specific devices, e.g., 
D-FACTS (distributed flexible AC transmission system) 
devices, to perform perturbations. Also, they require changes to 
physical operations and introduce some physical perturbations. 
Raincoat manipulates network flows to obfuscate the data 
acquisitions without changing the existing physical operations 
or the configuration of end devices, which make it easy to apply 
Raincoat to different attack scenarios. In addition, the decoy 
measurements and randomized device connectivity mislead 
attackers and prevent them from introducing any unauthorized 
activities, even if the activities introduce little physical damage. 

Dynamic scheduling of ICS operations. In recent work, 
SDN has been used to adjust ICS operations, including both 
data acquisition and control commands, to meet different QoS 
requirements [29][30]. In [32][33], the authors proposed 
scheduling real-time measurements that have different QoS 
requirements to maintain the performance of control networks. 
In addition, SDN technology is used to increase the resilience 
of ICS networks in the case of accidental events, e.g., a link or 
node failure [30]. In Raincoat, we use SDN to manipulate 

network flows that deliver SCADA measurements. The 
difference is that our objective is to randomize data acquisitions 
and thus disrupt and mislead attackers and mitigate physical 
damage.  

Honeypots for ICS. Several honeypot projects aim to build 
separate computing or network environments for ICSes, to 
attract and trace attackers’ activities on ICS devices, e.g., PLCs 
(programmable logic controllers) [34][35]. Those ICS 
honeypots can mimic the cyberinfrastructure of an ICS 
(including the network protocols and response time). However, 
in their constructed network communications, the projects lack 
support for constructing meaningful application-layer payloads, 
e.g., measurements exchanged between ICS devices. Without 
careful design, randomly generated measurements included in 
communication networks can reveal the presence of a bogus 
environment to attackers.  

Raincoat is not a honeypot for ICSes; it uses SDN to 
manipulate existing network flows of power systems to disrupt 
attackers’ preparations. However, we include in Raincoat a 
method to craft spoofed measurements that follow the physical 
model of power systems. This method is based on general AC 
state estimation. It can be used independently in an ICS 
honeypot to mimic valid yet deceptive physical measurements, 
to increase the honeypot’s authenticity. 

VIII. CONCLUSIONS 

This paper presents the design of Raincoat, which 
randomizes data acquisitions performed in SCADA systems to 
foil attackers in the attack-preparation stage. Raincoat 
manipulates network flows to transform a single deterministic 
data acquisition request into multiple rounds of data 
acquisitions of randomly selected online/offline devices. While 
online devices respond with real measurements, Raincoat 
spoofs measurements on behalf of offline devices. To spoof 
measurements that follow physical models of power systems, 
we include in Raincoat an algorithm that generates decoy 
measurements. Decoy measurements mislead attackers into 
designing (i) false data injection attacks that cannot pass the 
state estimation, and (ii) control-related attacks whose 
probability of generating physical damage is less than 1% in a 
real-world power system. Evaluations done in both cyber and 
physical domains in power systems show that Raincoat 
introduces a small overhead. The latency of the data 
acquisitions increases by less than 6%.  

In future work, we plan to use Raincoat in other 
implementation scenarios, e.g., high-frequency data acquisition 
used in PMU networks, and to disrupt and mislead more 
complicated attacks, including control-related attacks that can 
affect power grid’s dynamic states. 
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