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Abstract: Cyber-physical systems (CPS) control and monitor physical processes 
through off-the-shelf computing components and network infrastructure. CPS are 
increasingly used in various application domains, e.g., smart power grids, vehicular 
networks, interconnected medical devices, and smart manufacturing systems, with 
very different characteristics regarding control and computing algorithms, 
underlying physical infrastructures, communication protocols, timing constraints, 
and level of autonomy. Despite these variations, CPS face the threat of cyber-
physical attacks, which might exploit the common vulnerabilities in cyber layer to 
introduce safety violations in physical domain. In this paper, we discuss the 
common challenges in detecting CPS attacks by presenting representative related 
work and analyze how diverse characteristics of CPS impact the efficacy of 
detection mechanisms. To clarify our analysis, we use two different example CPS, 
i.e., power grids and surgical robots. Finally, we use this analysis to identify the 
ongoing challenges and future research directions in ensuring resilience of CPS.  

 
Introduction 
Cyber-physical systems (CPS) are systems controlling and monitoring physical processes through the tight 
interconnection of off-the-shelf computing components and network infrastructure. Despite the differences 
in communication networks and physical processes, today’s CPS are control systems with two common 
types of interactions between cyber and physical layers, as shown in Figure 1(a). One type of interactions 
involves collecting measurements from the physical processes and using them as an input to the control 
algorithms to update the models of the physical processes in the cyber layer. Another type of interactions 
involves the commands generated by the control algorithms based on the most current model and 
estimated the state of the physical process to ensure system’s operation and long-term stability.   

One of the major threats to the resilience of CPS is the safety-critical cyber-physical attacks, a class of 
malicious attacks that exploit the vulnerabilities in the cyber domain as footholds to introduce safety 
violations in the physical layer. By compromising measurements or control commands in a legitimate 
manner, adversaries can leave few detectable traces in the cyber and physical domains and evade 
detection by the commonly used intrusion and malware detection techniques. To present these attacks in 
a unified way, we use Figure 1(a) to depict the most likely entry points for attackers to penetrate into the 
system. In the first type of attacks, which are often referred to as control-related attacks, adversaries 
maliciously modify the control fields of commands delivered through communication networks to cause 
damage or disruption in the operation of the physical processes10. These attacks are no longer only the 
subject of study in research as their occurrence has been reported in real incidents, e.g., the Stuxnet attack 
on Iranian nuclear facilities and the attacks to the Ukrainian power plants. In the second type of attacks, 
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which are referred to as false data injection attacks, adversaries compromise the measurements related to 
the state of physical processes. Research studies have shown that the false data injection attacks can 
either (i) mislead control algorithms into issuing unsafe control commands to the physical layer16 or (ii) hide 
the real physical state of the CPS (potentially malicious state caused by the control-related attacks) to delay 
the response and recovery from malicious states.   

Different attack models on CPS, including the attack entry points and attack profiles, have been subject 
to study in previous work15. In this paper, we are specifically focusing on the CPS attacks with the common 
objective of causing disruptions in the physical layer. These disruptions can be classified into the following 
categories: 

• Physical malfunction: Adversaries causing the CPS fail to deliver the contracted service, e.g., 
power system outage. These malfunctions might not introduce severe damage to the system but 
can jeopardize the reputation of service providers in the long-term.  

• Personal safety: Adversaries injecting control-loop "Trojan” to perform unexpected operations9, 
causing threats to personal safety (e.g., attacks to industrial or surgical robotics). 

• Economic loss: Adversaries targeting the optimization procedures in CPS to introduce economic 
loss and/or directly obtain economic benefits (e.g., attacks to the optimal power flow analysis in 
electric power grids that try to satisfy the load demands with the smallest generation costs). 

• Altered observability: Adversaries (or false data injection attacks) hindering the observability of 
CPS to either (i) mislead system operator into issuing false control operations and introduce other 
consequences or (ii) hide the malicious consequences to delay remedy procedures. 

Unlike previous work that took ad-hoc approaches to proposing attack models and defense mechanisms 

 
(a) 

 
(b) 

 
(c) 

Figure 1. (a) Cyber-physical system control and example communication structures for (b) robotic 
surgical systems and (c) power grid infrastructures. 
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for specific CPS, we strive to establish scientific foundations for modeling of attacks and design of defense 
mechanisms that can further guide us in designing future attack-resilient CPS. Specifically, we aim at 
developing a set of generalized design principles for resilience against cyber-physical attacks. To achieve 
this goal, we have reviewed representative literature on a wide range of CPS applications and system 
characteristics and a variety of possible attack scenarios. We specifically focus on the related work 
presented recently at different academic venues, including, security, dependability, control, power systems, 
and the Internet of things (IoT) conferences. Due to space limitations, the works which only focused on 
abstract mathematical models of CPS attacks without precise threat models, those with no experimental 
evaluation of the impact of attacks, or attack models with no concrete detection methods were excluded 
from our analysis. This survey helps us to identify the unique characteristics of the CPS across different 
application domains and characterize different categories of attack detection methods. We then analyze 
the correlations between the CPS characteristics and the detection techniques to characterize trends, 
alternative approaches, limitations, and ongoing challenges in ensuring resilience in CPS.  

CPS Diversity 
In this section, we characterize CPS systems that have been the target of cyber-physical attacks in previous 
research, in terms of control and computing algorithms, underlying physical processes, communication 
infrastructures, timing and resource constraints, and level of autonomy versus involvement of human 
operators in their supervision and control.  

Table 1 presents the breakdown of diverse characteristics in CPS. The first row of the table lists different 
target systems studied in the reviewed literature, including industrial control systems (e.g., power systems, 
chemical and water plants), robotic systems (e.g., surgical robots or industrial robots used in smart 
manufacturing), autonomous and platoon-based vehicles, automated building systems, Internet of things, 
and augmented/virtual reality systems. The first column of the table includes different dimensions that we 
consider for characterization of these systems and are further described below: 
• Cyber-domain. A major component of the cyber-domain in CPS is the communication network. We 

use “Central” control to indicate that there exists a central control unit across a wide area network 
collecting states of underneath physical processes and making decisions on control operations. A 
typical example of central control is SCADA (Supervisory Control And Data Acquisition) systems, which 
are often used in electric power grids and water plants. “Distributed” control refers to regional 
communication networks involving components that are physically near to each other, such as platoon-
based communication networks inter-connecting the autonomous vehicles. In distributed CPS, each 
physical component makes a control decision based on the information collected from its neighbor 
components. The last type of communication network considered here is the “Local” communication, 
where a physical component communicates only with the control decision unit in cyber layer without 
sharing information with other physical components.  

• Physical-domain Models. The physical domain characteristic refers to the state of the underneath 
physical processes and their trajectory over time. We classify the physical domain based on the 
mathematical models used to specify the physical state of a CPS. Researchers can develop a closed 
form analytical model to specify the “Static” state for some CPS and to specify the “Dynamic” state for 
others. For some CPS, such as devices for monitoring human behavior or physiology, establishing a 
closed form model that accurately describes the underneath physical processes is very challenging. 
Those cases are specified as “No Analytical Model” in the table.  

• Level of Autonomy. Some CPS require the active involvement of human decision and supervision in 
their control loops. The human involvement is closely related to the level of autonomy of the control 
system. “Autonomous” control (listed in Table 1) indicates that control decisions are automated with 
little involvement of human operators unless an extreme emergency case occurs. In the “Semi-
autonomous” control, the human operators and autonomous control algorithms are collaboratively 
involved in supervision and decision making and human decisions can prioritize the automated 
decisions. In the “Manual” control, the decisions made by human operators directly impact the critical 
path of the control loop. These human involvement levels can be mapped to the levels of autonomy 
defined by the international standards for self-driving cars and surgical robots (e.g., "manual" mapped 
to levels 0-1, "semi-autonomous" to levels 2-3, and "autonomous" to levels 4-5). 
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• Time Constraints. We use this characteristic to specify the requirements of computation and 
communication latency in CPS. These requirements not only impact the interactions with the human 
operators but also the trade-offs that should be made in the design of detection and response 
mechanisms. Based on the reviewed literature, we classify these requirements into three levels of tight 
(< 10ms), medium (10-100ms), and loose (> 1sec).  

There could be close correlations between certain characteristics of CPS. For example, in case of the 
tight involvement of human operators in control, the communication latency is demanding to ensure that 
operators can observe the run-time state of the physical process and take timely appropriate actions. 
Example of CPS with such characteristics include surgical robots, autonomous vehicles, and augmented 
reality systems.  

Example CPS 
In Table 2, we present a detailed description of two example CPS, including robotic surgical systems (Figure 
1(b)) and power grid infrastructures (Figure 1(c)) and demonstrate their similarities (inherited from the 
common communication structure shown in Figure 1(a)) and their very different characteristics. We then 
discuss the detection of control related attacks in these two CPS. Both these systems rely on a feedback 
control loop, in which a control decision software and/or human operators rely on measurements from the 
physical systems to decide the appropriate control operations.  

Table 1. Diverse Characteristics in CPS. 
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Cyber-domain           
• Central ■ □ □  □  ■    
• Distributed         ■  
• Local    ■  ■ ■ □  ■ 
Physical-domain Model           
• Static Model ■    □      
• Dynamic Model ■ ■ □ ■   ■    
• No Analytical Model    □  ■  □ ■ □ 
Level of Autonomy           
• Autonomous    ■ □  ■ ■ ■  
• Semi-Autonomous ■ □ □   ■ □    
• Manual    ■      □ 
Time constraints           
• Tight (< 10ms)    ■  ■    □ 
• Medium (10~100ms) ■    □  □  ■  
• Loose (> 1 sec) ■ ■ ■    □ ■   

Legend: ■ indicates that the characteristics are explicitly mentioned in the literature; □ indicates that the 
characteristics are implicitly inherited from the literature or its related work. 
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Table 2. Characteristics of Two Example CPS.  
Characteristics  Robotic Surgical Systems Power Grid Infrastructure 

System 
Description 

The surgical robots typically consist of a master 
teleoperation console, the robot control system, 
and the robotic arms and surgical instruments.  
• The master console is controlled by the human 

operator to send the desired position and 
orientation of robotic arms to the robot control 
system which translates them into control 
commands for moving robotics joints.  

• The control system consists of software 
modules running on top of commodity 
operating systems and robotics middleware, 
communicating with hardware and electronic 
components (e.g., motor controllers, DACs, 
PLC) via custom interface devices (e.g., USB).  

The communication structure includes 
control center, substations, and field 
sites.  
• The control center uses a SCADA 

master to collect data from 
substations, estimate system state, 
and issue control operations. 

• A substation can contain various 
intelligent devices, which can run off-
the-shelf operating systems and 
communicate with each other over IP-
based network. 

Physical 
Domain 

In each control loop, the current state of the end 
effector on each robotic arm is estimated based 
on the encoder readings from the joints using the 
forward cable coupling and kinematics functions. 
The end-effector positions and orientations are 
translated to the joint and motor positions using 
inverse kinematics and cable coupling 
calculations and are sent to the motor controllers 
in the form of torque commands obtained using a 
Proportional-Integral-Derivative (PID) controller. 

To describe system state, we can 
formulate at each bus two power-flow 
equations, which specify the mathematic 
relations among the system state, the 
generated power, the consumed power, 
and the power delivered to other buses 
at each timestamp.  

Cyber  
Domain 

The user commands are transferred from the 
master console to the robot control software over 
the network using TCP/UDP based protocols. 
The communication network is usually 
implemented as point-to-point connections 
between devices, to achieve a complete isolation 
from the rest of the network infrastructure.  

The control center is connected to 
substations through a wide area network 
(WAN). Traditionally, this control-network 
is not open to the public Internet. 
However, to boost control efficiency, the 
control network is now connected 
through corporate networks of a power 
system or through personal devices.  

Level of 
Autonomy 

The state-of-the-art surgical robots are semi-
autonomous systems requiring real-time 
interactions with human operators. The transition 
between the control states and robotic 
movements can only occur upon the commands 
issued from the surgeon at the master console. 

Today's power systems can operate 
autonomously, as formally specified in 
multiple industrial standards, e.g. IEC 
61850. The example of the automation 
includes fault isolation and generation 
controls, automatic reclosing breakers, 
etc. The grid operators monitor the real-
time system state and will only interfere 
upon certain anomaly, e.g., load 
shedding decisions. 

Time 
Constraints 

The robot control software must complete each 
iteration of control and computing the new 
position of the robotic arms within a time less 
than or equal to 1ms. 

In power grids, the requirements to 
deliver measurements or control 
commands can range between hundreds 
of milliseconds to several seconds.  
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Classification of Detection Approaches 
We classify the detection approaches in the reviewed literature into two main categories of Data-centric 
and Specification-centric. The data-centric approaches refer to the detection methods that rely on the 
statistical characteristics extracted from the measurements collected from CPS. The typical examples 
include anomaly-based intrusion detection methods and network/device fingerprinting methods1,2,6. The 
major advantage of the data-centric approach is that it can apply machine-learning and analytic techniques 
to data from either cyber or physical domains or both, despite different CPS implementations. However, 
without considering the domain-specific characteristics of a CPS, when cyber-attacks happen, there exists 
a semantic gap between statistical deviations and the physical impact of attacks on CPS. 

The specification-centric approaches refer to the detection methods that rely on the established 
standards, rules, or known specifications and models of target CPS to detect any inconsistent or anomalous 
behavior. These approaches can directly reveal adversary’s intentions and apply remedy mechanisms 
based on the detected attack scenario. However, developing accurate models and specification-centric 
detection techniques are often very challenging tasks, as many CPS and industrial control systems rely on 
proprietary communication protocols and the manufacturers are often reluctant to reveal details of their 
design documents to third-party entities that perform security monitoring. 

In Table 3, we present the breakdown of different detection approaches in data-centric and specification-
centric categories as well as a hybrid of the two, as described below:  
• Data-centric Detection. We further classify the data-centric detection approaches into two categories, 

i.e., “cyber-domain” and “physical domain,” to refer to the source of data used to extract statistics from. 
The traditional CPS often use proprietary network protocols for cyber and physical communications. 
Consequently, approximately 40% of the reviewed literature use the cyber-domain data-centric 
approaches, i.e., the data extracted from the transport or IP layer of network packets. This group of 
work uses the cyber layer data to indirectly reflect domain-specific behavior and state of the physical 
layer. For example, based on the observation that physical operations are usually periodic, Markman 
et al. divide time-stamped traffic flows into a sequence of bursts and then build a deterministic finite 
automaton for each burst of the traffic. Compared to treating all traffic equally, the automata built for 
each burst can reflect the characteristics of the underlying physical process2. Formby et al. used the 
differences in the time stamps recorded at consecutive TCP layer packets to infer the execution time 
of certain physical operations, which is further used as device’s fingerprints6. 

The physical-domain data-centric approaches use the measurements collected from the physical 
processes to infer the state of CPS. If the application protocol used in a CPS is open, system operators 
can also extract the physical-domain data from the application layer of the run-time network packets1. 
Urbina et al. used the statistical models based on the physical-domain data to not only detect attacks 
but also limit their impacts on physical processes8. 

• Specification-centric Detection. Similar to the data-centric approaches, we classify the specification-
centric detection approaches into two categories of “cyber-domain” and “physical-domain,” based on 
the scope of the specifications used to detect attacks. The cyber-domain specifications use the 
standards of communication channel protocols as references to model normal application activities. 
The typical examples include IP based networks such as DNP3 or Modbus, which are widely used in 
industrial control systems. These protocols define not only the syntax of network packets but also state 
transitions in end-devices. One major challenge of using cyber-domain specifications is how to translate 
protocol definitions into rule sets that are deployable in communication channel monitors. Caselli et al. 
has presented automated methods based on machine learning to facilitate this procedure7.  

The physical-domain specification approaches, on the other hand, rely on mathematical models 
that can describe the dynamic state of the physical processes. These mathematical models can provide 
valuable references to estimate the potential consequence of attacks in the physical domain. However, 
the major challenge is that complexity of these mathematical models may prevent system 
administrators from using them for real-time monitoring. In our recent work, we have demonstrated that 
it is applicable to relieve the complexity of these mathematical models by reducing the number of 
considered parameters and the complexity of computations through approximation9.  

• Hybrid Detection. This category of detection methods use the advantages of both data-centric and 
specification-centric approaches across different domains of a single CPS. For example, Fauri et al. 
use physical models as guidelines to build anomaly-based detection mechanisms3. The physical 
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models can help identifying the critical parameters to consider for anomaly detection in the cyber layer. 
On the other hand, the data-centric approaches can be effective for estimating the unknown model 
parameters or the relations between the parameters. By combining statistical characteristics observed 
in the cyber domain with the mathematical models of physical domain, we believe that hybrid methods 
can capture a more thorough picture of CPS operational logic and thus be more accurate and efficient 
in detection of attacks.  

Detection Methods and CPS Characteristics 
In this section, we analyze the detection methods proposed for categories of CPS with different 
characteristics and application domains shown in Table 1. The results of this characterization are presented 
in Table 3. It appears that there exist correlations among the types of detection methods used in the 
literature and the characteristics of the target CPS. The following are some of the major observations made 
based on this analysis: 
• Data-centric detection methods based on cyber-domain measurements dominate the literature, while 

specification-centric methods based on physical-domain models are emerging in recent years. This 
trend shows that researchers have realized the importance of applying domain-specific knowledge of 
CPS into design of detection methods.  

• For the CPS that modeling of the underlying physical system is challenging (“No Analytical Model” 
category), the data-centric methods or cyber-domain specification-centric methods are the only viable 
options. Similarly, in CPS such as power grid where constructing accurate dynamic models of physical 
system is challenging and not very efficient, the static models of physical domain were considered 3,6,10. 

• For some CPS, although the static6 and dynamic2,4,8 models of physical processes exist in the literature, 
some proposed detection techniques still focused on data-centric methods based on cyber or physical 
domain measurements. 

Table 3. CPS Characteristics vs. Detection Methods. 
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Data-centric: Detection based on statistical models of activities observed in either cyber or physical domains. 
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Specification-centric: Detection using established standards, rules, or known specifications and mathematical 
models of a target CPS  
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Legend: † indicates that the method is hybrid and uses both data-centric and specification- centric approaches.  
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• Little attention has been paid to design of resilient CPS with tight real-time constraints and most of the 
existing work rely on data-centric approaches. This is because timely detection of the adverse 
consequences of attacks and damage prevention requires the runtime execution of complex 
mathematical models, which cannot be easily achieved within the real-time constraints of system. 

• Many detection methods rely heavily on “central” cyberinfrastructure and only a few focus on 
“distributed” CPS such as IoT systems. In "distributed" CPS, the communication overhead of 
information reaching the decision-making points can become a hurdle for real-time detection and 
response. 

Detecting Control-Related Attacks in Example CPS 
In Table 3, we demonstrated the correlations of CPS characteristics and detection methods. In this section, 
we use the example CPS from Table 2 to discuss those correlations in details. Here we mainly focus on 
control-related attacks that are initiated by malicious modification of control commands. In these example 
CPS, we use the following common set of detection principles: (i) keeping track of the updated physical 
states in the cyber layer; (ii) continuous monitoring of communication network/links (in cyber-domain) to 
assess the control commands; and (iii) using the dynamic behavioral model of physical system to estimate 
the potential consequence of executing control commands before they are actually executed in the physical 
layer. However, the same principles lead to very different designs and implementations of the detection 
methods based on the characteristics of the target CPS.   

Attack Detection in Robotic Surgical Systems 
In our previous work9, we demonstrated that malicious modification of control commands in a surgical 

robot could cause abrupt jumps of a few millimeters in the robotic arms in only a couple of milliseconds. If 
the attacker mounts such attacks at a critical time during surgery, it could cause catastrophic damage to 
the robot and potential harms to patients. Among four discussed characteristics of CPS, the cyber and 
physical domain characteristics of surgical robots play a dominant role in design of detection methods.  For 
timely detection of unsafe abrupt jumps before they occur in the physical layer, we designed a hybrid 
detection approach consisting of: i) a dynamic behavioral model of the robotic actuators; and ii) an anomaly 
detection module for continuous monitoring and fusion of real-time measurements from cyber-layer. 

Cyber-domain.  To minimize the gap between the time of safety checks to the time of execution of 
control commands and reducing the attack surface, we retrofitted the hardware interface board in the control 
system of the surgical robot as the last computational stage for deploying dynamic models and anomaly 
detection mechanisms. All control commands and sensor measurement sent by the control software are 
received and monitored before the commands are executed on the physical robot. 

Physical-domain and time constraints. To estimate the impact of control commands, we developed a 
software module that estimates the next position of the robotic actuators based on the control commands. 
Two sets of second-order ordinary differential equations were used to describe the dynamics of the robotic 
joints, and DC motors and the cable tension for the joints. The fourth-order Runge-Kutta and explicit Euler 
methods were used to calculate the solutions to these equations using numerical integration solvers at 
runtime. The main challenge in developing the dynamic model was to perform estimations within the tight 
time constraints of the robot control loop. To reduce the computational cost while maintaining the model 
accuracy and real-time guarantees, we modeled the robot manipulator dynamics using only the first three 
(out of seven) degrees of freedom (two rotational joints plus one translational joint). This approximation is 
reasonable because the first three joints are positioning joints that contribute the most to the instruments’ 
end effectors’ positions1.    

Attack Detection in Power Grid Infrastructure 
As shown in 10, the malicious modification of control commands can impact power system's steady state 

and dynamic behavior, similar to what happened in the Ukrainian power grids incident, where malicious 
commands injected by attackers resulted in safety violation of the grid and causing the grid to be down for 
several hours.   

Cyber-domain. Using off-the-shelf communication infrastructure makes it easy to tap into the power 
system's network to monitor measurements and commands in SCADA systems. Overcoming proprietary 
network protocol used in power systems can be achieved by designing new toolsets, such as extensions 
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of Bro, a runtime network traffic analyzer, to support DNP3 and Modbus, the network protocols widely used 
in U.S. power grids. However, the wide area communication network with a large number of sensors can 
introduce large overheads on collecting measurements and make the real-time detection challenging.  

Physical-domain and time constraints. To estimate the consequences of control commands in 
physical layer, we used power-flow analysis to estimate the state of power grids upon execution of the 
commands. To shorten detection latency while preserving detection accuracy, we proposed a new adaptive 
power-flow analysis and integrated it with real-time network analyzers10. Specifically, we adapted the 
number of iterations that classical AC power-flow analysis used to estimate the power system state. Instead 
of statically fixing this parameter, we dynamically adapted the number of iterations based on scale of the 
communication networks, the topology of power system transmission network, and the parameters of 
control commands observed at runtime.  

Discussion  
Summary: In this paper, we presented a summary of literature on detection of cyber-physical attacks by 

reviewing the papers presented in recent years across different academic communities. We found that:   
• A large body of work in the control theory and CPS communities focused on analysis of attacks and 

detection methods based on abstract mathematical models of CPS. These studies presented robust 
mathematical understanding of the potential attacks and their success probabilities or robust state 
estimation techniques for handling noise and uncertainty. However, they often lacked precise threat 
models (describing the required steps for the actual implementation of attacks) and experimental 
evaluation of impact of attacks on the physical system. We did not include those papers in our analysis 
due to space limitations. 

• Related work presented in the security and dependability communities mainly focused on attack 
implementations with realistic threat models and assessing the impact of attacks. But the proposed 
models and detection methods only targeted specific CPS without generalization to other domains.  

• Further, there exist many research efforts focusing on proposing new attack models with no concrete 
detection methods or only detecting attacks that target exclusively the cyber layer or the physical layer. 
We did not include these works in our analysis due to space limitations.  

 
Research Challenges and Opportunities: As CPS evolve with advanced sensing, computing and 

network technologies, some of the CPS characteristics and attack detection techniques can be unified 
within and generalized across different application domains to provide new opportunities for design of 
resilient CPS. For example, in recent work we applied the distributed communication infrastructure (a 
characteristic of CPS such as platoon-based vehicles and IoTs) to the power grids to detect false data 
injection attacks that often evade detection in central network infrastructures16. Another example includes 
adapting the existing physical-domain models from an application domain to design of generalized 
specification-centric methods for all CPS in that domain. Further, similar to the examples shown in the 
previous section, detection methods and principles can be generalized and applied to different applications. 

The study of different attack detection methods provides us with valuable insights into the ongoing 
challenges and opportunities in ensuring resilience of CPS:  
• Hybrid Detection Methods: There are very few research efforts focusing on the hybrid detection 

methods, e.g., data-centric approaches considering both cyber and physical data13, or both data-centric 
and specification-centric approaches considering both the measurements and models from the physical 
system14. It has been shown that hybrid approaches provide improved detection accuracy by capturing 
a more comprehensive picture of system state12.   

• Resilience in Human-in-the-loop CPS: There is little work on the resilience of CPS which require tight 
human interactions and involvement in control and decision making9,11. This research trend indicates 
the on-going challenges in accurate modeling of human behavior, psychological status, and decision-
making procedures as well as design of safe procedures for timely transfer of supervisory control.    

• Attack Response and Recovery: Response and recovery are important parts of CPS resilience to 
maintain continuous operation, but it is rarely addressed in the reviewed literature. The challenges in 
designing appropriate response mechanisms are tightly correlated with the time/resource constraints 
and the level of autonomy or human involvement in CPS. Although, this topic is beyond the scope of 
designing detection methods, we argue that the necessary conditions for effective response should be 
taken into consideration when designing the detection mechanisms, e.g., the maximum response time 
can be used as a requirement for design of intrusion detection systems10, or the operator response time 
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can be used as a constraint for optimization of detection latency in real-time semi-autonomous 
systems9.  
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