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ABSTRACT: The mobility of polystyrene nanoparticles ranging in diameter from
300 nm to 2 μm was measured in dilute and semidilute solutions of partially
hydrolyzed polyacrylamide. In this model system, the ratio of particle to polymer
size controls the long-time diffusivity of nanoparticles. The particle dynamics
transition from subdiffusive on short time scales to Fickian on long time scales,
qualitatively similar to predictions for polymer dynamics using a Rouse model. The
diffusivities extracted from the long-time Fickian regime, however, are larger than
those predicted by the Stokes−Einstein equation and the bulk zero-shear viscosity
and moreover do not collapse according to hydrodynamic models. The size-
dependent deviations of the long-time particle diffusivities derive instead from the
coupling between the dynamics of the particle and the polymer over the length
scale of the particle. Although the long-time diffusivities collapse according to
predictions, deviations of the short-time scaling exponents and the crossover time
between subdiffusive and Fickian dynamics indicate that the particles are only
partially coupled to the relaxation modes of the polymer.

Transport of nanoparticles through non-Newtonian media
affects applications ranging from targeted drug delivery1,2

to oil recovery3,4 to nanocomposite materials.5,6 In a
homogeneous medium of viscosity η, the diffusivity of a
particle with radius RNP is given by the Stokes−Einstein (SE)
equation DSE = kBT/6πηRNP. As particle size approaches
characteristic length scales in the medium, the continuum
assumption underlying the SE relation no longer holds, and
deviations from SE predictions appear.7−10 Attempts to explain
these deviations in mixtures of polymers and particles have
focused on identifying the length scale that controls particle
diffusion.
In entangled polymer systems, the length scale controlling

particle diffusion is the distance between entanglements. The
diffusion of nanoparticles smaller than the entanglement mesh
is unaffected by entanglement dynamics, but for larger particles
diffusion is dictated by polymer reptation until SE behavior is
recovered.11−14 In unentangled systems, however, different
physics must control nanoparticle diffusion. Hydrodynamic
models treat the polymer solution as a homogeneous medium
in which hydrodynamic interactions are screened over the
correlation length between polymer chains ξ.10,15,16 Scaling
models describe the particle mobility in terms of the polymer
dynamics,13,17,18 which are set by the characteristic length scales
ξ and the polymer radius of gyration Rg. Identifying the relevant
physics requires model systems that are compatible with a wide
range of particle sizes and span the transition from dilute to
semidilute regimes in unentangled solutions. In polyelectrolyte
solutions, topological entanglements appear at concentrations
orders of magnitude above c*,19,20 enabling investigations of
nanoparticle dynamics across a wide and previously inaccessible

range of semidilute concentrations in the absence of
entanglements.
Here, we show that the long-time diffusivity of nanoparticles

in unentangled semidilute polymer solutions is controlled by
RNP/ξ. We measure the mobility of nanoparticles of varying size
with RNP ∼ Rg over time. On short time scales, particle motion
is subdiffusive; on long time scales, particle motion becomes
purely diffusive. For large particles the long-time diffusivity
agrees with the SE prediction, but as the particle size decreases
the particles diffuse faster than predicted. Furthermore, the
discrepancy between measured diffusivities and SE predictions
increases with decreasing particle radius. To explain these
deviations, we use a model that assumes coupling between
particle and polymer dynamics to predict a size-dependent
diffusivity.13 This model collapses the long-time particle
diffusivities onto a single curve and accurately predicts the
scaling of the crossover time between subdiffusive and Fickian
dynamics for large particles. For small particles, however, the
subdiffusive behavior suggests only partial coupling to polymer
dynamics.
Fluorescent polystyrene nanoparticles ranging from 300 nm

to 2 μm in diameter (Fluoro-Max, Thermo Fisher Scientific)
are suspended in aqueous solutions of partially hydrolyzed
polyacrylamide (HPAM) with a weight-averaged molecular
weight of 8 000 000 Da and a hydrolysis fraction of ∼30%
(SNF, FLOPAAM 3330). We select these particle sizes to span
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Rg and hence probe the crossover to bulk behavior, in contrast
to our previous work focusing on a single particle size.21

Dynamic light scattering measurements confirm that the
polymer does not absorb to the surface of the particles. Our
solutions are well below the entanglement concentration for
polyelectrolyte solutions.20 We determine the radius of gyration
in dilute solutions Rg,0 = 270 nm from intrinsic viscosity
measurements and estimate the overlap concentration c* =
MW/(4/3πNav Rg,0

3 ) = 0.16 g/L. The weight fraction of particles
varies from 2 × 10−5 to 8.5 × 10−5 for 300 nm and 2 μm
particles, respectively, to increase particle tracking statistics
while minimizing interparticle interactions. Quiescent samples
are imaged using a Leica DM4000 inverted microscope with
40× air and 63× and 100× oil immersion objective lenses. We
use particle-tracking algorithms22 to locate and track the
particles over time. From particle trajectories, we calculate the
one-dimensional ensemble-averaged mean-squared displace-
ment (MSD) ⟨Δx2(Δt)⟩ as a function of lag time Δt. We fit
the short-time data to a power law ⟨Δx2(Δt)⟩ = 2D′(Δt)α and
the long-time data to ⟨Δx2(Δt)⟩ = 2D(Δt).
The nanoparticle mobility changes as a function of polymer

concentration (Figure 1(a)) and nanoparticle size (Figure
1(b)). The particle dynamics are subdiffusive at short time
scales and crossover into a Fickian regime at longer times. The
crossover times are comparable to the longest relaxation time τ
≈ 1−100 s of the polymer in solution, estimated from bulk
rheology (inset to Figure 1(a)). The distribution of particle
displacements remains Gaussian throughout the crossover
(inset to Figure 1(b)), indicating that each particle experiences
the same homogeneous environment for all accessible lag times
with no signs of hopping diffusion. From the long-time slope,
we extract the particle diffusivity D and normalize by the
diffusivity in pure solvent D0 to remove explicit size
dependence. For large particles, e.g., 2 μm particles in 2.6c*
solution, the relative diffusivity agrees with predictions of DSE

21

and does not depend on particle size. By contrast, the relative
diffusivity of smaller particles strongly deviates from DSE

(Figure 2). Moreover, the ratio of particle diffusivity to the
SE prediction D/DSE increases with decreasing particle radius
and increasing polymer concentration (inset to Figure 2),
indicating that diffusivity depends on both particle and polymer
length scales.

To explain the effects of the characteristic length scales on
particle diffusion, models typically use either obstruction or
hydrodynamic theories. Obstruction models describe particle
diffusion in the limit of small particles and dilute solutions.23−28

As the probe particles become larger and the polymer
concentration increases, however, hydrodynamic interactions
become important.25−27 In hydrodynamic models,10,15,16 the
particle diffusivity D scales as D/D0 = exp(a(L/ξ)b) where L is
a function of particle radius RNP and/or Rg.

10,29−32 Rg is a weak
function of polymer concentration, scaling as Rg ≈ Rg,0(c/
c*)−0.15, whereas ξ is a much stronger function, scaling as ξ ≈
Rg,0(c/c*)

−0.71.20,33,34 These scaling relationships slightly deviate
from predictions for polymers in good solvents because
repulsions between charged groups cause HPAM to adopt a
slightly extended configuration. Although these models can fit
our data over limited ranges of polymer concentration or
particle size, none of these models cleanly collapse the data
across the entire range of polymer or particle length scales (see
Supporting Information). We now show that coupling between
particle and polymer dynamics on long time scales can explain
deviations from SE behavior.

Figure 1. Mean-squared displacement (MSD, ⟨Δx2⟩) as a function of lag time Δt for (a) 600 nm particles in solutions of varying polymer
concentration and for (b) particles of varying size in a solution of polymer concentration 2.6c*. Dashed lines are linear fits at long time scales, and
solid lines are power law fits with a variable exponent. Inset (a) Storage (closed) and loss (open) moduli for solutions of various concentrations.
Inset (b) Normalized distribution of particle displacements at various times for 600 nm particles in a solution of polymer concentration 1.3c*. Solid
lines are Gaussian fits.

Figure 2. Relative diffusivity D/D0 extracted from long-time mean-
squared displacement as a function of normalized polymer
concentration c/c*. Bulk predictions (open circles) are calculated
from the zero-shear viscosity of the bulk polymer solution. (Inset)
Ratio between experimental diffusivity and SE prediction D/DSE as a
function of c/c*.
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The dynamic crossover in the particle MSDs (Figure 1)
suggests that the particle dynamics are coupled to those of the
polymers because polymers undergo similar crossovers between
dynamic modes. In a semidilute unentangled solution, polymers
undergo Zimm-like motion over length scales smaller than ξ.
The relaxation time of a correlation blob is τξ ≈ η0ξ

3/kBT. On
longer time scales t > τξ, the polymer moves according to
Rouse motion as a chain of correlation blobs. The polymer
moves subdiffusively for τξ < t < τR ≈ τξ(N/Nξ)

2ν+1, where N
and Nξ represent the number of monomers in the polymer
chain and a correlation blob, respectively, and ν is the reciprocal
of the fractal dimension of the polymer. In semidilute solutions,
excluded volume effects are screened over length scales larger
than ξ.35 Thus, the polymer behaves as an ideal string of
correlation blobs with ν = 1/2. At τR, the polymer fully relaxes
and moves diffusively with a Rouse friction coefficient of ζR ≈
η0ξN/Nξ. Although we cannot access time scales t < τξ due to
resolution and frame rate limitations associated with optical
tracking techniques, the subdiffusive behavior of the particles
and the crossover into Fickian diffusion mimics the dynamics of
the polymer, suggesting that particle and polymer dynamics are
coupled.
The mobile polymer chains locally cage the particles until the

polymer has sufficient time to relax,21 resulting in the coupling
between particle and polymer dynamics. To quantitatively
understand the implications of particle−polymer coupling on
particle dynamics, ref 13 extended the scaling model of ref 17 to
account for regimes of different particle sizes, summarized here.
On very short time scales, the particle does not interact with
the polymer and moves diffusively according to solvent
viscosity. At t = τξ, the particle begins to interact with
correlation blobs of size ξ. For t > τξ, the particle feels the local
caging and begins to couple to relaxation modes in the polymer.
At a time t > τξ, the particle interacts with a section of a
polymer chain with a relaxation time t ≈ τξ(N/Nξ)

2. As time
increases, larger sections of the polymer relax and interact with
the particle, so that the effective viscosity felt by the particle
increases as ηeff(t) ∼ N(t)/Nξ ≈ η0(t/τξ)

1/2. The viscosity will
continue to increase until the polymer relaxes over the size of
the particle; at this time τR ≈ τξ(2RNP/ξ)

4, the particle and
polymer dynamics decouple. Thereafter, the long-time
dynamics of the particles depend on the effective viscosity
ηeff(τR) ≈ η0(2RNP/ξ)

2.
We compare the long-time diffusivity of the particles to

predictions from ref 13 using ηeff and the SE equation. The
relative diffusivities D/D0 collapse onto a single curve for
particles ranging from 300 to 800 nm in diameter (Figure 3).
The data are consistent with the predicted scaling of D/D0 ∼
(2RNP/ξ)

−2. The larger 2 μm particles lie somewhat off of the
curve because they are large enough to experience the
viscoelasticity of the bulk solution. This can be seen by
normalizing the particle diffusivities by DSE ∼ (ηbulkRNP)

−1. The
bulk viscosity scales with concentration as ηbulk ∼ (c/c*)1.95,
which deviates from predictions for semidilute unentangled
solutions.20,35 After combining the concentration dependencies
of the bulk viscosity and correlation length, the normalized
diffusivities are predicted to scale as D/DSE ∼ (Rg,0/RNP)

2(c/
c*)0.53. The concentration dependence is unique to aqueous
solutions of HPAM due to bulk viscosity scaling (see
Supporting Information). For the smaller particles, the
normalized diffusivities D/DSE closely follow this predicted
scaling (inset to Figure 3). When the particles are sufficiently
large, they experience bulk viscosity and D ≈ DSE. The

crossover to bulk behavior for long-time diffusivity occurs when
RNP ≈ Rg,0, in good agreement with theory and simula-
tions.13,36−38

The collapse of the long-time dynamics onto a single scaling
curve confirms that the particle interacts on long time scales
with comparably sized sections of polymer. Ref 13 predicts that
these interactions arise from coupling between particle
dynamics and polymer relaxation modes on short time scales.
We therefore examine the scaling behavior of the particle
dynamics in the subdiffusive regime. We estimate the predicted
scaling for particle MSDs in the subdiffusive regime from ⟨Δx2⟩
∼ D(Δt)Δt where D(Δt) ∼ 1/RNPηeff(Δt). Therefore, the
MSDs of the particles should scale with time as ⟨Δx2⟩ ∼
(Δt)1/2.
The particles exhibit subdiffusive behavior for most particle

sizes and polymer concentrations, characterized by the
subdiffusive exponent α (Figure 4(a)). For 300 and 400 nm
particles in solutions with c < c* the short time behavior is
largely diffusive because RNP < ξ. As the particle size and
polymer concentration increase, the subdiffusive exponents
decrease, reaching α ≈ 0.5 for the largest 2 μm particles. This
subdiffusive behavior persists for at least one decade in time
with constant α; at intermediate polymer concentrations, it
persists for up to three decades. The surprising persistence of
the subdiffusive dynamics with constant α suggests that the
subdiffusive regime is not solely due to crossover between two
Fickian regimes. The higher-than-predicted subdiffusive ex-
ponents indicate that the particle dynamics are not directly
coupled to the relaxation modes of the polymer even when RNP
≫ ξ. Coupling on short time scales is only seen for the largest 2
μm particles in solutions of concentration c > c* despite even
the smallest particles being over an order of magnitude larger
than ξ. Additionally, the crossover time τc between subdiffusive
and Fickian regimes is predicted to occur at τc ≈ τR ∼ RNP

4 ξ−1.
When the particles are coupled to the polymer, i.e., the 2 μm
particles with α ≈ 0.5, the crossover time scales as predicted
(Figure 4(b)). When the particles deviate from polymer
relaxation modes at short times (α > 0.5), the crossover times
are larger than predicted and clearly cannot be collapsed onto
the scaling prediction. The dependence of the subdiffusive
exponent on particle size and polymer concentration and the
lack of agreement between crossover time and predicted scaling

Figure 3. Relative diffusivity D/D0 as a function of particle to polymer
size ratio 2RNP/ξ. Solid line is the predicted scaling.13 (Inset) Ratio
between experimental diffusivity and SE prediction D/DSE as a
function of particle size and bulk viscosity scaling for HPAM. Solid line
represents predicted scaling behavior.13
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imply that the particles are not directly coupled to the
relaxation modes of the polymer on short time scales.
Moreover, the deviations increase as the particle size or
polymer concentration is decreased, consistent with the idea
that the confinement becomes softer as the particle size
decreases. Nonetheless, the partial coupling on short time
scales does not persist to long times; the excellent agreement
for the long-time diffusivities indicates that particle dynamics
depends on interactions between particles and comparably
sized sections of polymer.
The long-time diffusivity of particles in semidilute

unentangled solutions of polymers depends on the interaction
of the particle with sections of polymer of comparable size. As a
result, the diffusivity of nanoparticles depends on the particle
size when RNP < Rg and is independent of particle size when
RNP ≥ Rg. The long-time particle diffusivities collapse onto a
single curve as a function of RNP/ξ, and the soft confinement
on short time scales does not impact this scaling. Notably, this
collapse suggests that length scales such as ξ can be obtained
from simple diffusion experiments. For polymer systems in
which the variation in correlation length and size is known from
independent measurements or scaling arguments, these
measurements can be used to infer local structure and
deformation state. For soft matter systems in which these
length scales are not known a priori, mobility experiments with
an appropriate choice of probes may enable efficient measure-
ments of structural properties of a wide range of complex
media, including cellular cytoplasm,30 nucleic fluid,39 suspen-
sions of rigid rods,40 and emulsions.41
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