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H I G H L I G H T S

• The morphology of a block copolymer of a near symmetric strongly-segregating poly(n-butyl acrylate) and poly(methyl methacrylate) tethered to a∼15 nm silica
nanoparticles is examined.

• The copolymer components are strongly segregated and the nanoparticle hybrid forms a disordered structure that is a combination of coexisting individual
randomly placed core-shell structures and worm-like cylinders with 3–5 silica nanoparticles forming the core of the cylinder.

• With increasing temperature, the cylinders become shorter.
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A B S T R A C T

The morphology of a block copolymer of a near symmetric strongly-segregating poly(n-butyl acrylate) and poly
(methyl methacrylate) tethered to a∼15 nm silica nanoparticles is examined using a combination of microscopy
techniques and small angle x-ray and neutron scattering. The copolymer components are strongly segregated and
form a disordered structure that is possibly a combination of coexisting individual randomly placed core-shell
structures and worm-like cylinders with 3–5 silica nanoparticles forming the core. With increasing temperature,
the cylinders become shorter because of the improved thermodynamic compatibility between the two copolymer
segments.

1. Introduction

The use of nanoparticles to template and control the self-assembly
of microphase separated block copolymers has proven to be attractive
as nanoparticles can alter and mediate interactions between constituent
polymers and provide a geometrical or topological effect that is sig-
nificantly distinct from those afforded by addition of small molecule
solvents and homopolymers or even block copolymers [1,2]. A com-
prehensive experimental study exploiting the thermodynamic interac-
tions between nanoparticles and polymers to organize the nanoparticles
in block copolymers was undertaken by Kramer and coworkers [3–9].
They used the ability to develop Janus spherical nanoparticles that,
when incorporated into block copolymers, led to a placement of such
nanoparticles in either microdomain or at the interface of the micro-
domains. Other experimental studies have indicated the ability of

nanoparticles to alter the microdomain structure – for instance the
addition of CdS spherical nanoparticles led to the transformation of
cylindrical microdomains of poly(4-vinylpyridine) (to which the CdS
nanoparticles can hydrogen bond) in polystyrene to transform to a la-
mellar microdomain system [10]. Separately, using molecular mod-
eling, Jayaraman and coworkers [11] and Glotzer and coworkers
[12,13] have shown the ability of nanoparticles to direct the assembly
of tethered block copolymers to nanoscale structures not necessarily
accessible through the untethered block copolymers or through the
creation of equivalent triblock copolymers. Additionally, a study by
Giannelis et al. indicated that the preferential interactions between
layered silicates and the polystyrene block of a polystyrene-b-poly-
isoprene block copolymer could lead to some changes in the order-
disorder transition, even though a thorough detailing of this was pre-
vented by the changed transport properties of the chains due to the
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anisotropic silicate sheets [14].
On the other hand, the exploitation of the matching or mismatching

of the geometry of the nanoparticle and the topology of the microphase
separated structure of the block copolymer has been somewhat more
extensively studied [1,10,15–22]. Studies utilizing silicate layers to
reinforce lamellar block copolymers demonstrated that in spite of the
nucleation tendencies of such materials, the overall effect of adding
such nanoparticles was to significantly increase the defect density in
such block copolymers [15]. On the other hand, using layered silicates
of varying sizes, it has been shown that the smaller lateral dimension
silicates can lead to a significant nucleation and templating of spherical
block copolymers while largely leaving cylindrical microdomains to be
unaffected by the addition of such nanoparticles [20]. Wiesner and
coworkers have demonstrated the profound effect that filler di-
mensionality (spherical to rod-like to disc-like) has on the thermo-
dynamic order-disorder transition of block copolymers [22].

The use of living polymerization methods from nanoparticle sur-
faces, the grafting-from process, has led to the ability to produce both
homopolymers and block copolymers that are attached to nanoparticles
[23–27]. These methods lead to the development of materials with
controlled molecular weight and dispersity whose grafting density to
the surface can be tailored by physical – chemical means and whose
physical, mechanical and thermal properties can carefully tuned.
Clearly, using nanoparticles with varying sizes (i.e., changing the in-
herent curvature imposed) and aspect ratios (spherical to rod-like to
disc-like) from which polymers are grafted it is possible to system-
atically explore the effect of particle geometry on the morphological
and phase behavior of block copolymers. The theoretical work over the
last few years by Jayaraman, Riggleman, Kumar, Grest and Frischl-
mecht have provided tantalizing glimpses on the possibility of creating
self-assembled structures [1,3–7,17,21].

In this paper, we describe the case of a poly(n-butyl acrylate)-b-poly
(methyl methacrylate) grafted using atom transfer radical polymeriza-
tion [28–30] from a ∼15 nm spherical silica nanoparticles with a very
high grafting density (∼600 chains per nanoparticle). The block co-
polymer, if not attached to the nanoparticle, would result in the for-
mation of a strongly segregated lamellae microdomain forming system
(as indicated by the overall molecular weight and the roughly equal
volume fraction composition of the material chosen) [31,32]. We spe-
cifically, describe detailed structural characterization of this block co-
polymer hybrid using a number of complementary techniques, in-
cluding electron microscopy and small angle neutron and x-ray
scattering.

2. Methods and materials

The monomers n-butyl acrylate (BA, Acros, 99%) and methyl me-
thacrylate (MMA, Aldrich, 99%) were purified by filtration through a
basic alumina column to remove inhibitors before synthesis [33]. The
procedure for the synthesis of 1-(chlorodimethylsilyl)propyl 2-bromoi-
sobutyrate and the subsequent functionalization of the silica (30 % wt.
silica in methyl isobutyl ketone, effective diameter D= 16 nm, MIBK-
ST, Nissan) was derived from previously described method [24]. Bis(2-
pyridylmethyl)octadecylamine (BPMODA) was synthesized according
to the literature [34]. CuBr and CuCl (Aldrich, 99%) were purified via
several slurries in acetic acid followed by filtration and washing with
methanol and ethyl ether, and stored under nitrogen before use. CuBr2,
CuCl2 (Aldrich, 99.999%), polyoxyethylene (20) oleyl ether (Brij 98,
Aldrich), hexadecane (Aldrich), L-ascorbic acid (AA, Aldrich, 99%),
4,4′-dinonyl-2,2′-dipyridyl (dNbpy, Aldrich, 97%), diphenyl ether
(Fluka) and hydrofluoric acid (50 vol % HF, Acros) were used as re-
ceived.

Poly(n-butyl acrylate) homopolymer brushes were synthesized by
activators generated by electron transfer (AGET) ATRP [35–38] of BA
from 2-bromoisobutyrate functionalized silica particles in miniemulsion
under conditions similar to those reported previously, BA: SiO2eBr:

CuBr2: BPMODA: ascorbic acid= 600: 1: 0.5: 0.5: 0.2, temperature
80 °C [18,39]. The polymerization of MMA from silica grafted poly(n-
butyl acrylate) was carried out at 70 °C. SiO2-g-PBA (0.8897 g,
0.0152mmol Br), MMA (10mL, 93mmol), CuCl2 (0.0010 g,
0.0076mmol), dNbpy (0.1305 g, 0.3192mmol) and DPE (1mL) were
added to a 25-mL Schlenk flask equipped with a magnetic stir bar. The
flask was sealed, and the resulting solution was subjected to three
freeze-pump-thaw cycles. After equilibration at room temperature,
CuCl (0.0151 g, 0.1523mmol) was added to the solution under nitrogen
flow and the flask was placed in preheated oil bath. After a pre-
determined time, the flask was removed from the oil bath and opened
to expose the catalyst to air. The polymerization solution was diluted
with CHCl3 and passed over an alumina (activated neutral) column to
remove the catalyst. Solvent was removed by rotary evaporation, and
the polymer was isolated by precipitation into hexane.

Molecular weight (Mn) and molecular weight distribution (Mw/Mn)
were determined by GPC equipped with an autosampler (Waters, 717
plus), HPLC pump with THF as eluate at 35 °C and at a flow rate of
1mL/min (Waters, 515) and four columns (guard, 105 Å, 103 Å, 100 Å;
Polymer Standards Services) in series. The GPC was equipped with a
differential refractive index detector. Toluene was used as internal
standard. Calculations of molar mass were determined using PSS soft-
ware using a calibration based on linear polystyrene standards.
Polymers were analyzed after etching silica with HF, silica
0.5106mmol Br/1 g silica ∼2600 initiating sites per silica particle (on
the basis of elementary analysis). Poly(n-butyl acrylate) PBA,
Mn=53 500, Mw/Mn=1.25 and poly(n-butyl acrylate-b-methyl me-
thacrylate) poly(BA-b-MMA), Mn=104 900, Mw/Mn=1.28.

Bulk samples of the SiO2-g-PBA-b-PMMA hybrid were annealed at
160 °C (Tg of PBA∼−50 °C [40,41], Tg of PMMA∼ 125 °C [31]) for
24 h prior to microtoming for transmission electron microscopy (TEM).
Microtoming was performed at room temperature to obtain thin sec-
tions ∼100 nm in thickness that were used for electron microscopy.
TEM imaging was carried out on a JEOL JEM-2010 electron microscope
(at the Microscopy & Imaging Center at Texas A&M University, College
Station, TX), which was operated at an accelerating voltage of 120 kV
under bright-field conventional mode. The TEM images were obtained
at a magnification of 50,000×.

TEM was performed on the unstained section, floated onto a Cu-
coated grid (obtained from Ted Pella), to determine the arrangement of
the SiO2 nanoparticles. Selective staining was also performed on mi-
crotomed sections of the hybrids to highlight the structure of the in-
dividual blocks in these hybrid materials [31]. For preferential staining
of the PMMA block, TEM grids with thin microtomed sections of the
hybrid were floated onto 2 wt% aqueous solution of phosphotungstic
acid (PTA) and benzyl alcohol (obtained from EMS). The aqueous so-
lution of PTA and benzyl alcohol was at 60 °C, and the TEM grid was
floated for 1min, following a method previously reported in the lit-
erature [31]. The TEM grid was next dipped in DI water, to remove
excess acid, and dried over lint-free paper. For selectively staining of
the PBA block, the hybrid nanocomposite was kept immersed in a
0.5 wt% ruthenium tetraoxide (RuO8, from EMS) solution for 10 days.
The stained hybrid nanocomposite was then microtomed, after washing
with DI water and drying, and transferred onto the TEM grid.

Atomic Force Microscopy (AFM) was performed on thin films
(< 500 nm, and typically∼ 100 nm) of the hybrid cast onto acid-
etched Si wafers (to make the wafers hydrophobic and prevent film de-
wetting off the surface). The thin films were cast from a dilute solution
(0.025 wt%) of the hybrid in tetrahydrofuran (THF), which is a good
solvent for the PBA-b-PMMA diblock copolymer, at a speed of 6000 rpm
in a spin-coater. Tapping mode AFM was performed on the thin films,
annealed at 160 °C, and both topology and phase contrast images were
obtained.

Glass transition temperature (Tg) associated with individual blocks
of the hybrid nanocomposite was obtained using a PerkinElmer Pyris 1
DSC instrument with sub-ambient capability, at a heating and cooling
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rate of 10 °C/min. Data reported here are based on the second heat after
an initial heat up to 180 °C [27].

Small-angle neutron scattering (SANS) samples were prepared in a
vacuum mold, pressed into a 13mm diameter pellet under melt con-
ditions, to ensure bubble-free samples. SANS measurements were per-
formed on the 30m SANS beamline (NG7) at NIST, Gaithersburg, MD.
Neutrons with wavelength (λ) of 6 Å and Δλ/λ of 0.15 were used with
sample-to-detector distances ranging from 3 to 15.3 m. The SANS data
were reduced and corrected for background scattering [42,43]. A q-
independent incoherent scattering correction was subtracted prior to
data analysis [42]. The SANS data were analyzed using a library of
SANS fitting models, in IGOR PRO (Wavemetrics Inc).

Synchrotron SAXS measurements were performed in situ at the
beamline X27C, National Synchrotron Light Source (NSLS), Brookhaven
National Laboratory (BNL), Upton, NY, using x-rays with wavelength
(λ) of 1.371 Å. A one-dimensional linear position-sensitive detector and
two-dimensional Mar CCD camera for SAXS were used along with a
pinhole collimation system and a temperature controlled sample cell
[44,45].

3. Results and discussion

The structure of the nanoparticle grafted block copolymer was ex-
amined using a combination of electron microscopy, atomic force mi-
croscopy and small angle x-ray and neutron scattering (SAXS and SANS,
respectively). On the basis of the reported value of the Flory-Huggins
interaction parameter of χ for PMMA and PBA that varies from 0.047 at
room temperature to 0.03 at 180 °C and considering the molecular
weight of the polymers and the near equal volume fractions of PBA and
PMMA [31,46], it was anticipated that the blocks should be strongly
microphase separated (with ODTs above the degradation temperature
of the polymers) in the absence of the silica nanoparticles. The block
copolymer, cleaved from the nanoparticles, is microphase separated at
all temperatures and exhibits the expected lamellar structure. Differ-
ential scanning calorimetry (DSC) revealed the presence of two glass
transitions at ∼ −50 °C and at ∼ +125 °C (Fig. 1), consistent with the
values for pure PBA and PMMA respectively, and indicating the pre-
sence of a strongly microphase separated block copolymer structure in
these SiO2-g -(PBA-b-PMMA) hybrid materials.

An unstained TEM image of a thin (∼100 nm thick) microtomed
slice from a previously melt annealed sample (Tanneal = 160 °C for 24 h)
is shown in Fig. 2. Due to the high electron contrast between the SiO2

nanoparticle and the two polymers, the arrangement of the SiO2 par-
ticles can be discerned. Specifically, in contrast to the SiO2-g-PBA parent
hybrid or a 40:60 blend of SiO2-g-PBA (Mn=53 500): PBA
(Mn=55 000) mixture (∼the same SiO2 loading) that show FCC or-
dering of the SiO2 particles (see SAXS data) [18], the SiO2-g-(PBA-b-
PMMA) hybrid exhibits a disordered arrangement of the SiO2 particles
in the polymer matrix. We note that the parent SiO2-g-PBA alluded to
above was the precursor of the material prior to the co-polymerization
of the PMMA block.

In order to examine the arrangement of the individual blocks of the
copolymer, each of the blocks was selectively stained using a protocol
developed previously by Leibler and coworkers [31]. Specifically, ru-
thenium tetraoxide (RuO4) was used to selectively stain the PBA block
and phosphotungstic acid (PTA) to selectively stain the outer PMMA
block and the electron micrographs are presented in Fig. 3. As expected
from the synthesis of the hybrids, the PBA block when stained with
RuO4, clearly surrounds the silica nanoparticle and further, as would be
expected from the random arrangement of the silica particles observed
in Fig. 2, demonstrates a random arrangement of the PBA rich domains
with respect to each other. Due to concerns of penetration of the dye to
the PBA domains (through a glassy PMMA matrix), various conditions
of staining conditions – with the exposure from RuO4 ranging from 1 h
to 20 days were examined. With the exception of short exposure times
where the silica arrangement was recovered, the images obtained were

identical in structural features and only varying in intensities. On the
other hand, the PTA stained micrograph (Fig. 3b) demonstrates that the
outer PMMA block forms a continuous matrix, while the silica particles
with the associated PBA inner block form disordered structures of
various shapes including individual PBA covered silica particles. Fur-
thermore there is a hint that the silica particles form short contiguous
“worm-like chains” with the PBA blocks either in contact or in close

Fig. 1. Differential Scanning Calorimetry (DSC) results showing distinct glass
transition temperatures (Tg) for the two blocks of PBA and PMMA in the diblock
chains grafted from the SiO2 nanoparticle. The values of the Tgs are close to
those of the pure components and indicate a strongly segregated block copo-
lymer.

Fig. 2. Transmission electron micrograph showing the arrangement of the SiO2-
g-(PBA-b -PMMA) hybrid nanoparticles. The image is taken on an unstained
sample, microtomed to ∼100 nm in thickness. The sample was annealed at
160 °C for 24 h before microtoming. The micrographs indicate a random dis-
persion of the SiO2 nanoparticles.
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proximity to each other; this conjecture is investigated more thoroughly
in this paper through the use of scattering methods. While the staining
using PTA occurs much faster than that by RuO4, a similar kinetic study
of PTA staining was utilized to rule out artifacts because of excess
staining.

While the above morphological study was performed on annealed
bulk samples that were microtomed, a similar study on thin films of the
block copolymer hybrid prepared by spin-coating from dilute solutions
onto silicon wafers or a carbon coated electron microscopy grid and
subsequently annealed in the melt state were also performed. Such a
solution method for sample preparation in a confined thin film of
thickness typically of ∼100 nm leads to a similar random ordering of
the silica nanoparticles, as observed from a TEM image in Fig. 4a of a
sample dropped on a carbon-coated electron microscopy grid and
subsequently annealed. Tapping mode atomic force microscopy exploits
the mechanical contrast between the hard silica nanoparticles, the soft
elastomeric PBA block and the hard glassy properties of the PMMA
block. Fig. 4b and c represent the topology and phase angle, respec-
tively, for one such scan on an annealed supported block copolymer

Fig. 3. Transmission electron micrograph showing the morphology of the SiO2-
g-(PBA-b-PMMA) hybrid nanocomposite, with selective staining of individual
blocks. The thin microtomed section was stained with RuO4 solution, which
selectively stains the inner PBA block (Fig. 3a), and with PTA solution, which
selectively stains the outer PMMA block (Fig. 3b). The stained regions are ob-
served as darker regions and the unstained regions are observed as lighter re-
gions.

Fig. 4. (a) TEM of a thin film, prepared by solvent casting on to a TEM grid
followed by annealing at 160 °C that demonstrates the random ordering of the
silica nanoparticles. Tapping mode atomic force microscopy, of a thin film of
the block copolymer hybrid supported on a silicon wafer with Fig. 4b being the
topology and Fig. 4c representing the phase angle. The samples were spin-cast
on to a silicon wafer followed by annealing at 160 °C. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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thin film. Again, as in the bulk morphology, these thin films are ob-
served to adopt a similar disordered morphology consisting of a com-
bination of individual spherical brush entities and a stringing of a few of
these entities to form a short worm-like morphology or perhaps even
bicontinuous structures. On the basis of these observations of the bulk
and thin films of the SiO2-g-(PBA-b-PMMA) block copolymer, it could be
concluded that the structural arrangement can be summarized as the
schematic shown in Fig. 5. We speculate that the co-existence of in-
dividual spherical moieties and short worm-like cylindrical objects is
perhaps a result of kinetic limitations on the rearrangement of the block
copolymer structure on the surface of the nanoparticles to accom-
modate the worm-like structures. We conjecture that issues such as the
dispersity of grafting or block copolymer dispersity (compositional and
molecular weight), which are low as prepared, are perhaps not the
underlying cause for the observed co-existence. Based on the SiO2-g-
PBA hybrids and their ability to demonstrate highly ordered structures
as recently shown [18], it is assumed that the dispersity of grafting
density in the nanoparticle hybrids is minimal and therefore unlikely to
cause the disordering behavior observed. Moreover, the molecular
weight distribution between the parent PBA homopolymer and the
block copolymer of PBA and PMMA are roughly similar suggesting that
any additional effects due to the copolymerization are minimal.

To further examine and quantify the structural order of bulk sam-
ples SANS measurements that primarily exploit the large scattering
contrast between that of the SiO2 and the polymers as a function of
temperature were conducted. The neutron scattering length densities at
130 °C for SiO2, PBA and PMMA are 3.2×10−6, 0.5× 10−6 and
1.0×10−6 Å−2, respectively, and indicates that the contrast between
the SiO2 and the polymers is significantly (∼a factor of 25) larger than
those between the polymeric blocks. SANS intensity data (I(q)) as a
function of q for the nanoparticle tethered with hompolymer and na-
noparticle tethered with block copolymer are presented in Fig. 6a as a
function of temperature. Several features are noteworthy: (a) The q-
independent low-angle scattering (q < 0.006Å−1) that is distinctly
differed for the two cases; (b) With increasing temperature the transi-
tion from q-independent to a power-law regime at small angles moves
progressively to higher angle; and (c) The presence of a scattering
maximum at q∼ 0.017Å−1 with I(q) scaling∼ q−4 at higher values of
q, with the location of the maximum roughly independent of tem-
perature. Similar data were also obtained from SAXS measurements at
30 °C and the data are shown in Fig. 7. In Fig. 7, the SAXS data from the
hybrid-diblock to that from the parent SiO2-g-PBA homopolymer hybrid
were compared [18]. Clearly, the SAX scattering from the diblock and

homopolymer (parent SiO2-g-PBA) hybrid are significantly different
and are consistent with the notion that the arrangement of the silica
nanoparticles is distinctly different in the two cases, with the exception
of the near similarity of the peak location at∼ 0.017Å−1. For the case
of the SiO2-g-PBA (Mn=53 500) hybrid (a precursor of the block co-
polymer hybrid), clearly two peaks are observed in the scattering. This
is attributed to the formation of an FCC lattice of the SiO2 nanoparticles
with a lattice spacing of 27 nm. The addition of the PMMA block to this
hybrid material led to a significant disordering of the (silica) arrange-
ment and was observed from the considerable broadening of the peak
(at 0.017Å−1) and the absence of a second order peak at higher q
values.

A combination of individual core-shell spherical objects and worm-
like cylinders was used to model the experimental SANS data for the NP
tethered homopolymer and NP tethered block copolymer are shown in
Fig. 6. While the correlations between the particles dominates the
scattering features for the SiO2-g- PBA (SAXS data in Fig. 7), it could be
recognized that for the case of the block copolymer grafted on to the
silica nanoparticles, the structure is significantly disordered, and in the
initial analysis the correlations between domains were ignored [23,24].
Further, as demonstrated in the Supporting Information, the scattering
data can be fitted to various models with equal efficacy and our choice
of fitting is largely driven by the physical insights provided by the direct
space microscopy data described previously.

Since the real space images demonstrate the existence of individual
spherical moieties, we use a spherical form factor, given as [47]:
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scattering contrast between the SiO2 core and the polymer (here taken
as the PBA, due to the near equality in the scattering length densities of
the PBA and the PMMA blocks), and Rm and vm are the radius and
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Where in J1 is the first order Bessel function, the various ρ′s are the
scattering length densities of the various components, ϕ is the volume
fraction of cylinders, r is the core radius, L is the cylinder length, t is the
shell thickness and α is the angle between the cylinder axis and q. The
smeared form of the models were used to account for the wavelength
spread of the neutron beam and the smearing associated with SANS
experiments [43].

The SANS data were fit to the model described above and the
geometrical parameters corresponding to the worm-like cylinder and
the spherical core-shell structures were obtained. Attempts to fit the
scattering to either of the functional forms independently led to poor
fits over the whole q-range over which scattering was measured. The
fitting methodology consisted of fitting a low q-range
(0.003Å−1 < q < 0.01Å−1) to the core-shell cylindrical form factor,
and a high q-range (0.01Å−1 < q < 0.05Å−1) to the core-shell
spherical form factor. The fits were performed on the SANS data ob-
tained at different temperatures, after subtracting an incoherent com-
ponent (typically∼ 1 cm−1) that originates primarily from the hy-
drogen atoms in the scattering volume, and are shown for two

Fig. 5. Schematic showing the proposed model for the morphology of the PBA-
b-PMMA diblock chains tethered to the SiO2 nanoparticles. The model considers
the morphology as a combination of a worm-like cylindrical and a spherical
core-shell morphology.
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temperatures in Fig. 6b and c. In the fitting procedure, the neutron
scattering length densities of the constituent components were held
constant, and the fit parameters (primarily the shell length, the core
radius and the shell thickness) allowed to float and converge to the best
solution, under no applied constraints, thereby generating a global
optimum. Further, in case of the core-shell spherical form factor, to
account for dispersity in the SiO2 nanoparticle size, a Gaussian dis-
tribution was assumed. The fits revealed that for the cylindrical mor-
phology, the core radius of the individual spheres was ∼13 ± 2 nm,
and the shell thickness was∼14 ± 2 nm, and these values were mostly
independent of temperature. The total length of the cylinder decreased
with increasing temperature, as observed in Fig. 8. The decrease in
length of the cylinder is consistent with the decreasing repulsive ther-
modynamic interactions between PBA and PMMA with increasing
temperature combined with the increased dynamics of the PMMA block
(at and above the Tg of the PMMA block), leading to perhaps more
mixing of the PMMA and PBA blocks at elevated temperatures. On the
other hand, for the core-shell spherical particles, however, the mor-
phology is largely independent of temperature, with the core size
∼12 ± 2 nm in radius, and a shell thickness of ∼12 ± 2 nm.

Clearly the PBA and PMMA chains are strongly incompatible and

form microphase separated structure as evidenced by the presence of
two glass transitions (close to those of the pure components), the ob-
servation of lamellar microphase separated structures when cleaved
from the nanoparticle, and the electron and atomic force microscopy
results described above. In spite of the fact that the hybrid material only
consists of 2% SiO2 by volume, considering the impenetrability of the
silica nanoparticles and considering the dimensions of the constituents
( ∼r 8 nmSiO2 ; Rg (PBA,Unperturbed)∼ 7 nm and Rg (PMMA,

Unperturbed)∼ 8 nm) it is clear that the SiO2 nanoparticles can indeed
perturb the development of the microphase separated morphology.
Further, the curvature imposed on the PBA chains, due to the high
density of grafting from a relatively small spherical nanoparticle, and
the curvature induced on the PBA-b-PMMA interface could lead to a
significant perturbation from the lamellar structure anticipated for such
a block copolymer. Finally, this block copolymer was synthesized by the
use of controlled/living radical polymerization methods however does
possess a dispersity that is considerably larger than that observed from
monodisperse (living anionic polymerization based materials). As
shown recently in several studies that have considered the role of dis-
persity, the phase diagram for block copolymers can be significantly
altered because of reduction in chain-stretching experienced by the

Fig. 6. (a) Coherent small angle neutron scattering (SANS) intensities (Icoh(q)) as a function of wavevector q for the SiO2-g-(PBA-b-PMMA) hybrid as a function of
temperature. The data were fit as described in the text to models described by equations (1) and (2) and the geometrical parameters corresponding to the worm-like
cylinders and the individualized core-shell particles extracted. (b and c) Fitting of coherent SANS intensity to equations (1) and (2) at T= 55 °C and 145 °C
respectively.
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chains at the microphase separated interface [31,48–53]. It is con-
ceivable that the phase diagram is shifted to form cylindrical micro-
domains with the PBA chains forming the inner core and the PMMA
forming the matrix [48,50].

On the other hand, the formation of highly ordered and hexagonally
arranged cylinders is possibly prevented by the curvature imposed by
the tethering of the PBA chains to the silica nanoparticles and therefore
forcing not only the curvature but also influencing the number density
of the polymer chains and the chain stretching required at the interface,
as illustrated by Milner in pioneering theoretical work [54] and by
Hadjichristidis et al. using experiments on miktoarm stars [55–58]
where they studied the formation of microphase separated structures in
star block copolymers. It is noteworthy that the junction point for the
inner block PBA chains corresponds to a finite sized nanoparticle unlike
the case of star polymers, which terminate at a point, and leads to
significant imposition of the particle curvature on the PBA-b-PMMA
interface. Thus, it can be expected that the PBA and PMMA chains at the
interface would experience different chain stretching and therefore
prevent the formation of flat interfaces. Clearly, such a situation in the
case of the SiO2-g-(PBA-b-PMMA) would significantly decrease the
chain stretching penalties at the PBA – PMMA interface and therefore

allow for the formation of curved interfaces as observed experimentally
here. Finally, with increasing temperature, however, the incompat-
ibility between PBA and PMMA decreases, due to the decrease in χ with
increasing temperature [31], and this results in the shortening of the
average cylinder length and more individual hybrid particles in a
PMMA matrix.

4. Concluding remarks

We have demonstrated in this paper that the ordering and ar-
rangement of microphase-separating block copolymers when tethered
to a spherical nanoparticle is significantly altered from their bulk
analogs. Using a combination of microscopy techniques and small angle
scattering methods, we have shown that the high grafting density along
with the relatively small radius of the spherical nanoparticle imposes a
curvature on the block copolymer, that it adopts a combination of in-
dividual core-shell moieties along with worm-like cylinders, with a
string of about 3–5 SiO2 nanoparticles forming the core of the cylinder.
Clearly, understanding the role of changing chain length along with
composition of the block, grafting density, size of nanoparticle and the
relative placement of the polymeric blocks with respect to the nano-
particle is the first step towards truly understanding the effect of na-
noparticles on such block copolymer behavior. Further understanding
the effect of tethering the block copolymer to a nanoparticle on the
interfacial behavior of such a system (in a polymer blend, for example)
would be extremely interesting to pursue. Additionally, understanding
the wetability and interpenetration of homopolymers [25] in such block
copolymer hybrids would certainly be interesting.
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