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ABSTRACT: Dynamic coupling of small penetrants to slow, cooperative relaxations within
crowded cells, supercooled liquids, and polymer matrices has broad consequences for
applications ranging from drug delivery to nanocomposite processing. Interactions between the
constituents of these and other disordered media alter the cooperative relaxations, but their
effect on penetrant dynamics remains incompletely understood. We use molecular dynamics
simulations to show that the motions of hard-sphere tracer particles probe differences in local
structure and cooperative relaxation processes in attractive and repulsive glassy liquid matrices
with equal bulk packing fractions and long-time diffusivities. Coupling of the tracer dynamics to
collective relaxations in each matrix affects the shape of tracer trajectories, which are fractal
within the repulsive matrix and more compact in the attractive. These results reveal that the
structure of relaxations controls penetrant transport and dispersion in cooperatively relaxing
systems and provide insight into dynamical heterogeneity within glassy liquids.

Confined transport within slowly relaxing and structurally
disordered matrices governs important processes in

physical and biological systems. Controlling the dispersion of
particles within polymer matrices, which underpins the
functional properties of polymer nanocomposites,1 requires
understanding how the dynamics of nanoparticles in solutions
and melts2,3 relate to those of the polymer matrix.4 On smaller
size scales, the transport of penetrating gas molecules into
supercooled or glassy polymer matrices5,6 governs the efficacy
of membrane separation processes.7,8 Finally, migration and
transport in crowded biological systems9−15 depends on the
relaxations of the surrounding crowders. In each process,
competition between the relaxations of a disordered matrix and
the dynamics of the confined particles can lead to anomalous
transport. Although this competition must depend on the
structure and nature of the surrounding matrix relaxations, the
coupling between tracer transport properties and matrix
relaxations remains poorly understood despite its relevance
for many physical transport processes.
One of the most intensely studied models of a slowly relaxing

system is a dense suspension of colloidal spheres with repulsive
interactions. Increasing the sphere volume fraction induces a
transition from an ergodic liquid to an arrested glass, driven by
entropic crowding.16,17 Approaching this transition, dynamics
become heterogeneous in space and time18,19 and relaxations
occur when particles escape the cages formed by their
neighbors, leading to collective string-like rearrangements.20,21

Weak attractions between particles melt the repulsive glass,22

whereas stronger interactions lead to the formation of an
attractive glass in which dynamics are controlled by caging and
interparticle bonds23−27 and in which collective relaxations are
more compact.28,29 Recent studies on a repulsive colloidal
model system reveal that tracers of a critical, relative size can
exhibit anomalous logarithmic dynamics, arising from the
competition between tracer localization within voids and escape

through collective matrix relaxations.30 Nevertheless, funda-
mental understanding of how attractive interactions between
matrix particles,31 which are present in all molecular systems,
influence tracer transport is critical for advancing most practical
applications.
We use event-driven molecular dynamics simulations to

show that tracer dynamics within attractive and repulsive glassy
matrices with equal packing fractions and long-time diffusivities
are remarkably sensitive to differences in matrix structure and
dynamics. The tracer dynamics, characterized through the
mean-square displacement and the non-Gaussian parameter,
depend on tracer size and interactions between matrix particles.
Furthermore, they reveal signatures of cage rearrangements in
repulsive liquids and, additionally, the competition between
bond formation and breaking in attractive liquids. Anomalous,
logarithmic tracer dynamics signal a crossover from diffusion
within the matrix void space to diffusion coupled to the glassy
matrix dynamics and occur on different length scales in
repulsive and attractive matrices. As a result of this coupling,
the shape of tracer trajectories is different between the two
matrices: fractal-like in the repulsive matrix but more compact
in the attractive. The sensitivity of tracer dynamics to the
confining environment can be exploited to probe subtle
differences in the structure of glassy matrices with varying
interactions and provides insight into their distinct relaxation
processes.
We first examine the dynamics of the two isodiffusive

matrices in the absence of tracers. The matrices have identical
packing fractions (ϕ = 0.61) and consist of a 50:50 binary AB
mixture of species (N = 1372 particles total) with a hard-core
diameter ratio σAA/σBB 1.2:1 chosen to prevent crystallization.32
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The matrix components have unit mass (m = 1) and interact
through a short-range square-well potential with depth u0 and
width Δij satisfying Δij/(σij + Δij) = 0.03 for each pair type i,j ∈
A,B, where σ σ σ= +( )ij ii jj

1
2

. Following convention, we adopt

units in which Boltzmann’s constant kB is equal to unity and
report length, temperature, and time in terms of σBB, u0/kB, and
σBB(m/u0)

1/2, respectively. To account for thermal contribu-
tions to tracer dynamics, we introduce a normalized time τ =
tD0/Dref, where t is the nominal simulation time,

σ=D T m/0 BB is the thermal diffusivity at T, and Dref is
the reference value of D0 at T = 1.
The high-temperature (T = 1.05) repulsive glassy matrix

(RGM) and low-temperature (T = 0.35) attractive glassy matrix
(AGM) are ergodic and exhibit nearly equal long-time
diffusivities Drep/D0 ≈ Datt/D0 ≈ 6.5 ± 0.8 × 10−7 for species
A (Figure 1a), similar to the isodiffusive behavior observed in
liquids with density anomalies.33,34 Both matrices recover these
diffusive dynamics on a time scale τ ≈ 104, indicating that cage
escape controls the final relaxation. On intermediate time
scales, however, the matrices exhibit different relaxation
processes. Particles in the RGM are caged by their neighbors
beginning at τ ≈ 100, with a near-constant normalized mean-
squared displacement (MSD, ⟨Δr ̃2⟩ = ⟨Δr2⟩/σBB2 ) indicating a

localization length of ⟨Δ ̃ ⟩ =r 0.142 . Conversely, the AGM’s
MSD exhibits only a weak plateau corresponding to a

localization length of ⟨Δ ̃ ⟩ =r 0.042 before increasing as a
power law with an exponent less than 1, that is, MSD ≈ τβ, β <
1. Particle motions in the AGM are more localized due to
interparticle bonds,35 so that the extended subdiffusive regime
reflects a competition between repulsive caging and attractive
bonding.36 Thus matrix dynamics on intermediate time scales
are controlled by caging in the RGM but by both caging and
bonding in the AGM.
The different intermediate-time relaxation processes in the

AGM and RGM significantly influence the dynamics of
confined tracers. We add a small number (Nt = 10) of tracer
particles with diameter σt to the matrices and characterize their
equilibrium dynamics through their MSD (Figure 1b−f). The
tracers are assigned unit mass and interact with the matrix and
other tracer particles through purely repulsive hard-sphere
interactions. For small tracers of relative size δ = σt/σAB = 0.20,
the MSDs in both the RGM and AGM exhibit a crossover from
ballistic motion on short time scales (τ ≲ 100) to diffusive
motion on time scales τ > 102 (Figure 1b). The crossover time
is nearly identical in the two matrices, indicating that this
transition is controlled by hard-sphere steric interactions
between tracer and matrix particles. By contrast, the dynamics
of larger tracers depend on matrix interactions. In the RGM,
the MSD for tracers of size δ ≥ 0.30 exhibits an incipient
subdiffusive plateau (Figure 1c) whose height decreases and
duration increases with increasing tracer size (Figure 1d−f). In
the AGM, this subdiffusive plateau is slightly flatter (i.e., the
MSD increases less steeply with lag time) and of greater height
and longer duration than that in the RGM for tracers of
comparable size. Notably, these differences between tracer
dynamics are opposite those of the matrix particles (Figure 1a).
The higher intermediate-time plateau in tracer MSDs

through the AGM suggests that the tracers explore larger
void spaces in the AGM relative to the RGM. To more directly
probe the effects of instantaneous matrix structure on tracer
dynamics, we simulate tracer dynamics in “frozen” matrix

configurations extracted from equilibrium trajectories. Tracer
size controls how the structure of the frozen matrix affects their
dynamics. The MSDs of small tracers (δ = 0.20) in the frozen
and mobile matrices, whether repulsive or attractive, are nearly
indistinguishable, indicating that they move easily through the
interstitial voids and do not strongly couple to matrix
relaxations. Larger tracers, by contrast, exhibit pronounced
differences in their dynamics in mobile and immobile matrices
that depend on matrix interactions. In the RGM, the tracer
MSD in the mobile matrix diverges from that in the immobile
matrix before the onset of the plateau (at τ ca. 10−1), indicating
that matrix relaxations affect tracer dynamics even on relatively
short times. Tracers in the mobile RGM are not fully caged, and
their dynamics are subdiffusive over roughly a decade in τ. In
the AGM, however, the divergence between tracer MSDs in the
mobile and immobile matrices occurs approximately two orders
of magnitude later in time (τ ca. 101). This result suggests that
attractive bonds between matrix particles generate a cage that

Figure 1. Matrix interactions and tracer size affect tracer dynamics. (a)
Mean-square displacement (MSD) ⟨Δr ̃2⟩ for matrix species A
normalized to the smaller matrix particle diameter, σBB, as a function
of normalized time scale τ for the RGM (red) and the AGM (blue).
Both matrices have an average packing fraction ϕ = 0.61; the AGM is
at a lower temperature T = 0.35 and the RGM is at T = 1.05. The virial
pressures for the two matrices are 1.4 ± 0.1 and 18.9 ± 0.4 u0/σBB

3 ,
respectively. (b−f) MSD for tracers of size (b) δ = 0.20, (c) δ = 0.30,
(d) δ = 0.35, (e) δ = 0.40, and (f) δ = 0.50 in RGM (red) and AGM
(blue) matrices. Solid lines are calculated for matrices that are mobile;
dashed lines are calculated for matrices that were immobilized in
equilibrium configurations. Arrows indicate the time scale at which the
mobile-matrix tracer MSD deviates from that in the immobile matrix.
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relaxes very slowly compared with tracer diffusion, so that
tracer particle dynamics are dominated by sampling of arrested
cages on short- to intermediate time scales. Because the local
environment is more heterogeneous in the AGM (Figure 1),
the trajectories of individual tracers therein likewise exhibit a
broader distribution of relaxation behaviors. Thus whereas
exploration of cages appears to be the dominant mechanism
controlling the average tracer dynamics within the AGM, other
processes may also play a role. Together, these comparisons
indicate that tracer dynamics are affected by both the
(instantaneous) structure of glassy matrices and the dynamics
of their relaxation processes, leading to tracer dynamics that
qualitatively differ from those of the surrounding matrix.
The pronounced difference between the subdiffusive

exponents for tracers in the RGM and AGM suggests that
local relaxation processes affect tracer diffusion. We characterize
the time scales associated with these processes by computing
the non-Gaussian parameter α2 = 3⟨Δr ̃4⟩/5⟨Δr ̃2⟩2 − 1 as a
function of lag time. The shape and relaxation times identified
by α2 differ between the RGM and AGM (Figure 2a). The α2
for the RGM exhibits the classic behavior expected for a
supercooled colloidal liquid,18 attaining a local maximum at τ
ca. 104, the time scale at which the matrix particle dynamics
become diffusive and cages are disrupted (Figure 1a). The α2
for the AGM, however, first exhibits a shoulder at τ ca. 10 and
then reaches a maximum near τ ≲ 104. The broad maximum in
α2 for the AGM is consistent with the idea that rearrangements
in attractive glassy liquids occur over a broader range of time
scales28 and, hence, likely, length scales than those of a
repulsive glassy liquid.
The α2 values for the tracers are smaller than those obtained

for their corresponding matrices (Figure 2b) and exhibit a
maximum at a particular time scale τ shorter than the time scale
in the matrix. The time scale corresponding to maximum non-
Gaussianity increases with increasing tracer size. For small
tracers of size δ = 0.20, α2 attains a maximum near τ ca. 1 in
both the RGM and AGM. The greater height and width of the
maximum of the tracer α2 in the AGM indicate that the tracer

dynamics in the AGM are slightly more heterogeneous than in
the RGM. When δ = 0.35, the shapes of the tracer α2 in the
RGM and AGM become dissimilar. In the RGM, the maximum
in α2 increases in height and width with increasing tracer size; it
remains approximately Gaussian in shape but shifts to larger τ
(∼102 at δ = 0.50). By contrast, α2 in the AGM becomes
increasingly broad as δ increases. For all tracer sizes, α2
increases rapidly up to τ ≈ 100 and then increases more slowly
to reach a maximum that shifts to greater τ as δ is increased;
this evolution reflects broad coupling to cage relaxations
occurring on these time scales. Thus the α2 measurements
reveal heterogeneous tracer dynamics on distinct time scales
that depend on both tracer size and matrix interactions, with

Figure 2. Tracer dynamics are coupled to matrix relaxation processes.
(a) Non-Gaussian parameter α2 as a function of time τ for matrix
species A in RGM (red) and AGM (blue). (b) Non-Gaussian
parameter α2 as a function of τ for tracers of size δ = 0.2, 0.35, and 0.5
in RGM (red) and AGM (blue).

Figure 3. Tracers in RGMs and AGMs exhibit anomalous transport.
(a,b) Collective intermediate scattering function F(q̃,τ) for tracers of
size δ = 0.35 within the (a) RGM and (b) AGM for reduced scattering
vectors q̃ = qσBB = 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, and 6.0. The
arrow indicates increasing q̃. q̃* indicates the wavevector at which
logarithmic decay appears; q̃* = 3.5 in the RGM and q̃* = 2.5 in the
AGM, as indicated by the black dashed lines in panels a and b. (c,d)
F(q̃*,τ) for tracers of varying size δ in the (c) RGM and (d) AGM,
shown at the wavevector q̃* at which the decay is logarithmic (as
indicated). F(q̃,τ) for the corresponding A matrix particles is shown in
black at the wavevector corresponding to the first peak in the matrix
static structure factor S(q̃) (q̃ = 6.7).
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increasing coupling to matrix dynamics as the tracer size is
increased.
To gain insight into the length scales over which tracer

dynamics are coupled to matrix relaxations, we examine the
collective intermediate scattering functions (ISFs, F(q ̃,τ)).
From the ISF, it is clear that tracer dynamics depend on tracer
size, matrix interactions, and length scale 2π/q ̃, where q ̃ = qσBB
is the normalized scattering wave vector (Figure 3). We first
scrutinize the dynamics of tracers of size δ = 0.35 as a function
of q ̃ in the different matrices. At low q ̃, the ISF of a tracer in the
RGM decays nearly exponentially (Figure 3a). At q ̃ ≈ 3.5,
however, F(q ̃,τ) exhibits a logarithmic decay over two orders of
magnitude in time for nearly its entire relaxation process. The
onset of the logarithmic dynamics occurs at approximately the
time scale at which the matrix relaxes and is close to the time
scale (τ ≈ 1) at which the tracer α2 attains a maximum; these
comparisons suggest that these logarithmic dynamics arise

when the tracers become transiently localized. Similar
logarithmic decay is observed for tracers of size δ ≤ 0.40 in
the RGM and in the AGM (Figure 3b) but not for tracers with
size ratio δ = 0.50.
Logarithmic relaxations in glassy systems are usually

interpreted as a consequence of competing arrest mecha-
nisms.35,37−41 Because the matrix relaxations are not
logarithmic, the logarithmic dynamics of the tracers do not
reflect competing arrest mechanisms in the matrix but instead
indicate a crossover between local processes controlling their
dynamics. Similar crossovers have been proposed for other
confined transport systems. Partially pinned particles exhibit
logarithmic behavior, for example, as they undergo a crossover
from localized to glassy dynamics.42,43 Closer to our work, the
extended logarithmic dynamics observed in ref 30 were
attributed to two competing processes, transient localization,
and matrix crowding. Hence we posit that the length scale of
the logarithmic dynamics reflects the length scale on which
tracer dynamics become coupled to the slow relaxations of the
matrix. In contrast with the study of ref 30, which examined
tracer diffusion in liquids and in glasses and also observed
extended logarithmic relaxations, we examine only liquids, as
the use of isodiffusive matrices allows us to remove effects
arising from the long-time dynamics. Thus in our study the self-
and collective ISFs do not decouple because both matrices are
ergodic on long time scales.
The value of q ̃ where logarithmic decay appears, q ̃*, depends

on tracer size and matrix interactions.30 In both matrices, q ̃*
increases with tracer size (Figure 3b,c), indicating that
relaxation processes compete on smaller length scales.
Furthermore, for a fixed tracer size the wavevector of the
logarithmic dynamics is smaller in the AGM than in the RGM.
Two mechanisms may explain the decrease in relaxation length
scales with increasing tracer size: Larger tracers more frequently
contact surrounding matrix particles and less frequently
encounter fluctuations in the matrix large enough for the tracer
to enter. Both mechanisms reduce the mobility of tracers and,
because the matrix relaxations do not change with tracer size,
lead to a decrease in the length scale corresponding to
logarithmic decay. Indeed, tracers of size δ = 0.5 exhibit the
multistep relaxations characteristic of deeply supercooled
colloids,36 but no logarithmic decay is observed at any q ̃. Our
data also indicate that tracers in the AGM couple to relaxations
on larger length scales than those in the RGM, attributable to
the slower dynamics of the AGM on intermediate time scales
(100 ≲ τ ≲ 104, Figure 1a). The fact that the tracer dynamics
are logarithmic over different length scales in the RGM and
AGM suggests that the tracers couple to the different mesoscale
relaxation processes of the two matrices.
In glassy colloidal liquids, the morphology of mesoscale

relaxations depends on matrix interactions; relaxing regions in
attractive glasses are reported to be more compact than those in
repulsive glasses.28,29 To assess whether the shape of relaxing
regions affects the ability of tracers to explore space, we directly
visualize the tracer trajectories, coarse-graining over a time
scale, τcg,δ, that for a given δ removes cage exploration processes
and the effects of thermal diffusion. For tracers of size δ = 0.2,
we choose τcg,0.2 = 0.05 for both matrices. For larger tracers, we
use τcg,δ = τcg,0.2(τcage,δ/τcage,0.2) to remove the effects of cage
exploration, where τcage,δ is chosen to satisfy ⟨Δr ̃2(τcage,δ)⟩/σt2 =
1.0. Representative trajectories for tracers of size δ = 0.35 have
distinct morphologies in the two matrices (Figure 4a,b). Tracer
trajectories are tenuous and fractal-like in the RGM but more

Figure 4. Tracers in RGMs and AGMs explore space differently. (a,b)
Representative trajectories of tracers of size δ = 0.35 in the (a) RGM
and (b) AGM. (c−e) Trajectory mass M as a function of trajectory
radius of gyration Rg for tracers of size (c) δ = 0.2, (d) δ = 0.35, and
(e) δ = 0.5 in RGM and AGM. Dashed and dotted lines in panels c−e
correspond to power laws of 2 and 3, respectively. Insets in panels c−
e: Probability distribution functions for trajectory Rg at 5000 coarse-
grained time steps.
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compact in the AGM. We characterize this difference in shape
by examining the tracer trajectory mass, M, calculated as the

number of boxes of size τΔ ̃ δ( )r 2
cg, (the square-root of the

tracer MSD at the coarse-grained time scale, τcg,δ) needed to
cover the trajectory, as a function of the trajectory radius of
gyration Rg.

44,45 The mass of tracer trajectories in the RGM
scales as a power law with Rg, that is, M ≈ Rg

df, and the resultant
long-time fractal dimension df ≈ 2.0 is approximately
independent of the tracer size. This fractal scaling of the tracer
trajectories corresponds to free diffusion and is expected for
both matrices, which are ergodic on long time scales. For tracer
trajectories in the AGM, however, M is larger than that in the
RGM at a given Rg; likewise, the instantaneous slope is larger
and does not approach the expected terminal scaling with Rg of
2.0 on accessible time scales. Thus tracer trajectories in the
AGM are more compact than those in the RGM on similar
length and time scales.
Our simulations reveal that the spatiotemporally heteroge-

neous dynamics in glassy liquids of varying matrix particle
interactions alter the dynamics of hard-sphere tracers. The
tracers couple to relaxation processes in repulsive and attractive
matrices on distinct time and length scales. As a result, tracers
exhibit trajectories of different shape in the two matrices,
indicating that matrix interactions alter the ability of tracers to
explore space within a slowly relaxing matrix. Because
dispersing particles within slowly relaxing matrices with varying
interactions appear in settings ranging from the crowded
cytoplasm inside cells to natural soils in the environment to
artificial fiber nanocomposites and membranes, these results
provide insight into the coupling between particle transport and
matrix dynamics across a wide range of scientifically and
technologically relevant processes.

■ AUTHOR INFORMATION

Corresponding Authors
*J.C.P.: E-mail: jcpalmer@uh.edu.
*J.C.C.: E-mail: jcconrad@uh.edu.

ORCID
Ryan Poling-Skutvik: 0000-0002-1614-1647
Jeremy C. Palmer: 0000-0003-0856-4743
Jacinta C. Conrad: 0000-0001-6084-4772
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We thank the Welch Foundation (E-1869 and E-1882) and the
National Science Foundation (CBET-1705968) for support.

■ REFERENCES
(1) Kumar, S. K.; Benicewicz, B. C.; Vaia, R. A.; Winey, K. I. 50th
Anniversary Perspective: Are Polymer Nanocomposites Practical for
Applications? Macromolecules 2017, 50, 714−731.
(2) Grabowski, C. A.; Mukhopadhyay, A. Size Effect of Nanoparticle
Diffusion in a Polymer Melt. Macromolecules 2014, 47, 7238−7242.
(3) Poling-Skutvik, R.; Krishnamoorti, R.; Conrad, J. C. Size-
Dependent Dynamics of Nanoparticles in Unentangled Polyelectrolyte
Solutions. ACS Macro Lett. 2015, 4, 1169−1173.
(4) Cai, L.-H.; Panyukov, S.; Rubinstein, M. Mobility of Nonsticky
Nanoparticles in Polymer Liquids. Macromolecules 2011, 44, 7853−
7863.

(5) Zhang, R.; Schweizer, K. S. Correlated Matrix-Fluctuation-
Mediated Activated Transport of Dilute Penetrants in Glass-Forming
Liquids and Suspensions. J. Chem. Phys. 2017, 146, 194906.
(6) Zhang, K.; Meng, D.; Muller-Plathe, F.; Kumar, S. K. Coarse-
Grained Molecular Dynamics Simulation of Activated Penetrant
Transport in Glassy Polymers. Soft Matter 2018, 14, 440−447.
(7) Geise, G. M.; Lee, H.-S.; Miller, D. J.; Freeman, B. D.; McGrath,
J. E.; Paul, D. R. Water Purification by Membranes: The Role of
Polymer Science. J. Polym. Sci., Part B: Polym. Phys. 2010, 48, 1685−
1718.
(8) Sanders, D. F.; Smith, Z. P.; Guo, R.; Robeson, L. M.; McGrath, J.
E.; Paul, D. R.; Freeman, B. D. Energy-Efficient Polymeric Gas
Separation Membranes for a Sustainable Future: A Review. Polymer
2013, 54, 4729−4761.
(9) Lee, S.-H.; Bardunias, P.; Su, N.-Y.; Yang, R.-L. Behavioral
Response of Termites to Tunnel Surface Irregularity. Behav. Processes
2008, 78, 397−400.
(10) Roosen-Runge, F.; Hennig, M.; Zhang, F.; Jacobs, R. M. J.;
Sztucki, M.; Schober, H.; Seydel, T.; Schreiber, F. Protein Self-
Diffusion in Crowded Solutions. Proc. Natl. Acad. Sci. U. S. A. 2011,
108, 11815−11820.
(11) Di Rienzo, C.; Piazza, V.; Gratton, E.; Beltram, F.; Cardarelli, F.
Probing Short-Range Protein Brownian Motion in the Cytoplasm of
Living Cells. Nat. Commun. 2014, 5, 5891.
(12) Angelini, T. E.; Hannezo, E.; Trepat, X.; Marquez, M.; Fredberg,
J. J.; Weitz, D. A. Glass-Like Dynamics of Collective Cell Migration.
Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 4714−4719.
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Zaccarelli, E. Multiple Glass Transitions in Star Polymer Mixtures:
Insights from Theory and Simulations. Macromolecules 2009, 42, 423−
434.
(41) Gnan, N.; Das, G.; Sperl, M.; Sciortino, F.; Zaccarelli, E.
Multiple Glass Singularities and Isodynamics in a Core-Softened
Model for Glass-Forming Systems. Phys. Rev. Lett. 2014, 113, 258302.
(42) Kim, K.; Miyazaki, K.; Saito, S. Slow Dynamics in Random
Media: Crossover from Glass to Localization Transition. Europhys.
Lett. 2009, 88, 36002.
(43) Kurzidim, J.; Coslovich, D.; Kahl, G. Dynamic Arrest of Colloids
in Porous Environments: Disentangling Crowding and Confinement.
J. Phys.: Condens. Matter 2011, 23, 234122.
(44) Zierenberg, J.; Fricke, N.; Marenz, M.; Spitzner, F. P.; Blavatska,
V.; Janke, W. Percolation Thresholds and Fractal Dimensions for
Square and Cubic Lattices with Long-Range Correlated Defects. Phys.
Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2017, 96,
062125.
(45) Saberi, A. A. Fractal Structure of a Three-Dimensional Brownian
Motion on an Attractive Plane. Phys. Rev. E: Stat., Nonlinear, Soft
Matter Phys. 2011, 84, 021113.

The Journal of Physical Chemistry Letters Letter

DOI: 10.1021/acs.jpclett.8b01074
J. Phys. Chem. Lett. 2018, 9, 3008−3013

3013

http://dx.doi.org/10.1021/acs.jpclett.8b01074

