
1260 | Soft Matter, 2019, 15, 1260--1268 This journal is©The Royal Society of Chemistry 2019

Cite this: SoftMatter, 2019,

15, 1260

Influence of polymer flexibility on nanoparticle
dynamics in semidilute solutions†
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The hierarchical structure and dynamics of polymer solutions control the transport of nanoparticles

(NPs) through them. Here, we perform multi-particle collision dynamics simulations of solutions of

semiflexible polymer chains with tunable persistence length lp to investigate the effect of chain stiffness

on NP transport. The NPs exhibit two distinct dynamical regimes – subdiffusion on short time scales and

diffusion on long time scales. The long-time NP diffusivities are compared with predictions from the

Stokes–Einstein relation (SER), mode-coupling theory (MCT), and a recent polymer coupling theory

(PCT). Increasing deviations from the SER as the polymer chains become more rigid (i.e. as lp increases)

indicate that the NP motions become decoupled from the bulk viscosity of the polymer solution.

Likewise, polymer stiffness leads to deviations from PCT, which was developed for fully flexible chains.

Independent of lp, however, the long-time diffusion behavior is well-described by MCT, particularly at

high polymer concentration. We also observed that the short-time subdiffusive dynamics are strongly

dependent on polymer flexibility. As lp is increased, the NP dynamics become more subdiffusive and

decouple from the dynamics of the polymer chain center-of-mass. We posit that these effects are due

to differences in the segmental mobility of the semiflexible chains.

1 Introduction

Transport of nanoparticles (NPs) through complex hetero-
geneous fluids underlies the efficacy of targeted drug delivery
methods,1–3 the ability of NPs to modify rheological or surface
tension properties of fluids,4–7 and the functionalization of
nanocomposites.8,9 Traditionally, the Brownian motion of
spherical particles is described by the Stokes–Einstein relation
(SER), in which the mobility is inversely related to the viscous
drag, via D = kBT/(zpZ0sNP), where D is the particle diffusivity, kB

is Boltzmann’s constant, T is the temperature, Z0 is the zero-
shear viscosity of the solution, sNP is the NP diameter, and z = 2
or 3 for slip or no-slip boundary conditions at the particle surface,
respectively. This relationship can be extended for complex fluids

by incorporating a complex (frequency-dependent) solution
viscosity ~Z according to the generalized Stokes–Einstein relation
(GSER).10,11 Both the SER and GSER assume that the suspended
particle is large enough that any heterogeneity of the fluid is
negligible over the particle surface. This assumption is broken,
however, if the particle size is comparable to or smaller than
characteristic length scales of the medium, which is commonly
encountered for NPs suspended in polymer solutions or melts.
In this limit, dynamics deviate from the prediction of the
GSER,12–19 confirming that complex viscosity ~Z alone is insufficient
to predict the motion of particles in heterogeneous polymer
solutions.

To describe the diffusion of NPs through polymer meshes, early
theoretical arguments used obstruction,20,21 hydrodynamic,22–24

and free volume25 approaches. More recently, mode-coupling theory
(MCT)26,27 and self-consistent Langevin equations28 have been used
to relate the fluctuations in the polymer mesh to the NP dynamics.
These methods provide predictions of the NP long-time diffusivity,
but do not access their short time dynamics. A recent polymer
coupling theory (PCT),29 based on scaling arguments for polymer
dynamics,30,31 assumes that the NP dynamics fully couple to
segmental relaxations of the polymers on comparable length scales.
This model, which predicts that the dynamics are controlled by the
ratio of sNP to the polymer correlation length x, correctly captures
the change in long-time diffusivity as the particle size or polymer
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concentration is changed.18 On short length and time scales,
however, experiments and simulations suggest that the particle
dynamics are incompletely coupled to the segmental dynamics of
flexible polymers and additionally couple to the center-of-mass
relaxations of the polymers.18,32–34

For semiflexible polymers, theoretical descriptions based on
simple scaling laws are expected to be even less fruitful because
stiff macromolecules cannot be described by a self-similar
fractal structure. Instead, semiflexible chains are characterized
by several crossover length scales, such as the persistence and
contour lengths, which introduce a large number of disparate
time and length scales that are relevant to describing their
dynamics. Accordingly, it has been shown that even modest
stiffness affects both static35–38 and dynamic39–41 properties of
polymer liquids. This scenario is relevant for understanding
transport through the intracellular space, crowded by actin,
microtubules, and other semiflexible biopolymers.42,43 On
short time scales the motion of microscale particles (larger
than the mesh size or correlation length) is subdiffusive,
scaling with time with an exponent of 3/444,45 as predicted
from the microscopic relaxations of semiflexible polymers.46,47

Surprisingly, how smaller particles couple to the dynamics of
semiflexible chains has not been systematically explored and is
the focus of this study.

In this work, we use a combination of simulation and theory
to probe NP dynamics in solutions of semiflexible polymers,
whose stiffnesses are characterized by the persistence length lp.
The colloidal suspensions are simulated using a hybrid molecular
dynamics–multi-particle collision dynamics (MD–MPCD) scheme,
which accounts for hydrodynamic interactions through the use of
an explicit coarse-grained solvent. The simulation results are also
compared with predictions from MCT26 for concentrated polymer
solutions. The NP dynamics are subdiffusive on short time scales
and diffusive on long time scales. The long-time diffusivities scale
with the polymer correlation length at low polymer concentrations
in agreement with PCT, but depend on polymer stiffness at higher
concentrations. Good agreement is also observed with the
long-time diffusivities calculated from MCT at high polymer
concentrations, where the theory is expected to be most accurate.
The short-time subdiffusive dynamics, by contrast, vary strikingly
with the flexibility of the polymers. For fully flexible polymers
whose characteristic length scales are comparable to the NP size,
we observe that the subdiffusive behavior of the NPs is coupled to
the polymer center-of-mass motion, in accord with our previous
study.34 As lp is increased such that the polymer chains become
more rigid, however, the dynamics of the NPs become more
subdiffusive and decouple from the dynamics of the polymer
chain center-of-mass. These effects likely arise from changes in
the segmental relaxations as the chain stiffness is increased.

2 Methods

Molecular dynamics simulations of the NP–polymer systems
were performed with LAMMPS.48 For convenience in describing
the model system, we define s, m, and e as the fundamental

base units for length, mass, and energy, respectively. The

corresponding unit of time is t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ms2=e

p
. All physical quantities

are reduced using these fundamental base units and reported in
dimensionless form.

We adopted similar models to those used in our previous
study of NP dynamics in solutions of fully flexible polymer
chains.34 Nanoparticles were modeled as large spheres with
diameter sNP = 5. Polymers were represented by the Kremer–
Grest (KG) model49 as linear chains composed of Nm = 32
smaller beads with diameter sP = 1. Excluded volume interactions
were modeled using the shifted Weeks–Chandler–Andersen (sWCA)
potential50

UsWCA rij
� �
¼

4eij
sij

rij � Dij

� �12

� sij
rij � Dij

� �6
" #

þ eij ; rij � rcij

0; rij 4 rcij

8>><
>>: ;

(1)

where rij is the scalar separation distance between particles
i and j, eij = 1 is the parameter controlling the strength of
the repulsion, and the potential is truncated and shifted at
rc

ij = 21/6sij + Dij. For NP–NP and monomer–monomer interactions
we used sij = sNP and sij = sP, respectively, and set Dij = 0. For
NP–monomer interactions, we chose sij = sP and Dij = (sNP� sP)/2
to account for their size asymmetry.

Adjacent beads on each polymer chain were connected by
anharmonic springs described using the finitely extensible
nonlinear elastic (FENE) potential,51

UFENE rij
� �

¼
�1
2
kr0

2 ln 1� rij
2

r02

� �
; rij � r0

1; rij 4 r0

8><
>: ; (2)

with spring constant k = 30 and maximum bond extension
r0 = 1.5. Chain stiffness was incorporated into the KG model
using the bending potential40,41,52–54

Ubend(Yijk) = k(1 � cosYijk) (3)

where Yijk is the angle between the bonds connecting con-
secutive beads i to j and j to k (an angle of Yijk = 01 corresponds
to three beads in a line). The parameter k modulates the
strength of the potential and stiffness of the chains. For
sufficiently stiff polymers (k 4 2), it is related to the chain
persistence length via lp E bk,40 where b is the equilibrium
bond length (b E 0.97 for the standard parameterization of
the KG model). The contour length of the chain is given by
Lc = (Nm � 1)b E 30.

To study the influence of chain flexibility on NP dynamics,
we performed simulations using different values of k ranging
from 0 (fully flexible) to 32 (lp/Lc E 1) (Table 1 and Fig. 1). The
edge length of the box (L = 64) was chosen to be approximately
eight times the radius of gyration Rg,0 of the stiffest polymer
(k = 32) at infinite dilution to minimize finite-size effects.
All simulations were conducted in a cubic box with periodic
boundary conditions in each direction. For highly flexible
polymers (k r 2), the number of polymer chains Nc was varied
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from 200 to 4900, to achieve monomer concentrations c = NcNmL�3

ranging from 0.025 to 0.5. At higher values of k, however, the
maximum value of c was further limited to avoid the well-
characterized isotropic–nematic transition in this system37 and
stay within the isotropic phase (Table 1). The number of NPs
was fixed at 20 in each simulation (volume fraction E 0.005) to
improve sampling while keeping NP–NP interactions negligible.

Molecular dynamics trajectories were propagated using a
velocity-Verlet integrator with time step 0.005. Simulations for
k r 10 were equilibrated for at least 105t, whereas longer
periods of E106t were used for k Z 20 to account for slower
relaxation of these systems. Equilibration was followed by a
production period of E106t during which trajectories were
saved for subsequent analysis. Ensemble averages were com-
puted from three independent simulations (60 NP trajectories),
and statistical uncertainties were estimated from the standard

error. Hydrodynamic interactions (HI) were incorporated by
coupling the MD particles to a coarse-grained solvent modeled
using the multi-particle collisions dynamics (MPCD) method.56–59

Implementation details of the hybrid MD–MPCD algorithm are
identical to those reported in our previous study.34 Briefly, the
MD–MPCD simulations were performed using a collision cell
edge length a = 1, a solvent particle mass ms = 1, an average
solvent density r = 5 (5 solvent particles per collision cell), and a
collision time step 0.09. Solvent collisions were handled using a
momentum-conserving version of the Andersen thermostat60,61

with a set temperature T = 1. Further, the reference positions of
the cells were randomly shifted before each collision step to
ensure Galilean invariance.62 These choices give an MPCD
solvent with Schmidt number Sc E12.0 and dynamic viscosity
Zs E 4.0. Solvent–polymer collisions were handled using the
scheme discussed in ref. 63, whereas momentum transfer
between the solvent and NPs was treated using the stochastic
boundary algorithm described in ref. 64 with slip conditions.
To achieve neutral buoyancy in the background solvent, the
masses of the polymer beads and NPs were set to mP = rsP

3 and
mNP = rpsNP

3/6, respectively.
To compare the simulated NP diffusivities to the SER, the

shear viscosities of the polymer solutions were determined
through reverse nonequilibrium molecular dynamics (RNEMD)
simulations41,65 using HOOMD-blue with MD66–68 and MPCD69

accelerated on graphics processing units. Stress was imposed
on the solutions by generating a momentum flux, and the shear
rate was extracted from the emerging flow profile. For the fully
flexible chains we were able to directly access the linear
response regime and measure the zero-shear viscosity Z0. As
the stiffness was increased, however, the polymer relaxation
slowed down significantly, making a direct measurement of Z0

computationally infeasible. In these cases, we extracted the
zero-shear viscosity by fitting our data to the Cross model
(ESI).41,70,71 Uncertainties in Z0 from this fitting procedure were
estimated and propagated using standard relationships to
calculate errors in other quantities derived from these values.

3 Results and discussion

We first characterized the structure of the polymer chains as
the stiffness k was varied. Polymer chains are fractal, and their
radius of gyration in dilute solution Rg,0 scales with the number
of monomer beads Nm as Rg,0 B Nnm, where n is the excluded
volume exponent. For fully flexible chains (i.e. k = 0), we found
nE 0.61 (Fig. 2 and Table 1), which is in good agreement with
theoretical predictions and previous simulation results of self-
avoiding chains in a good solvent.34,72 As the chain stiffness
increased, the polymer chains became more rod-like, which
is reflected by the increasing excluded volume exponent n.
However, n remained below the physical limit for hard rods
(n = 1) and reached a value of n E 0.81 for the largest
investigated stiffness of k = 32 (Fig. 2 and Table 1).

After confirming that the simulated polymer structure
agrees with theoretical predictions, we analyzed the dynamics

Table 1 Properties of the polymer systems investigated in this study

k lp/Lc Rg,0 n cmin cmax

0 0.03 3.63 0.61 0.025 (0.16 c*) 0.50 (3.13 c*)
2 0.06 4.37 0.62 0.025 (0.27 c*) 0.40 (4.37 c*)
5 0.15 5.62 0.62 0.025 (0.58 c*) 0.40 (9.29 c*)
10 0.31 6.82 0.66 0.025 (1.04 c*) 0.40 (16.61 c*)
20 0.63 7.73 0.74 0.025 (1.51 c*) 0.25 (15.12 c*)
32 1.01 8.15 0.81 0.025 (1.77 c*) 0.25 (17.72 c*)

Notes: cmin and cmax are the minimum and maximum monomer
concentrations investigated in this study, and c* = 3Nm(4pRg,0

3)�1 is
the overlap concentration.

Fig. 1 Nanoparticles (red) in solutions of (a) fully flexible, (b and c)
semiflexible, and (d) stiff polymer chains with monomer concentration
c = 0.05. Polymers simulated using a given k are identical, but have been
colored by chain index to enhance visual clarity. Snapshots rendered using
Visual Molecular Dynamics 1.9.3.55
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of the constituents of the suspensions. From the MPCD simulations,
we calculated the mean-squared displacement hDr2i for the
monomers in the reference frame of the polymer centers-of-
mass (COM), for the polymer COM, and for the dispersed NPs
as functions of chain stiffness k (Fig. 3). For fully flexible chains
(i.e. k = 0), monomers are hydrodynamically coupled and move
according to Zimm dynamics on short time scales with hDr2iB t2/3,
as expected.72 As k increases, the monomers remain hydro-
dynamically coupled, but the chains become stiffer and their
segmental mobility decreases (Fig. 3(a)).

The chain stiffness also affects the motion of the polymer
COM (Fig. 3(b)). On short time scales, the mean-squared
displacement of the polymer COM develops a subdiffusive
region as k increases, in which hDr2i B ta and a o 1 is the
subdiffusive exponent. On long time scales, the MSD of the
polymer COM recovers diffusive scaling a = 1 with the diffusivity
decreasing with k due to lower segmental mobility and larger
size of the stiffer chains. The motion of the NPs (Fig. 3(c))
is qualitatively similar to that of the polymer COM with a
pronounced subdiffusive region when dispersed in solutions
of stiff chains.

3.1 Long-time nanoparticle diffusivity

The effect of polymer stiffness on the dynamics of NPs was
further characterized by calculating their long-time diffusivity D
and short-time subdiffusive exponent aNP. To facilitate quantitative
comparisons with theory, the NP diffusivities measured in the
simulations, D(L), were corrected for finite-size effects using73

D ¼ 1� zsNP

3L

� ��1
�DðLÞ � 1:08�DðLÞ (4)

where z = 2.837297. Eqn (4) corrects for finite-size effects
associated with long-range hydrodynamic interactions between
periodic images of the simulation box, which vanish as L - N

and are thus not present in infinite systems. This expression
is valid for NPs with a slip boundary condition at their surface,
but analogous expressions have also been derived for no-slip

boundary conditions.73 For the system considered here (L = 64,
sNP = 5), the correction is relatively small and increases the
diffusivity by E8%.

The values of D from simulation are significantly larger than
the diffusivities predicted by the SER (Fig. 4), indicating that
the motions of the NPs are incompletely coupled to the bulk
viscosity of the background polymer solutions. Deviations from
SER predictions have also been observed in experimental
studies performed on NPs in solutions of similarly sized
polymers,16,18 ranging from D/DSER E 2 when sNP/2Rg,0 E 0.9
to D/DSER E 30 when sNP/2Rg,0 E 0.6. They arise because the
NPs are comparably sized to the polymer chains, which violates
the homogeneity assumption underlying the SER.14 The deviations
from SER predictions become more pronounced as the chains
become stiffer, indicating that the NPs become increasingly
decoupled from the bulk solution viscosity. For simulations of

Fig. 2 Scaling of radius of gyration Rg,0 in dilute solution as a function of
the number of monomer beads Nm for polymers with stiffness k = 0 (n)
and 32 (J). Dashed lines are power law fits.

Fig. 3 Mean-squared displacement hDr2i as a function of lag time Dt at
multiple polymer stiffnesses and monomer concentration c = 0.20 for
(a) the monomers in the reference frame of the polymer centers-of-mass
(COM), (b) the polymer COM, and (c) the NPs. Dashed and solid lines
indicate diffusive (Bt1) and subdiffusive (Bta, a o 1) scaling, respectively.
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NPs in solutions of infinitely rigid rods, these deviations were
posited to develop because of constraint release mechanisms in
the rod matrix.74

We also compared our simulation results to calculations
performed using a variant of MCT developed for dense polymer
solutions.26,27 Details of the MCT calculations follow those in
ref. 26 and are thus not repeated here. Within MCT, the overall
NP diffusion coefficient DMCT is written as a sum of hydro-
dynamic and non-hydrodynamic (microscopic) terms.26,27 The
former is given by DSER, whereas the latter contribution, Dmicro,
arises due to the coupling of the NP motion to polymer
collective density modes.26,27 Calculation of Dmicro requires
several structural (NP–monomer and monomer–monomer
radial distribution functions and Rg,0) and dynamical (monomer
diffusion coefficient) quantities as input.26 These quantities can
be calculated directly from theory,26 but here we use input from
the MD–MPCD simulation, as our main interest is to test the
approximations inherent in MCT. In computing Dmicro, we
also include the contribution arising from the coupling to the
self-transverse current mode given in ref. 75, which affects
the dynamic shear viscosity and has been shown to play an

important role in treating diffusion in low-density fluids.75

Although this additional contribution is negligible in dense
systems, we nonetheless include it in all MCT calculations
and evaluate it using input from the MD–MPCD simulation.

The relative contributions of DSER and Dmicro to DMCT depend
on polymer concentration for the small particles examined here;
DSER is comparable to Dmicro at low polymer concentrations (c =
0.05, Fig. 5(a)) but much smaller than Dmicro at high polymer
concentrations (c = 0.20, Fig. 5(b)), as also seen in an earlier
MCT study.26 The overall diffusivities DMCT predicted by MCT
are in excellent agreement with those calculated from the
MD–MPCD simulations (Fig. 4) at polymer concentration c = 0.20
for all values of k examined.

For lower concentration c = 0.05, however, deviations between
MCT and simulation are observed. Even with incorporation of the
contribution from the coupling to the self-transverse current
mode, MCT systematically underestimates the NP diffusivity at
c = 0.05. This discrepancy is presumably due to the fact that
additional collective modes, which have not been taken into
account, are important at these conditions. Nevertheless, the
overall agreement with simulation is reasonable, and MCT
correctly captures the increasingly significant deviations from
SER as the polymers become stiffer.

Lastly, we compared the behavior of the NP diffusivity with
predictions from the PCT developed in ref. 29 for fully flexible
polymers to explain deviations from the SER. This theory
assumes that the NPs are locally caged by polymers until the
surrounding chains relax over the particle surface. Accordingly,
the long-time NP diffusivity is predicted to depend on the
length-scale ratio of NP diameter to polymer correlation length
sNP/x and to scale as D/D0 B (sNP/x)�2, where D0 is the
nanoparticle diffusivity in pure solvent. For c/c* 4 1 we used
x = Rg,0(c/c*)�n/(3n�1) from scaling theory,72 where c* =
3Nm(4pRg,0

3)�1 is the overlap concentration (Table 1). For
c/c* r 1, we calculated x according to the mean geometric
separation distance Rg,0(c/c*)�1/3. We verified this PCT prediction
experimentally18 and with simulations34 in previous work for fully

Fig. 4 NP diffusivity obtained from MD–MPCD simulations with finite size
correction following ref. 73 (D), from MCT calculations (DMCT), and from
the SER (DSER). Closed symbols in (a) and (b) indicate diffusivities and open
symbols in (c) and (d) indicate ratios of diffusivities. Dashed lines in (c) and
(d) indicate a diffusivity ratio of unity.

Fig. 5 NP diffusivity obtained from the MCT calculations broken down
into hydrodynamic (DSER) and non-hydrodynamic (Dmicro) contributions for
polymer concentrations (a) c = 0.05 and (b) c = 0.20.
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flexible chains in solution. By contrast, tests of PCT in com-
putational studies of nanoparticle–polymer composites modeled
using flexible chains have yielded inconclusive results.76 Here,
we extend tests of this scaling relation to semiflexible polymer
solutions (Fig. 6).

At very low polymer concentrations, the NP diffusivities
remain mostly unaffected by the polymers so that D/D0 E 1.
The diffusivities decrease with increasing polymer concentration
solely as a function of length-scale ratio sNP/x. In solutions of
flexible chains (k E 0), the NP diffusivities eventually cross over
and scale according to D/D0 B (sNP/x)�2 at large sNP/x, in
agreement with the PCT predictions of ref. 29. Similar behavior
for flexible chains was also observed in our previous study,34

where the agreement with PCT was even more clear due to the
use of longer polymer chains (Nm = 50), which provided access to
larger sNP/x.34 Slightly shorter chains (Nm = 32) were used in this
study to avoid approaching the isotropic–nematic transition in
systems with stiff chains.37 Agreement with PCT was also
observed experimentally for flexible chains,18 although vertically
offset from the simulation results due to differences in solution
viscosity.34 For stiffer chains (large k), however, the NP diffusivities
decrease more rapidly and deviate from the predicted scaling.
According to PCT, the long-time dynamics depend on the
segmental relaxations of the polymer chains. Thus, the different
diffusivity dependences likely arise from the slower monomer
dynamics of the stiffer chains (Fig. 3(a)). As the monomer
dynamics slow down with increasing k, the time required for
the polymer mesh to relax over the particle surface increases.
This longer relaxation thereby slows the long-time NP motion.

3.2 Short-time subdiffusion

Beyond segmental mobility, the dynamics of the polymer COM
also play an important role in controlling the subdiffusive
motion of dispersed NPs.34 For flexible chains, both Rouse
and Zimm theories assume that the COM of polymer chains
move diffusively on all time scales.72 Experimentally, however,

the COM dynamics of polymers deviate from this diffusive
assumption and move subdiffusively on short time scales.77

Our simulations reveal that the subdiffusive dynamics of the
polymer COM depend on both polymer concentration and
chain stiffness (Fig. 7). For both concentrations, the subdiffusive
exponent aP for the polymer COM initially decays with increasing
k before reaching a plateau. Higher polymer concentrations lead
to lower values of aP for all k. The NP subdiffusive exponent aNP

also decreases as the polymer concentration and k are increased,
similar to aP. It does not, however, reach a plateau at high k for
the higher polymer concentration (c = 0.20), unlike aP.

When particles are much larger than characteristic length
scales in the polymer, (sNP c 2Rg,0), their short-time dynamics
directly follow the segmental relaxations of the free polymer.
This coupling results in subdiffusive particle dynamics in the
microrheological limit, with aNP = 0.5 in solutions of flexible
polymer18,29,78 and aNP = 3/4 in solutions of semiflexible
chains.44,45 The PCT developed for smaller (nano)particles in
ref. 29 still assumes direct coupling of the NP to segmental
relaxations of the surrounding polymer chains on short time
scales, so that aNP exhibits a step change and abruptly decreases
from 1 to 0.5 at sNP/x = 1 (Fig. 8). For flexible chains, such a step
change is not observed in experiments18 or simulations.34

Instead, aNP smoothly decreases as the size ratio sNP/x increases.
For stiff chains, the shape of this decay changes (Fig. 8). At low
polymer concentrations, aNP decreases with increasing polymer
concentration independent of k. At higher polymer concentrations
(i.e. larger sNP/x), the NP dynamics become increasingly sub-
diffusive with increasing polymer stiffness. The steeper decays
suggest that the NP dynamics couple differently to the segmental
mobility of stiffer chains.

In previous work,34 we attributed the deviation from scaling
predictions on short time scales to the coupling of the NP
dynamics to both the segmental relaxations of the polymer
chains and to the dynamics of the polymer COM. To assess the
degree to which NP dynamics couple to segmental relaxations and
the dynamics of polymer COM in solutions of semiflexible chains,

Fig. 6 Normalized NP diffusivity D/D0 as a function of size ratio sNP/x for
polymers with varying stiffness k. Open symbols are experimental data
from ref. 18 with sNP/2Rg,0 = 0.56 (n), 0.74 (&). Solid lines are scaling
predictions29 D/D0 B (sNP/x)�2.

Fig. 7 Subdiffusive exponent of NPs aNP (closed) and polymer centers-of-
mass aP (open) as a function of bending constant k, for monomer
concentrations of c = 0.05 (orange) and c = 0.20 (purple).
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we analyze the correlation between aNP and aP (Fig. 9). At low
polymer concentrations, the dynamics of the NPs and polymer
COM are largely diffusive for all k with aNP = aP E 1. As the
polymer concentration increases, aNP decreases concomitant
with aP for all k, indicating that the NP and polymer COM
dynamics are correlated in these solutions. At higher polymer
concentrations, however, aNP decouples from aP and decreases
more rapidly with increasing chain stiffness. The stronger
subdiffusion of NPs in solutions of stiff chains is a marked
difference from the predicted microrheological behavior of
micron-sized particles in solutions of semiflexible chains in
which aNP = 3/4.44,45 The decorrelation of the short-time
dynamics of nanoparticles and polymer COM suggests that
the NPs couple more strongly to the decreased monomer
dynamics of the surrounding chains in solutions of semi-
flexible chains. This hypothesis is consistent with the steeper
decay of aNP with polymer concentration (Fig. 8).

4 Conclusions

Understanding the effects of polymer stiffness on NP transport
is critical to improving the efficacy of composite processing and
drug delivery. Here, we performed hybrid MD–MPCD simulations
of semidilute solutions of polymers with tunable stiffness to
investigate the influence of polymer flexibility on the dynamics
of NPs of comparable size. The NPs exhibit subdiffusive
dynamics on short time scales and diffusive dynamics on long
time scales. With increasing polymer stiffness the long-time
diffusivities of the NPs more markedly deviate from the SER,
consistent with decoupling from the bulk polymer solution
viscosity, and from PCT, which was developed for flexible
polymers. The long-time diffusivities are adequately predicted
by MCT, however, especially at high concentrations of the
polymers where the theory is expected to be most accurate. On
short time scales, the dynamics of the NPs become progressively
more subdiffusive and decouple from the dynamics of the polymer
chain center-of-mass as the stiffness of the polymer chains is
increased. These changes in dynamics likely arise from differences
in the segmental relaxations of the semiflexible chains. We
anticipate that these predictions can be tested experimentally
using, e.g., nematic elastomers,79,80 dendronized polymers,81 or
the well-characterized biopolymers ds-DNA or actin. Finally, the
results from our computational study may aid in extending
existing theories for describing NP transport in systems of
flexible chains (e.g., PCT) to solutions of stiff and semiflexible
polymers.
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