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ABSTRACT
The transport of small penetrants through disordered materials with glassy dynamics is encountered in applications ranging from drug deliv-
ery to chemical separations. Nonetheless, understanding the influence of the matrix structure and fluctuations on penetrant motions remains
a persistent challenge. Here, we use event-driven molecular dynamics to investigate the transport of small, hard-sphere tracers embedded
in matrices of square-well particles. Short-range attractions between matrix particles give rise to reentrant dynamics in the supercooled
regime, in which the liquid’s relaxation time increases dramatically upon heating or cooling. Heating results in a “repulsive” supercooled
liquid where relaxations are frustrated by steric interactions between particles, whereas cooling produces an “attractive” liquid in which
relaxations are hindered by long-lived interparticle bonds. Further cooling or heating, or compression, of the supercooled liquids results
in the formation of distinct glasses. Our study reveals that tracer transport in these supercooled liquids and glasses is influenced by the
matrix structure and dynamics. The relative importance of each factor varies between matrices and is examined in detail by analyzing par-
ticle mean-square displacements, caging behavior, and trajectories sampled from the isoconfigurational ensemble. We identify features of
tracer dynamics that reveal the spatial and temporal heterogeneity of the matrices and show that matrix arrest is insufficient to localize
tracers.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5121851., s

I. INTRODUCTION

The transport of dilute small molecules or particles within dis-
ordered media affects the delivery of drug molecules encapsulated in
hydrogels,1,2 the efficacy of polymeric gas separation membranes in
capturing carbon dioxide or purifying natural gas,3,4 and the move-
ment of DNA through the crowded cytoplasm during transforma-
tion and transcription.5–7 In these processes, penetrant dynamics
may couple to the structure and/or to the slow relaxations of the
surrounding matrix. As an example, increasing the density of an
arrested, disordered matrix leads to anomalous diffusion at a critical
density or localization at higher densities.8,9 Likewise, matrix mobil-
ity affects gas diffusion in polymeric membranes10–12 and the trans-
port of cytoskeletal and cytoplasmic constituents within the cell.5,13

Understanding the effects of the matrix structure and dynamics on
penetrant transport, however, remains a persistent challenge.

Recent progress has been made in understanding tracer trans-
port in complex matrices using well-controlled colloidal models.
Anomalous tracer dynamics and localization have been observed
in model disordered media consisting of colloidal particles fixed
in gel-like14 and liquid configurations.15,16 Similarly, tracer dynam-
ics have also been shown to be coupled to matrix motion, crossing
over from localized to diffusive behavior as the matrix relaxes.17,18

This coupling, however, depends on the relative time scales between
the tracer and matrix dynamics and also the nature of the matrix
relaxations. It is unclear, for example, how the onset of nonergodic,
glassy dynamics19,20 may influence this coupling. Moreover, it is also
unclear how tracer coupling is affected by the nature of the matrix
relaxations, which can be qualitatively altered by modulating the
interactions between matrix particles.21,22

In this study, we use event-driven molecular dynamics (MD)
to investigate the transport of tracer particles in a model colloidal
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glass-former consisting of a square-well fluid with short-ranged
attractions.21,23 In the supercooled liquid regime, this system
exhibits reentrant dynamics characterized by a marked increase in
the liquid’s relaxation time upon heating or cooling. Whereas heat-
ing produces a “repulsive” glassy liquid in which relaxations are
hindered by steric interactions between particles, cooling results in
an “attractive” glassy liquid where relaxations are frustrated by long-
lived interparticle bonds.21,23 Distinct glasses can be prepared by
further heating or cooling of the repulsive and attractive liquids,
respectively, and by compression. Here, we examine the dynam-
ics of tracer particles of a critical size, known to exhibit anoma-
lous transport,17,18 embedded in these liquid and glass matrices.
We find that tracer transport is affected both by intermediate- and
long-time matrix dynamics and by the matrix structure. Intrigu-
ingly, sufficiently large local fluctuations in arrested matrices that
do not relax on long time scales can allow tracers to escape cages
and recover diffusive behavior. In strongly quenched matrices,
however, tracer dynamics are primarily determined by the struc-
ture of matrix cages. Our results identify the relative contribu-
tions of the matrix structure and dynamics on tracer motions
in attractive and repulsive glassy matrices and thus provide a
framework to understand transport processes in slowly relaxing
materials.

II. METHODS
A. Model systems

Event-driven MD simulations were performed to investigate
the transport behavior of tracer particles in glassy matrices. The
matrices were modeled using a well-studied equimolar binary (AB)
glass-forming mixture that exhibits reentrant dynamics.21,24,25 Fol-
lowing Refs. 21, 25, and 26, the matrix species were assigned unit
masses (m = 1) and a hard-core diameter ratio of σAA:σBB = 1.2:1
to frustrate crystallization (Fig. 1). The matrix particles interacted
through a short-range square-well potential with depth u0 = 1 and
width Δij = 0.03(σij + Δij) for each pair type i, j ∈ A, B, where
σij = 1

2(σii + σjj). In the discussion to follow, we adopt conven-
tional simulation units in which Boltzmann’s constant kB = 1 and
σBB, u0/kB, and σBB(m/u0)1/2 are the fundamental measures of
length, temperature, and time, respectively. To account for the influ-
ence of temperature on particle dynamics, we also define a thermal
time scale τ = tD0/Dref, where t is the nominal simulation time,
D0 = σBB

√
kBT/m is the thermal diffusivity at temperature T, and

Dref is the reference value of D0 at T = 1.23

We examined tracer dynamics in matrices with N = 1372 par-
ticles at six different state points specified by {ϕ, T}, where ϕ is the
volume fraction of matrix particles (Fig. 2; see the supplementary
material). For notational convenience, we refer to these samples as
LT or GT (liquid or glass, respectively), where T is the sample tem-
perature. We considered two ergodic liquid states at ϕ = 0.610 with
approximately equal long-time diffusion coefficients Di/D0: a high-
temperature repulsive glassy liquid (L1.05) and a low-temperature
attractive glassy liquid (L0.35), where Di is the nominal diffusion
coefficient.18 Two glasses were also prepared at the same tempera-
tures (G1.05, G0.35) and increased matrix volume fraction ϕ = 0.635.
Similarly, a glass (G0.20) with ϕ = 0.610 was prepared at T = 0.20, a
lower temperature than the attractive glassy liquid. Finally, we also

FIG. 1. (a) Rendering of a representative configuration with the tracers (red)
embedded in a matrix of A (green) and B (blue) particles, which have a hard-
core diameter ratio of σAA:σBB = 1.2:1. (b) Rendering of tracer trajectories within
G0.20 (an attractive glass) over a duration of 360τ. (c) Two-dimensional projection
of a tracer trajectory 800τ in duration illustrating tracer cage rearrangement. Time
evolution of the trajectory is indicated by color scale.
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FIG. 2. State diagram from Ref. 23 for the model square-well glass former. Sym-
bols denote the locations of the liquid (L) and glass (G) matrices investigated in this
study. Arrows denote hypothetical heating/cooling (up/down vertical arrows) and
compression (horizontal arrows) protocols for preparing glasses from the attractive
and repulsive ergodic liquids (L0.35 and L1.05, respectively). These hypothetical pro-
tocols are used to illustrate the relationships between matrices; the actual protocol
used to prepare each sample is described in the text.

studied a hard-sphere glass at ϕ = 0.610 and T = 1.00 (HSG1.00),
which is equivalent to a square-well glass in the high-temperature
limit (Fig. 2).

We embedded Nt = 10 tracers into each supercooled liquid or
glass matrix. Interactions between the matrix and tracer particles
were modeled using purely repulsive, hard-sphere collisions. The
diameter of the tracer σtt was chosen such that δt = σtt/σAB = 0.35,
which is approximately the size ratio where tracers exhibit anoma-
lous dynamics and couple to matrix fluctuations and relaxations.17,18

Larger tracers exhibit dynamics similar to matrix particles, whereas
smaller tracers can traverse through interstitial voids and thus are
largely unaffected by matrix fluctuations.17,18

The supercooled liquid matrices were equilibrated at their
respective T and ϕ. The glass matrices, by contrast, were prepared
by first incrementally compressing the system to a volume frac-
tion of ϕ = 0.610 by increasing the particle radii. The systems
were then equilibrated in the NVT ensemble at T = 0.55. Follow-
ing equilibration, the samples were either instantaneously thermally
quenched to their final temperature by rescaling the particle veloc-
ities (G0.20 and HSG1.00) or compressed to ϕ = 0.630 in increments
of Δϕ = 0.010, followed by additional compression to ϕ = 0.635 in
a single step of Δϕ = 0.005, and then thermally quenched (G0.35
and G1.05). After each compression increment, the glasses were sim-
ulated for 10τ at constant ϕ and T to relax compression-induced
stresses. This protocol was employed in earlier studies,23,26 where it
was shown to not qualitatively affect dynamics beyond the micro-
scopic regime.26 For the HSG1.00 sample, the attractive square-well
interactions were removed after the thermal quench. All glasses were
subsequently aged for a waiting time tw ≫ τmax (see the supplemen-
tary material), producing tw-invariant trajectory data up to the max-
imum observation time (τmax ≈ 105).23 Statistical properties were
calculated by averaging over trajectories computed for ns = 5–20
independent samples prepared for each type of matrix using the
protocols described above.

B. Cage analysis
To characterize the restriction of tracer particle motions by the

matrices, we performed cage analysis using the method of Doliwa
and Heuer.27,28 Their method is based on the assumption that the
sequential displacements of caged particles will be directionally
anticorrelated. Consider an initial displacement of a caged parti-
cle Δr⃗01 = r⃗(Δt) − r⃗(0) over a time interval Δt on which Δr⃗01
is comparable to the characteristic cage size, where r⃗ is the par-
ticle’s position vector. Because the neighbor cage restricts further
motion along Δr⃗01, the displacement over the next time interval
Δr⃗12 = r⃗(2Δt) − r⃗(Δt) should, on average, be anticorrelated. The
displacement Δr⃗12 can be projected onto the unit vector of the pre-
ceding displacement Δr⃗01, yielding the caging displacement pro-
jection (CDP) x12 ≡ Δr⃗12 ⋅ Δr⃗01

∣Δr⃗01 ∣
, which is parallel to Δr⃗01. For a

caged particle, the ensemble-averaged CDP ⟨x12⟩ is negative and its
magnitude grows with ∣Δr⃗01∣. In hard-sphere supercooled liquids,
⟨x12⟩ = −c∣Δr⃗01∣ for small displacements where the cage has not
been broken. Larger magnitudes of the proportionality constant c
indicate greater displacement memory during caging.27 For larger,
cage-breaking displacements, by contrast, ⟨x12⟩ is independent
of ∣Δr⃗01∣.29

In analyzing tracer dynamics, we first compute the non-
Gaussian parameter for particle displacements α2(Δt) (see the sup-
plementary material). The maximum in α2(Δt) signifies the time
scale τ∗ on which the per-particle variance in tracer dynamics due
to caging and matrix rearrangement is greatest.30,31 We use Δt = τ∗
as the time interval for computing tracer displacements Δr⃗01 and
Δr⃗12.29 The magnitudes of tracer displacements at τ∗ vary across dif-
ferent matrices. To account for this variation, we report normalized
quantities x̃12 ≡ C−1⟨x12⟩ and r̃01 ≡ C−1∣Δr⃗01∣, where C is the square-
root of the tracer mean-square displacement (MSD) Δr2 at lag
time τ∗.

C. Isoconfigurational ensemble
We performed simulations in the isoconfigurational ensemble

(IE) to isolate the effects of the matrix structure on particle dynam-
ics. In this approach, an ensemble of separate simulations is run
over a fixed time interval. Each simulation starts from the same
initial particle configuration but with a different set of randomly
assigned momenta.32 For each matrix system, we analyzed nc,iso
= 50–100 configurations (see the supplementary material) extracted
from independently prepared samples prepared using the proce-
dures described in Sec. II A. Each of the nc,iso configurations was
used to initialize nt,iso = 80 short MD trajectories. Initial particle
momenta for the MD trajectories were randomly drawn from the
Maxwell-Boltzmann distribution at set temperature T.32,33 Isocon-
figurational averages ⟨⋯⟩iso were computed from statistics collected
from the MD trajectories. Specifically, to characterize the mobil-
ity of individual particles, we calculated the dynamic propensity
DPi(t) = ⟨ (⃗ri(t)−r⃗i(0))

2

Δr2
i

⟩
iso

, where Δr2
i is the ensemble-averaged

mean-square displacement (MSD) of the ith particle. This quan-
tity is the second moment of the particle displacement distribution,
computed by averaging over the trajectories of particle i. When
each particle’s mobility is equal to the average mobility ⟨Δr2

i ⟩iso,
DPi will be unity.34,35 Thus, examination of this quantity for all
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particles provides insight into the spatial distribution of dynamic
heterogeneity.

D. Trajectory shape analysis
To characterize the shapes of tracer rearrangements, we cal-

culated the mass M of a trajectory as a function of its radius of
gyration Rg. This analysis is performed by overlaying the trajec-
tory on a cubic lattice composed of unit cells with edge length σtt.
The trajectory mass M is evaluated by assigning each cell unit mass
and summing over the unique cells visited by the trajectory.36,37 To
remove the effects of the initial ballistic motion, we coarse-grain
the trajectories over a time scale τcg such that ⟨Δr2(τcg)⟩ = σ2

tt for
tracers within a given matrix. The trajectories are then resampled
to ensure that successive frames are separated by a time interval
τcg. From the coarse-grained trajectories, we compute the radius
of gyration Rg =

√
1
nng
∑ncg

i=1(x⃗i − x⃗avg)2, where ncg is the num-
ber of coarse-grained points in the trajectory, x⃗i is the position of
the ith coarse-grained point, and x⃗avg = 1

ncg
∑ncg

i=1 x⃗i is the mean
position.

III. RESULTS AND DISCUSSION
A. Matrix dynamics

We first characterize the dynamics of the different glassy
matrices through the ensemble-averaged mean-square displacement
(MSD) Δr2 (Fig. 3), focusing on the intermediate-time and long-
time dynamics of the large matrix particles. The intermediate-
time dynamics are influenced by cage rattling and interac-
tions between matrix particles, whereas long-time dynamics are
controlled by the ability of the matrix to relax when parti-
cles escape their local cages. Generally, the MSDs exhibit the
expected behavior for glassy matrices:21,23,38 intermediate relax-
ations are suppressed in attractive matrices relative to those
in comparable repulsive matrices and long-time relaxations
are suppressed in vitrified samples. Similar behaviors can be
observed in the matrices’ self-intermediate scattering functions,
Fs(q, τ) = ⟨ 1

Ni
∑Ni

k=1 exp [−jq⃗ ⋅ (r⃗k(τ) − r⃗k(0))]⟩, where q = ∣q⃗∣ is the
wavevector magnitude, j =

√
−1, N i is the number of particle

species i, and the brackets indicate an ensemble average (see the
supplementary material). Detailed comparisons between different
matrices reveal further insights into relaxation processes of glassy
matrices.

The MSD of the large matrix particles in L1.05 is approximately
constant on lag times τ ≈ 100–103, indicating interparticle caging
[Fig. 3(a)]. By contrast, Δr2 for L0.35 exhibits a small plateau at
τ ≈ 10−1 followed by an increasing, subdiffusive power-law Δr2 ≈ τβ
that extends to τ ≈ 103, where β ≈ 0.32. The small plateau corre-
sponds to the length scale of interparticle bond formation, whereas
the power-law region signifies a transition from dynamics domi-
nated by bonding at small τ to dynamics dominated by caging at
larger τ.21 The smaller values of Δr2 indicate that particles in L0.35
are more localized than those in L1.05, likely due to the formation of
interparticle bonds.39 Thus, on intermediate time scales, the liquids
have different relaxation mechanisms. On long time scales, however,
the liquids exhibit nearly identical dynamics. The MSD for both L0.35

FIG. 3. Mean-square displacementΔr2 for matrix species A. (a)Δr2 for all matrices
with ϕ = 0.610. (b) Δr2 for glasses with ϕ = 0.635 compared to the corresponding
liquids with ϕ = 0.610. The two matrices (L0.35 and L1.05) exhibit similar long-time
diffusivities D/D0 ≈ 6.5 ± 0.8 × 10−7. The black solid line indicates a power-law
slope of one.

and L1.05 scales linearly with τ at long times, indicating normal diffu-
sive dynamics. The crossover to diffusive dynamics occurs on similar
time and length scales in both liquid matrices and indicates the ter-
minal relaxation of the matrix as particles escape from their local
cages.

Next, we examine the dynamics of the glassy matrices (G0.20 and
HSG1.00) with the same ϕ as the two supercooled liquids. The G0.20
and HSG1.00 glasses exhibit dynamics on intermediate time scales
similar to the corresponding liquids (L0.35 and L1.05) but do not relax
on long time scales [Fig. 3(a)]. Δr2 of the hard-sphere glass HSG1.00
exhibits a plateau on intermediate time scales, similar to the one
observed for the repulsive liquid L1.05. The smaller plateau height in
HSG1.00 relative to that in L1.05 indicates that thermal fluctuations in
the repulsive liquid slightly increase the local cage size. Likewise, Δr2

of the attractive glass G0.20 resembles that of the liquid L0.35, exhibit-
ing a small plateau followed by a power-law increase with time. The
power-law exponent in this increasing region is β ≈ 0.11, smaller
than the exponent β ≈ 0.32 for the corresponding L0.35 liquid matrix.
This behavior indicates that matrix rearrangements are restricted on
intermediate length and time scales due to the stronger attractions
between particles in G0.20.

Two glassy matrices G0.35 and G1.05 can also be produced by
compressing from ϕ = 0.610 to 0.635. This increase in ϕ leads to
suppressed plateaus in Δr2 on intermediate time scales and prevents
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the matrix from fully relaxing on long time scales. Δr2 of G1.05 dis-
plays an intermediate-time plateau that is suppressed relative to the
plateau for the liquid L1.05 [Fig. 3(b)] because of the higher matrix
density of G1.05. The MSD of G0.35 exhibits a small shoulder at
τ ≈ 10−1, qualitatively similar to but quantitatively lower than the
one observed for L0.35, which arises from attractive bond formation.
On time scales τ ≳ 102, the MSD of G0.35 exhibits a long-time plateau
that contrasts with the extended power law observed on long time
scales for Δr2 of L0.35. The plateau indicates that particles in G0.35
remain caged on long time scales, whereas the extended power-law
in L0.35 indicates that bond rearrangement and cage escape occur on
similar time scales. Thus, comparison of the MSDs for G0.35 and G1.05
with those of L0.35 and L1.05 reveals that increasing matrix ϕ results
in caging-driven arrest.

B. Tracer dynamics
Differences in packing fraction and interparticle interactions

influence fluctuations and relaxations in the six matrices, leading
to distinct dynamics. The dynamics of tracers of a critical relative
size, δt = 0.35,17,18,40 within a slowly relaxing matrix are affected by
both caging within matrix voids and matrix relaxations and fluctua-
tions.17,18,40 We thus anticipate that differences in the matrix struc-
ture and dynamics will alter the motions of confined tracer particles,
providing insight into the nature of the transport processes in these
matrices.17,18

After initial ballistic motion, tracers of relative size δt = 0.35
relax differently on intermediate and long time scales in distinct
matrices (Fig. 4). The tracers embedded in the L0.35 and L1.05 matri-
ces exhibit subdiffusion on intermediate time scales 10−1 ≲ τ ≲ 103.
Diffusive dynamics are recovered on long time scales τ ≳ 103, with
tracers in L1.05 exhibiting a higher diffusivity. The transition from
ballistic motion to subdiffusive dynamics reflects the onset of caging
by the matrix particles. The value of the MSD at the crossover to
subdiffusive behavior is greater for L0.35 than in L1.05, indicating
that tracers explore larger voids in L0.35.18 The logarithmic slope β
of the tracer MSD in the subdiffusive regime (Δr2 ∼ tβ), however,
is smaller for L0.35 than for L1.05, reflecting smaller matrix fluctua-
tions on these time scales (Fig. 3). The larger voids and slower tracer
relaxations in L0.35 are due to subtle changes in the matrix struc-
ture arising from the strong attractive bonds between the matrix
particles.18,41,42

To obtain insight into the effects of temperature-induced
matrix arrest on tracer dynamics, we compare tracer MSDs in L0.35
and L1.05 to those in G0.20 and HSG1.00. Tracer dynamics in HSG1.00
are subdiffusive for time scales 10−1 ≲ τ ≲ 103 and diffusive for
long time scales τ ≳ 103 [Fig. 4(a)]. In the subdiffusive regime,
the tracer MSD of HSG1.00 has a slightly smaller slope and magni-
tude for a given τ relative to L1.05. Furthermore, diffusive dynamics
are recovered later in time in HSG1.00 and the terminal diffusiv-
ity is smaller. These behaviors suggest that tracer dynamics in L1.05
are faster and less localized than in HSG1.00 and that tracer cage
escape occurs on shorter time scales in L1.05 due to its liquidlike
relaxations.

Tracer dynamics within the attractive matrices L0.35 and G0.20
exhibit distinct features not present in L1.05 and HSG1.00, reflect-
ing the effects of attractive bonds between the matrix particles. The

FIG. 4. Δr2 for tracer particles as a function of normalized time scale τ. (a) Δr2

for tracers in matrices with ϕ = 0.610. The arrows indicate the time regime during
which Δr2

G0.20 ≈ Δr2
L0.35 . (b) Δr2 for tracers in glasses with ϕ = 0.635 and in the

corresponding liquids. The arrow indicates the time scale at which the behaviors of
Δr2

G0.35 and Δr2
G1.05 qualitatively diverge. The black solid line indicates a power-

law slope of one.

tracer MSDs Δr2 in L0.35 and G0.20 are subdiffusive and nearly iden-
tical for time scales 10−1 ≤ τ ≤ 101 but diverge for τ > 101. In
the subdiffusive regime (10−1 ≤ τ ≤ 101), the slopes of the MSDs
of L0.35 and G0.20 are smaller than those of L1.05 and HSG1.00. The
MSD of tracers in L0.35 transitions from subdiffusive to diffusive
scaling, becoming fully diffusive for τ > 103. By contrast, Δr2 of
tracers in G0.20 scales subdiffusively, appearing to tend toward recov-
ering diffusive behavior on time scales longer than those readily
accessible in simulation. This extended subdiffusion arises from the
increased role of matrix interparticle bonding, which reduces matrix
fluctuations and increases the residence time of tracers in matrix
cages.

A comparison of the matrix and tracer MSDs reveals dynamic
coupling on intermediate time scales and suggests that these pro-
cesses can facilitate tracer transport. Tracer dynamics in HSG1.00 are
diffusive on time scales exceeding τ ≳ 103, even though the matrix
itself does not relax. This behavior sharply contrasts with the lack of
tracer diffusion in G0.20 even on much longer time scales of τ ∼ 105.
The matrix Δr2 of HSG1.00 is an order of magnitude larger than that
of G0.20 [Fig. 3(a)], indicating that intermediate time scale fluctua-
tions are larger in the repulsive glass. Hence, thermal “cage rattling”
in HSG1.00 allows tracers to escape and diffuse but is suppressed in
G0.20 due to the presence of attractive bonds. Tracer dynamics begin
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to recover diffusive behavior in G0.20 on long time scales, when rare
fluctuations in the matrix occur that allow tracers to escape. The
long-time tracer dynamics in the arrested glasses G0.20 and HSG1.00
qualitatively differ from those in the completely frozen attractive and
repulsive matrices examined in Ref. 18. Whereas tracers are localized
in cages at long times in frozen matrices, the intermediate-time fluc-
tuations of arrested glasses allow for long-time tracer relaxation and
cage escape. This relaxation occurs on longer time scales within G0.20
than in HSG1.00 because G0.20 exhibits smaller matrix fluctuations
and hence more closely approximates the environment encountered
in completely frozen matrices.

A comparison of transport within attractive G0.20 and repul-
sive HSG1.00 glasses with the corresponding liquids (L0.35 and
L1.05, respectively) reveals how changes in matrix relaxation pro-
cesses due to temperature-induced vitrification affect tracer dynam-
ics. Insights into how compression-induced vitrification influences
tracer dynamics can be obtained by examining the glasses G0.35 and
G1.05. Densification reduces the magnitude of the tracer MSDs in
glasses at the onset of subdiffusion, relative to all other matrices,
reflecting the smaller cages formed at higher ϕ. In addition, the log-
arithmic slopes of the tracer Δr2 in G0.35 and G1.05 for a given τ are
smaller than those of the other matrices and diffusive dynamics are
not recovered on long time scales. This reduction in tracer mobility
on intermediate and long time scales appears to be primarily a trivial
consequence of increased matrix density.

The nature of the interactions between matrix particles in G0.35
and G1.05 also affects tracer dynamics. The tracer Δr2 in G0.35 and
G1.05 are nearly identical up to τ ≲ 102. This result is in sharp con-
trast with the marked differences in short- and intermediate time
tracer dynamics in the lower-density glasses (G0.20 and HSG1.00).
One possible explanation is that increasing matrix density may lead
to more uniform cages in attractive and repulsive glasses that are
accessible to tracers of this size on short time scales. For τ ≳ 102,
however, the tracer MSDs remain subdiffusive but begin to diverge,
with tracers in G0.35 exhibiting slower dynamics than in G1.05. This
result suggests that tracer dynamics are still sensitive to differences
in cage rattling in G1.05 and G0.35 [Fig. 3(b)] but only on longer time
scales.

C. Effects of matrix caging
Tracers in all matrices exhibit subdiffusive behavior on inter-

mediate time scales 10−1 ≲ τ ≲ 103, suggesting that they are tran-
siently caged by the matrix (Fig. 4). To further investigate the effect
of matrix caging on tracer dynamics, we calculate the tracer CDP
x̃12 as a function of the initial displacement magnitude r̃01 for lag
times τ∗. For a particle trapped in a harmonic well, x̃12 varies lin-
early with r̃01 with a slope of c = 0.5, indicating that the second
displacement Δr⃗12 is anticorrelated with the initial displacement
Δr⃗01.43 The slope c is the extent to which a particle is “dragged
back” (this phenomenon is henceforth referred to as backdrag-
ging) as a fraction of its initial displacement r̃01.27 For matrix par-
ticles in glassy liquids, by contrast, x̃12 varies linearly with r̃01 for
small displacements but deviates from this initial linear behavior for
r̃01 beyond a length scale r̃cage identified as the characteristic cage
size.27,28,44,45

For all tracers, the CDP linearly decreases for small displace-
ments, indicating that they are caged by the matrices up to a length

scale r̃cage (Fig. 5). The cage length scale depends on the matrix and
varies between 0.3 and 0.8 (in units of σBB) (see the supplementary
material). The slopes c, which reflect the extent of backdragging for
tracers in each matrix, are ≳0.4 near the harmonic limit of c = 0.5
and are similar for all tracers for r̃01 < r̃cage. The similar values of c
indicates that tracers vibrate nearly harmonically within their cages,
suggesting that collisions of the tracers with the matrix dominate
dynamics up to r̃cage.

Tracers with displacements larger than r̃cage escape their cages
and rearrange into new positions. Steeper slopes for the tracer CDP
x̃12 in the rearrangement regime indicate enhanced backdragging.
For tracers within the repulsive liquid L1.05 and glass HSG1.00, x̃12
is approximately constant for r̃01 > r̃cage, indicating that the extent
of backdragging does not increase beyond r̃cage [Fig. 5(a)]. For the
other matrices, by contrast, x̃12 continues to decrease with increas-
ing r̃01 for r̃01 > r̃cage but not as sharply as in the small-displacement
regime. This behavior indicates that tracers are dragged back but
not as far as predicted from linear extrapolation from the harmonic
region.29 Similar behavior has also been observed in the rearrange-
ment regime for probe particles in Laponite clay gels.46,47 Analyses of
simple model systems show that such deviations from linearity are
observed if the matrix is heterogeneous on the scale of the tracers
or the relaxation rate of the probe particle is spatially dependent.47

Accordingly, the behavior of x̃12 for L0.35, G0.20, G0.35, and G1.05 indi-
cates heterogeneity in tracer dynamics for length scales beyond r̃cage

FIG. 5. (a) Normalized CDP x̃12 as a function of previous displacement magnitude
r̃01 for tracers in matrices with ϕ = 0.610. (b) Normalized CDP for tracers in glasses
with ϕ = 0.635 and in the corresponding liquids. Shaded regions indicate statistical
uncertainty. The black solid line indicates a slope of −0.5.
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and within these matrices.18,41,42 A comparison of the slopes for dif-
ferent matrices suggests that backdragging outside of the local cage
is enhanced by stronger matrix bonding (e.g., G0.20 vs L0.35). Fur-
thermore, the fact that the x̃12 slopes are similar for G0.35 and G1.05
but different for the other matrices (L0.35, L1.05, and HSG1.00) indi-
cates that matrix density, not matrix interparticle interactions, is
the dominant factor controlling the extent of backdragging in the
rearrangement regime.

To directly quantify tracer dynamical heterogeneity arising
from differing matrix interparticle interactions, we calculated the
dynamic susceptibility χ4(q, τ) at the wavevector magnitude q for
which the peak in χ4 is maximized [Figs. 6(a) and 6(b)]. The dynamic
susceptibility is the variance of tracer self-dynamics, defined as
χ4(q, τ) ≡ Nt(F2

s (q, τ) − [Fs(q, τ)]2). For all matrices, χ4 exhibits a
peak whose location and width corresponds to the maximum and
persistence of tracer dynamic heterogeneity, respectively. A com-
parison of the χ4 widths reveals that the persistence of the tracer
dynamic heterogeneity varies across the different matrices, increas-
ing such that L1.05 < HSG1.00 < G0.20. Based on the tracer CDPs
for these matrices, we posit that the increase in tracer dynamic
heterogeneity persistence may be associated with larger cages r̃cage
(e.g., larger in HSG1.00 than in L1.05; see the supplementary mate-
rial) and enhanced backdragging (e.g., in G0.20 vs HSG1.00) in the
rearrangement regime.

FIG. 6. Tracer dynamic susceptibility χ4 for qσBB for which the peak in χ4 is max-
imized. (a) χ4 for tracers in matrices with ϕ = 0.610. (b) χ4 for tracers in glasses
with ϕ = 0.635 and in the corresponding liquids. The wavevector magnitudes are
qσBB = 2.00, 2.50, 1.60, 2.75, 3.00, and 3.00 for L0.35, L1.05, G0.20, HSG1.00, G0.35,
and G1.05, respectively.

D. Structural determinism of tracer dynamics
The susceptibility χ4 reveals that the dynamics of the embed-

ded tracer particles are temporally heterogeneous. To quantify the
structural and dynamical contributions to this heterogeneous behav-
ior, we performed simulations in the isoconfigurational ensemble.
Because this analysis allows a particle’s capacity for motion to be
characterized for a given initial configuration, it enables the spa-
tial distribution of dynamics in a given system to be linked to the
system’s structure32 without requiring correlations to specific struc-
tural metrics (e.g., free volume, potential energy, etc.) to be estab-
lished, which has proven to be extremely challenging.48,49 In this
ensemble, total tracer dynamical fluctuations can be expressed as
Δc, norm = σ2

DP + Δiso
c, norm.50–52 The first term σ2

DP = ⟨(DPi)2⟩ − 1
is the structural variance, where ⟨⋯⟩ is the ensemble average over
all nc,iso configurations, nt,iso trajectories, and Nt tracer particles.
This variance is a measure of fluctuations in the tracer dynamic
propensity DPi. The second term Δiso

c, norm = ⟨DP2,i − (DPi)2⟩ is the
dynamical variance, where DP2,i = ⟨(⃗ri(t)−r⃗i(0))4

⟩iso

⟨Δr2
i ⟩

2
iso

. This variance

quantifies the spread in DPi between different isoconfigurational
trajectories.

In L0.35 and L1.05, the tracer structural variance σ2
DP increases

up to and peaks at τ ≈ 101, corresponding to the time at which
tracers experience maximum structural determinism [Fig. 7(a)]. On
longer time scales, σ2

DP decreases and reaches a value near zero

FIG. 7. Tracer structural variance σ2
DP of the dynamic propensity DPi distribution.

(a) σ2
DP for tracers in matrices with ϕ = 0.610. (b) σ2

DP for tracers in glasses with
ϕ = 0.635 and in the corresponding liquids. Shaded regions indicate statistical
uncertainty.
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at τ ≈ 103, approximately the lag time at which tracer dynamics
become diffusive in the MSD Δr2 (Fig. 4). The structural variance
σ2

DP is larger and attains a maximum at a larger lag time τ for
tracers within L0.35 compared to L1.05. Strictly positive values of
σ2

DP arise from particle-to-particle variations in dynamic propen-
sity. Hence, the larger values of σ2

DP indicate that tracer relaxation
times are more broadly distributed in L0.35, which is a consequence
of the structural heterogeneity arising from strong interparticle
bonds in this matrix. The existence of greater structural hetero-
geneity in L0.35 than in L1.05 is evidenced by the shorter first peak
in the matrix static structure factor S(q), which indicates reduced
translational ordering. Similar evidence can be found by inspecting
the matrix radial distribution function g(r) (see the supplementary
material).

To understand the effects of matrix arrest on structural deter-
minism in tracer dynamics, we compare the structural variances
in L0.35 and L1.05 to those in G0.20 and HSG1.00 [Fig. 7(a)]. The
tracer σ2

DP in HSG1.00 exhibits a larger peak at a larger τ than in
L1.05. The structure of the nearly arrested HSG1.00 matrix obstructs
tracer rearrangement, leading to a broader DPi distribution. Sur-
prisingly, σ2

DP is greater in attractive than repulsive arrested matri-
ces σ2

DP,HSG1.00
< σ2

DP,G0.20
, and the disparity in σ2

DP between L0.35
and G0.20 is much larger than the disparity between L1.05 and
HSG1.00. These observations suggest that arrest by bonding in
attractive matrices results in local environments that are highly
structurally heterogeneous compared to those in the repulsive
matrices.

In the higher-density matrices (G0.35 and G1.05), σ2
DP increases

steeply for tracers for τ ≲ 103, appearing to plateau or even slightly
decrease on longer time scales [Fig. 7(b)]. On time scales exceed-
ing 103, σ2

DP increases very gradually or decreases slightly for tracers
within G0.35 and G1.05, respectively. The strong initial increase in
σ2

DP indicates heterogeneous local environments and a broad dis-
tribution of tracer relaxation times. This increase is similar to that
observed in the lower-density, strongly arrested glass G0.20. The
common feature of G0.20, G0.35, and G1.05 is that matrix rattling is
suppressed on intermediate to long time scales, indicated by the low
values of the matrix MSD (Fig. 3). Thus, reduced matrix fluctuations
appear to lead to an increase in structural determinism in the tracer
dynamics.

Finally, to characterize the relative importance of the structure
for tracer dynamics, we examine the relative contribution of σ2

DP to
total tracer fluctuations within each matrix via the structural ratio
Rc = σ2

DP/Δc, norm, where Rc is the fractional contribution of isocon-
figurational fluctuations due to the structure.50,51 For tracers in all
matrices, Rc is approximately constant on short time scales τ ≲ 101

but varies depending on the matrix [Figs. 8(a) and 8(b)]. This behav-
ior suggests that the relative contributions from the matrix structure
are fixed on these time scales but depend on matrix density and
interactions between matrix particles. The values of Rc for matrix
particles are larger than those of the corresponding tracers (see the
supplementary material) for all matrices, indicating that structural
contributions are more important for the matrix dynamics than for
tracer dynamics. For τ ≳ 102, Rc for tracers in L1.05, L0.35, and HSG1.00
decay toward zero as tracer dynamics become diffusive (Fig. 4) and
χ4 peaks [Fig. 6(a)]. Collectively, these observations suggest that rel-
atively large dynamical matrix fluctuations in these matrices allow
tracers to escape their local cage so that the matrix structure no

FIG. 8. Fraction of tracer fluctuations due to initial structure Rc. (a) Rc for tracers
in matrices with ϕ = 0.610. (b) Rc for tracers in glasses with ϕ = 0.635 and in the
corresponding liquids. Shaded regions indicate statistical uncertainty.

longer affects tracer dynamics. By contrast, the values of Rc for G0.20,
G0.35, and G1.05 continue to increase for τ ≳ 102. The absence of tracer
diffusion within these matrices on these time scales suggests that
tracers are partially or fully localized, and thus their dynamics are
strongly influenced by the matrix structure. This interpretation is
consistent with the nearly constant dynamical variances Δiso

c, norm for
G0.20, G0.35, and G1.05 on intermediate to long time scales (see the
supplementary material). Sufficiently strong vitrification, whether
through attractive bonding (G0.20) or increased matrix density (G0.35
and G1.05), reduces dynamical matrix fluctuations and thereby hin-
ders the ability of tracers to escape their cages. As a result, tracer
dynamics in highly vitrified matrices are more strongly influenced
by the matrix structure.

E. Consequences for tracer exploration
To characterize tracer exploration within each matrix, we ana-

lyze the scaling of the tracer trajectory radius of gyrationRg as a func-
tion of its mass M. A comparison of the trajectory shapes for tracers
within attractive and repulsive matrices reveal that the nature of
interactions between matrix particles influences tracer exploration
(Fig. 9). For tracers within L1.05 and HSG1.00, M scales approximately
as a power law for large Rg (Rg > 0.5, long times). The logarithmic
slope df in this region defines the fractal dimension, which is approx-
imately 2.0 in both matrices. This value corresponds to the limit of
free diffusion that is expected for tracers at long times (large Rg) in
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FIG. 9. Mass M of tracer trajectories as a function of trajectory radius of
gyration Rg as calculated by box-counting (a) M for tracers in matrices with
ϕ = 0.610. (b) M for tracers in glasses with ϕ = 0.635 and in the correspond-
ing liquids. Black dotted and dashed lines indicate fractal scalings of 3 and 2,
respectively.

all matrices in which tracer dynamics are ergodic. For tracers within
L0.35 and G0.20, by contrast, the instantaneous value of df is larger
than 2.0. This result indicates that the trajectories in attractive matri-
ces are more compact than those within repulsive matrices, with
a fractal dimension that approaches that of a geometric solid (i.e.,
df = 3). The nearly indistinguishable mass scaling of the arrested
and liquid matrices suggests that it is matrix interparticle interac-
tions and not dynamical arrest that leads to the difference between
attractive and repulsive matrices.

Finally, we examine the role of matrix density on the tracer tra-
jectory shape by comparing the fractal scaling of tracer trajectories in
G0.35 and G1.05 to L0.35 and L1.05 [Fig. 9(b)]. The slopes in the glasses
are larger than those in the corresponding liquid, illustrating that
tracer trajectories within the glasses have larger fractal dimensions
than those within the liquids. Thus, tracer trajectories in G0.35 and
G1.05 are less extended in space, indicating that tracers explore cages
for longer periods of time and rearrange over smaller distances as
matrix density is increased.

IV. CONCLUSIONS
We used event-driven MD to investigate the dynamics of

dilute, hard-sphere tracers in attractive and repulsive liquid matrices

with similar long-time relaxations and in analogous attractive and
repulsive glass matrices prepared via thermal quenching or com-
pression. A comparison of the matrix and tracer MSDs revealed
the effects of matrix dynamics on tracer dynamics. Although tracers
within glasses were less mobile than tracers within the correspond-
ing liquids, matrix arrest was insufficient to guarantee tracer local-
ization. Through cage analysis, we determined whether tracers are
caged for small displacements and characterized the heterogeneity
of tracer cage rearrangements for large displacements. This analysis
revealed that increasing matrix density ϕ from 0.610 to 0.635 (G0.35,
G1.05) or enhancing attractions (G0.20, L0.35) increased the tracer
dynamic heterogeneity within these matrices relative to the repul-
sive matrices with ϕ = 0.610 (L1.05, HSG1.00). The tracer dynamic
susceptibility revealed that tracer dynamics were spatiotemporally
heterogeneous, as also shown through cage analysis. By performing
simulations in the isoconfigurational ensemble and calculating the
dynamic propensity, we quantified the structurally-induced hetero-
geneity of tracer dynamics and the extent to which tracer dynam-
ics were determined by the matrix structure. This analysis revealed
that strong arrest of the matrix, driven by attractive bonding or
high density, enhanced structural determinism. Finally, the mass
scaling of tracer trajectories revealed that increasing matrix attrac-
tions or matrix density leads to more compact tracer trajectories.
These results collectively reveal how the spatial and temporal het-
erogeneity in matrices is reflected in the dynamics of embedded
tracers.

Our simulations also demonstrate that tracers are able to diffuse
on long time scales through glass matrices if the matrix fluctua-
tions are sufficiently large. This result has interesting implications
for understanding the ability of tracers to penetrate dense, slowly
relaxing matrices, suggesting that fluctuations above a critical size
can facilitate transport even in matrices that do not fully relax on
long time scales. The findings from our study also motivate future
work in a number of different directions. Whereas our investiga-
tion focused on understanding equilibrium tracer dynamics, pen-
etrant transport in most practical settings is driven by a chemical
potential gradient and hence occurs under nonequilibrium condi-
tions. Although much work has been done toward understanding
nonequilibrium transport through rigid matrices,53–55 it remains
unclear how these processes are influenced by structural fluctua-
tions and slow matrix relaxations. Additionally, fluctuations within
the matrices studied here are isotropic due to the bulk nature of
the samples imposed through the use of periodic boundary condi-
tions. Experimental studies of supercooled liquids and glasses show,
however, that fluctuations in these systems can become anisotropic
by imposing different boundary conditions.56,57 This scenario has
been encountered, for example, when examining the dynamics
of confined supercooled liquids in porous media58,59 and glasses
prepared through vapor deposition onto surfaces.60 An intrigu-
ing future line of inquiry would be to investigate how anisotropic
fluctuations in these systems affect the dynamic coupling of the
tracer and matrix particles. Finally, we investigated small particles
in the isolated tracer limit. For asymmetric hard-sphere binary mix-
tures, both reentrant melting of the large-particle glass and vitrifi-
cation of the small particles were observed upon increasing small-
particle density.61,62 How matrix interactions affect and, in turn, are
affected by tracers at high concentrations has not yet been studied.
We anticipate that these outstanding questions can be addressed
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using computational approaches similar to those employed in this
study.

SUPPLEMENTARY MATERIAL

See the supplementary material for a table of matrices and
simulation parameters, tracer non-Gaussian parameters, matrix self-
intermediate scattering functions, estimates of the tracer caging
length scales, matrix structure factors and radial distribution func-
tions, matrix Rc, and tracer dynamical variances.
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