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Yielding and bifurcated aging in nanofibrillar networks
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Although phenomenologically simple to define, the yield stress is often difficult to quantify unambiguously in
practice, especially for thixotropic materials with complex shear histories. Here, we identify a stress-controlled
bifurcation in the yielding response of cellulose nanofibril gels, which we show can rigorously localize the yield
stress in disordered materials with time-dependent behavior. After an initial yielding event, the fibrillar networks
subsequently yield faster and at lower magnitudes of stress. For low stresses, the time to yielding increases with
waiting time tw and diverges once the network has restored sufficient entanglement density to support the stress.
For higher stresses, the yield time instead plateaus at a finite value because the developed network density is
insufficient to support the applied stress. We quantitatively relate the yielding and aging behavior of the network
to the competition between stress-induced disentanglement and dynamic fluctuations of the fibrils rebuilding the
network. The critical stress σc that bifurcates the response of the material between these two states identifies the
intrinsic yield stress in these disordered materials, independent of aging, thixotropic effects, or shear history.
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How materials transition from an elastic solid to flow-
ing as a viscous liquid (i.e., the yield transition) has been
investigated for over a century but the physical underpin-
nings continue to be debated. Many investigations relate the
yield transition to a specific yield stress σy or yield strain
γy that causes the material to deviate from linear elasticity
by displaying unrecoverable strain. Although yielding is phe-
nomenologically simple to comprehend, the quantities σy and
γy are often defined empirically and arbitrarily [1–3]. Even
for standard yield stress fluids, these quantities can vary by an
order of magnitude depending on the measurement technique
and choice of definition [4], making comparisons across stud-
ies or between materials difficult.

Characterizing the yield transition becomes even more
challenging for thixotropic materials or fluids that strongly
age because shear history significantly affects flow behav-
ior [5–7]. In thixotropic materials, flow curves often exhibit
strong hysteresis with different apparent yield stresses when
subjected to increasing or decreasing shear rates [8]. More
careful characterizations measure the evolution of viscosity
over time as thixotropic materials are sheared and observe
that the viscosity bifurcates across a critical shear stress that
separates a fluidlike state from a solidlike state [9]. In this
manner, the stress that controls the viscosity bifurcation can
be interpreted as the single yield stress of the material. This
critical stress, however, is measured under flow and therefore
couples to the competition between the kinetics with which
the fluid builds structure and the imposed rate of shear [10].
Indeed, viscosity bifurcation occurs at a significantly higher
stress if the material is allowed to age in the absence of shear
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for even a short period of time before being subjected to shear
[9,10]. Thus, there remains a critical need to precisely localize
the yield stress of thixotropic materials in a manner that is
independent of shear history or sample age.

In this Rapid Communication, we exploit a bifurcation in
the yielding response of a thixotropic network of cellulose
nanofibrils (CNF) to identify a unique critical stress σc that
controls the yielding transition. Because the CNF gels are
formed through physical entanglements, yielding results in
the local destruction of the network and allows the gels to
subsequently yield at much lower stresses. We map the change
in yield time ty as a function of the waiting time tw between
yielding events at different σ and observe a bifurcation in
which ty diverges at low stress (i.e., the material behaves like
a solid) but plateaus for high stress (i.e., the material behaves
like a fluid). At the critical stress σc, ty evolves as a power law
with respect to tw. In contrast to viscosity bifurcation, σc does
not depend on the shear history imposed on the material or
the sample age and thus represents a unique and unambiguous
measurement of the material yield stress σy. We then use
standard models of entanglement-controlled dynamics and
stress-activated bond rupture to demonstrate that the evolu-
tion of the yielding kinetics arises from the nanoscale fibril
dynamics. From these findings, we develop a comprehensive
physical picture describing the behavior of soft, amorphous
materials across the yielding transition.

A stock suspension of TEMPO-modified cellulose nanofib-
rils (CNF) was acquired from the Process Development
Center at the University of Maine at a concentration of
1.1 wt.% and a surface charge concentration of 1.5 mM per
gram of dry CNF. The stock solution was diluted by mix-
ing with deionized water and bath sonicating for 10 min
or concentrated using a rotary evaporator. All samples were
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FIG. 1. Storage modulus G′ for fibrillar suspensions as a function
of (a) frequency at various concentrations and (b) concentration
at ω = 10 rad s−1. Dashed curve represents predicted scaling for
suspensions of semiflexible fibers [13] and solid curve indicates pre-
dictions for fibrillar networks [16]. Inset: Ratio of moduli tan(δ) ≡
G′′/G′ at ω = 10 rad s−1.

visually uniform and transparent, indicating that the CNF
remained homogeneously suspended. Volume fractions φ are
estimated from weight fractions assuming the specific grav-
ity of cellulose nanofibrils s = 1.5. Oscillatory and steady
shear rheological measurements were performed on a strain-
controlled ARES G2 with a 25 mm cone geometry with an
angle of 0.1 rad. Creep measurements were performed on
a stress-controlled Anton-Paar MCR301 rheometer with a
50 mm parallel plate geometry and a gap size of 1 mm. Sample
edges were coated with a thin layer of light mineral oil to
prevent evaporation. During the creep experiments, samples
are yielded by either applying a constant stress ≈2σc or under
a constant shear rate γ̇ = 1 rad s−1 until the sample reaches a
strain between 500 and 1000%. After this yielding protocol,
the sample is allowed to rest under zero external stress for
a waiting time tw after which a stress σ is imposed and the
sample compliance is measured.

Before investigating how these fibrillar suspensions yield,
we characterize their static mechanical properties and show
that they are strongly dependent on the suspension volume
fraction φ (Fig. 1). The rheology of the suspensions originates
due to physical interactions akin to entanglements and to
weak association involving Van der Waals interactions and
hydrogen bonding [11,12]. When φ � 0.01, the CNF form
viscoelastic fluids in which the storage modulus scales as
G′ ∼ φ11/5 in good agreement with predictions for suspen-
sions of semiflexible fibers that account for stretching entropy
and fibrillar bending rigidity [13]. At higher concentrations,
the suspensions form viscoelastic gels (i.e., tan(δ) < 1) in
which G′ increases more rapidly, indicating that φ ≈ 0.01
serves as the phenomenological gel point of the system. The
rapid increase in G′ with φ is consistent with previous inves-
tigations [14,15] and with a recent model in which elastic
energy is stored in deflections of simply supported beams
[16]. Additionally, the fact that G′ is nearly independent of
ω at high φ indicates that terminal relaxations of the network
are suppressed.

We demonstrate the yielding characteristics of these fib-
rillar networks under stress by measuring the compliance of
the gels as a function of time [Fig. 2(a)]. When subjected
to low stresses, the CNF networks exhibit finite compliances
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FIG. 2. (a) Compliance J = γ /σ as a function of time for a fully
equilibrated φ = 0.023 fibrillar network under different stresses.
Compliance J of the network after an initial yielding event with
applied stress of (b) 90 Pa and (c) 120 Pa at various waiting times
tw . Solid lines indicate inertial response of instrument. Dashed lines
indicate yielding thresholds.

after creep ringing, indicating that the gels behave like elastic
solids that do not flow. Under large external stresses, however,
the compliance initially plateaus on short time scales before
increasing abruptly at a yield time ty as the network begins
to flow. Although the lowest value of stress that causes this
upturn in compliance is often called the yield stress σy [2],
the CNF gels exhibit a strongly thixotropic response and will
yield readily upon subsequent applications of stress even if
σ � σy. Thus, yielding depends strongly on the sample shear
history and cannot be simply defined based on a single com-
pliance curve (Fig. 2). Instead, we measure the compliance
of gels after an initial yielding event as a function of σ

and waiting time tw. For small stresses (e.g., σ = 90 Pa for
φ = 0.023), ty increases with increasing tw until the sample
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FIG. 3. Yield time �ty as a function of waiting time tw under
different applied stresses for fibrillar suspensions with (a) φ = 0.018
and (b) φ = 0.023. Colored curves are guides to the eye. Black
curves illustrate critical bifurcation behavior. Insets: Stress σ as
a function of strain γ measured at a constant shear rate of γ̇ =
10−3 rad s−1.

no longer yields and instead exhibits a finite compliance at
long times. Physically, this finite compliance indicates that the
CNF network has undergone kinetic restructuring to rebuild a
dense enough entanglement network to support the applied
stress without large-scale flow. By contrast, the CNF network
always yields under high applied stresses (e.g., σ = 120 Pa
for φ = 0.023) even as ty moderately increases over many
decades of tw.

We quantify the temporal shift in the compliance curves
by defining the yield time �ty as the difference between the
instrument’s inertial response and the time when J = 2J∗
(dashed lines in Fig. 2), where J∗ is the height of the first creep
ringing peak. This definition unambiguously distinguishes
between the yielding flow of the fibrillar network and the
creep ringing of the instrument, which is especially important
when considering yielding at low tw. For all samples and all
applied stresses, �ty increases with tw but depends strongly
on volume fraction and applied stress (Fig. 3). The increase in

�ty with increasing tw indicates that the material dynamically
changes under quiescent conditions, but because tw � �ty,
the CNF networks are at quasisteady state during each creep
experiment. There is a distinct bifurcation in the behavior of
�ty across the critical stress σc. For σ < σc, �ty increases
convexly with tw until it diverges, at which point the sample
supports the applied stress without bulk flow. As σ increases,
the divergence of the yield time curve occurs at larger tw,
indicating that it takes longer for the CNF network to dynam-
ically restructure enough to accommodate the larger stress.
By contrast, �ty increases concavely with tw when σ > σc to
reach a plateau. The magnitude of this plateau decreases with
increasing σ , indicating that higher stresses yield the networks
more quickly. Separating the liquidlike response from the
solidlike response of the network, the critical stress σc serves
to define the yield transition in an analogous manner to the
Winter-Chambon criterion defining the gel transition [17,18].

Although the yield transition is distinctly characterized
from these compliance measurements, we can gain further
insights into the mechanisms underlying this yielding event
and resulting thixotropy of the material. Based on the creep
experiments and the bifurcated aging response, we expect
that the fibrillar networks yield by concentrating stress into
a shear band [19,20], similar to the behavior of networks of
associative polymers [21,22] and microgel suspensions [23].
The boundary of the shear bands represents a local mini-
mum in entanglement density that allows the sample to flow.
If the network is allowed to rest after yielding, individual
fibers dynamically rebuild the entanglement network across
the boundary to restore the physical properties of the bulk
sample. This picture is reminiscent of the welding of two
polymer melts [24,25]. The kinetics of this welding behavior
is modeled by chains transporting across an interface through
repetitive modes so that the planar chain density ρ follows

ρ(t )/ρ∞ = 2√
π

(
τ 1/2 + 2

∞∑
k=1

(−1)k

× [τ 1/2 exp(−k2/τ ) − √
πk erfc(k/τ 1/2)]

)
,

(1)

where τ = 2tw/τ0N2, τ0 is a time scale related to the diffusion
of a segment, N is the number of segments per chain, and
ρ∞ is the chain density at equilibrium [24]. Because the me-
chanical modulus of the network does not significantly change
across repeated yieldings, we expect that CNF disentangle
under flow rather than undergo scission. Creating an inter-
face within the CNF network via disentanglement requires
individual chains to be pulled out of the network. Each chain
experiences a frictional drag ζ as it is pulled out so that the en-
ergy required to create an interface can be expressed as Gc ∼
ζρ [26,27]. Using Griffith’s fracture criteria [28], fracture
energy is related to fracture stress according to Gc = πaσ 2

c /E ,
where a is related to the initial size of the fracture and E is
the Young’s modulus of the network. Combining these expres-
sions leads to σ (t )/σc ∼ (ρ(t )/ρ∞)1/2, which accurately fits
the restructuring kinetics of the CNF networks across many
orders of magnitude in time and an order of magnitude in
network strength (Fig. 4) with only one floating parameter,
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FIG. 4. Normalized waiting time tw,∞/τ0N2 (closed) after which
networks no longer yield and the normalized long-time yield plateau
�ty,∞/τ0N2 (open) as a function of normalized stress σ/σc for net-
works with different critical stresses σc, corresponding to 0.013 �
φ � 0.027. Solid and dashed curves are predictions from Eq. (1)
and a self-healing active bond rupture model [34], respectively. Inset:
Normalization product τ0N2 as a function of σc. Solid line is a guide
to the eye.

τ0N2. Importantly, this expression correctly captures the di-
vergence of tw,∞ as σ approaches σc. These restructuring
kinetics contrast strongly with the rapid self-healing dynamics
of other yield-stress fluids such as chemically crosslinked
polymer networks [29–31] or colloidal gels [32,33] in which
the self-healing mechanisms are controlled by the diffusion of
molecular crosslinkers and chemical reaction rates.

At higher stresses σ > σc, the applied stress is large
enough to always yield the sample regardless of tw. In this
regime, yielding dynamics represent a competition between
the rate of disentanglement, controlled by the applied stress,
and the rate of creation of new entanglements, controlled by
fibril dynamics. Because the networks are weaker immedi-
ately after yielding, we focus on the magnitude of the yield
time �ty,∞ measured after long tw as representative of an
equilibrated sample. For high stress σ � σc, �ty,∞ exhibits an
exponential decay with increasing σ (Fig. 4). As σ approaches
σc, �ty,∞ diverges because the network can fully support the
stress. There are a variety of models [21,35–37] that pre-
dict yield time as a function of applied stress for disordered
materials. Many of these models assume that the network
is formed by bonds that dissociate over time to allow the
material to relax. This bond dissociation rate is exponentially
enhanced by applied stresses so that the material fails faster
at high stresses. The model is agnostic to physicochemical
nature of the bond. While the exponential decay of �ty,∞
is observed for CNF networks at large stresses (Fig. 4), the
yield time diverges near the σc rather than approaching finite
value. A recently proposed self-healing activated bond rupture
(SH-ABR) model [34,38], however, accounts for this yield
time divergence by incorporating the ability of the material
to reform entanglements. This SH-ABR model captures the
dependence of �ty,∞ on σ across orders of magnitude in time

and accurately predicts the divergence near σc and the tran-
sition to an exponential decay when σ � σc (Fig. 4). Thus,
fibrillar networks yield because the rate of chain disentangle-
ment is stress enhanced beyond the rate at which they reform.

Extracellular matrices surrounding animal cells (e.g.,
collagen) or in plant cell walls [39–41] similarly yield and
recover, but the underlying mechanisms contrast with the cel-
lulose model presented in this study. Our cellulose networks
yield due to fibril disentanglement but can recover over long
timescales with dynamic reconstruction of the entangled net-
works. Conversely, yielding in collagen and fibrin matrices
is typically associated with plastic deformation and rupture
of fibril bundles and dissociation of crosslinks [42]. Matrix
lengthening also drives collagen fiber realignment and den-
sification, facilitating material recovery via the formation of
new crosslinks between adjacent fibers [43,44]. Akin to our
cellulose gels following re-entanglement, a matrix with newly
formed crosslinks has a configuration that differs from its ini-
tial reference state. The kinetics of the CNF re-entanglement,
described by the product τ0N2 characterizing the segmental
dynamics [24], accelerate in more concentrated suspensions
(inset to Fig. 4) similar to behavior observed for peptide hy-
drogels [45], gelatin networks [46], and colloidal gels [47,48].
We attribute the faster kinetics to the decreasing number
of segments N between entanglements in more concentrated
gels. These mechanisms suggest that the CNF dynamics con-
trol the rate of formation of physical entanglements before
and after yielding, in contrast to the mechanisms described
for other structural biomacromolecules such as collagen. Al-
though much of this discussion surrounding the physical
mechanisms underlying the yielding and recovery processes
of CNF gels is specific to semiflexible fibers, the connection
between nanoscale dynamics controlling fluid structure, fluid
thixotropy, and the yield stress can be generalized to other
systems.

In conclusion, we report a bifurcation of the yielding re-
sponse in soft, amorphous gels made of cellulose nanofibrils.
The observed bifurcation separates two mechanical states of
the gel—an elastic solid and a viscous fluid—and serves as
a robust and unambiguous measurement of the yield stress
for a thixotropic material, independent of sample age or shear
history. We also demonstrate that the evolution of the yield
time in these materials can be well described by the segmental
dynamics of the fibrils. From this work, we construct a com-
prehensive and consistent picture that relates the nanoscale
dynamics to the thixotropic yielding response of fibrillar net-
works. Although descriptions for underlying dynamics will
be different for different systems, our results suggest that the
bifurcating stress that dictates the yield response of materials
serves as a general metric to uniquely identify the yield stress
in complex fluids.
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