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Abstract

We study the dynamics of nanoparticles in semidilute solutions of ring and linear polymers using hybrid molecular dynamics–multiparticle
collision dynamics simulations. The dynamics of the monomers, the polymer centers-of-mass, and the nanoparticles coincide for these two
architectures for solutions of the same monomer concentration. The long time diffusivities of the nanoparticles follow the predictions of a
polymer coupling theory [Cai et al., Macromolecules 44, 7853–7863 (2011)], suggesting that nanoparticle dynamics are coupled to segmental
relaxations for both polymer architectures examined here. At intermediate time scales, the nanoparticle dynamics are characterized by subdif-
fusive exponents, which markedly deviate from coupling theory and closely follow those of the polymers. Instead, the nanoparticle dynamics
are strongly coupled to the polymer center-of-mass motions for both architectures, rather than to their segmental dynamics. The presence of
ring concatenations does not affect the long-time diffusivity of the nanoparticles but leads to a slight decrease in the subdiffusive exponents
of the nanoparticles and the polymer center-of-mass. © 2021 The Society of Rheology. https://doi.org/10.1122/8.0000223

I. INTRODUCTION

Transport of nanoparticles (NPs) in polymer solutions
appears in a variety of practical settings, including processing
of polymer nanocomposites [1–3], hydrocarbon exploration
and production [4], and drug delivery [5–8]. Control over the
dispersion of NPs in these settings requires fundamental
studies aimed at understanding the factors influencing NP
transport in polymer solutions. In a Newtonian fluid, NPs
diffuse according to the solution viscosity following the
Stokes–Einstein (SE) relationship. In a polymer solution,
NPs that are larger than characteristic solution length scales,
e.g., the polymer’s radius of gyration or mesh size, couple
dynamically to the bulk solution viscoelasticity. This size
regime can be described accurately via the generalized
Stokes–Einstein relationship, which is widely applied in
microrheology [9,10]. When NPs are comparable in size or
smaller than the typical solution length scales, however, the
polymer solution cannot be treated as a homogeneous
medium anymore so that the continuum assumption underly-
ing the framework of microrheology cannot be applied.
Indeed, many experiments report dynamics of NPs that are
faster than predicted from the bulk viscosity [11–15]. As a
result, theoretical [16–20] and computational [21–26]

approaches have been extensively employed to explore the
factors controlling NP diffusion in polymer solutions.

Most studies of NP transport to date have focused on solu-
tions of linear polymers, which are readily synthesized.
Polymers of other architectures, however, are widely found
in natural and engineered systems, but their role in NP trans-
port has received considerably less attention. For example,
circular architectures have been observed in biologically rele-
vant macromolecules such as DNA [27–29], and ring poly-
mers in a melt or solution are considered good models of
chromatin [30–33]. The closed conformations of ring poly-
mers can lead to structural and dynamical properties that
strongly differ from those of linear chains [28–31,34–41].
These differences remain incompletely understood theoreti-
cally because free ends, which are absent in ring polymers,
are critical to many well-established models for describing
chain relaxation processes, e.g., the reptation model for linear
chains [42] and the back-folding model for branched poly-
mers [43]. As a result, open questions remain regarding the
nature of relaxations in ring polymers and how they may
influence transport processes in solutions and melts.

It has been suggested that both statics and dynamics of
ring polymers are self-similar [32], that is, similar conforma-
tions and motions are observed in any part of the chain due
to its circular symmetry. Early theories [44–46] for describ-
ing the conformations and motions of ring polymer melts
were inspired by the de Gennes reptation model of a linear
polymer [42], which describes motions of the entire molecule
in terms of motions of “diffusing kinks” along the chain.
Flexible ring polymers exhibit relatively compact structures
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compared to linear chains and frequently interpenetrate due
to the low energy barrier associated with transitioning to
more open configurations [30]. The radius of gyration for
linear chains in melts scales as Rg � Nν

m with number of
monomers Nm and Flory exponent ν ¼ 1=2. For ring poly-
mers, simulations [30] indicated an initial scaling of N1=2

m for
small Nm, followed by an intermediate regime with N2=5

m

scaling, and then an eventual crossover to N1=3
m scaling in the

large-size limit, supporting the crumpled globule picture [47]
with ν ¼ 1=3. In solutions, by contrast, simulations predict
similar ν values for ring and linear polymers (� 0:60 and
0:58, respectively) in a good solvent, but suggest that the
exponent ν for ring polymers decreases more slowly as
solvent quality worsens [39].

Theories for ring polymer dynamics in melts have been
proposed based on the diffusing kinks picture [48] and
Rouse dynamics [49]. Although the diffusion coefficient of a
ring polymer scales with contour length in a similar way to
that of a reptating linear chain [44–46,48], the relaxation
modes are quite different due to the absence of free ends.
Whereas linear chains readily form entanglements at high
concentrations and molecular weights, ring polymers avoid
or delay entanglements due to their lack of free ends [48]. As
a result, ring polymers relax significantly faster than linear
polymers of the same molecular weight [35].

Concatenation defects are a second unique feature of ring
polymers. Concatenated rings are irreversibly linked and thus
never separate from each other due to their permanent topo-
logical constraints. For nonconcatenated rings, by contrast,
no permanent constraints exist [50], and deviations from
linear chain behavior arise solely from their closed conforma-
tions. Although not as widely studied, the effects of inter-
linking on polymer properties in melts [51,52] and solvents
of varying quality [53,54] have also been explored.

Inspired by the unique structural and dynamical properties
of ring polymers, recent studies have begun to investigate NP
transport in entangled ring polymer systems. Molecular dynam-
ics (MD) simulations of NPs in entangled melts of noncon-
catenated ring polymers [33,55] revealed that NP motions are
not as strongly suppressed as in melts of linear chains. The
faster NP dynamics were attributed to the absence of long-lived
entanglement tubes in ring polymers, which restrict polymer
relaxations in linear melts. The dynamics of NPs in ring and
linear polymer melts of varying flexibility have also been
recently investigated using MD [56]. That study found that
NPs diffuse slightly faster in ring-polymer melts than in linear-
polymer melts but exhibit the opposite behavior when the poly-
mers were made increasingly stiff. Finally, Langevin dynamics
simulations of NP transport in solutions of weakly entangled
chains or rings revealed that NP diffusion is similar in both
cases when the NP is smaller than the tube diameter, consistent
with the similar Rouse dynamics of the two systems on these
length scales [57]. Larger NPs, however, diffuse faster in solu-
tions of ring polymers than in solutions of linear polymers.

These previous computational studies of NP diffusion in
linear and ring polymers have focused on concentrated entan-
gled systems, attributing many of the observed trends to the
different entanglement behavior of the two polymer architec-
tures. In the (semi)dilute limit where the polymers are not

entangled, by contrast, solvent-mediated hydrodynamic inter-
actions (HI) play a role in dictating how dynamics are affected
by chain architecture [58–61]. Ring polymers, for example,
diffuse faster in solution than linear chains with the same
degree of polymerization due to the more compact structures
and smaller hydrodynamic radii of the former [58]. Under
shear, HI cause ring polymers to inflate, suppressing the
strong tumbling motions observed for polymers with open-
ended architectures such as linear chains and stars [61]. As a
result, it is expected that HI may influence the dynamic cou-
pling between NPs and polymers with different architectures.

Here, we use hybrid MD-multiparticle collision dynamics
(MD–MPCD) simulations to probe the dynamics of NPs in
semidilute solutions of unentangled ring polymers. We find
that the dynamic coupling of the suspended NPs to the ring
polymers is similar to the coupling between NPs and linear
polymers if the solutions have the same monomer concentra-
tion. The terminal diffusivities of NPs in both linear- and ring-
polymer solutions follow the prediction from polymer coupling
theory (PCT) [16], suggesting that the long-time NP dynamics
couple to polymer segmental relaxations. By contrast, in both
solutions, the subdiffusive dynamics of the NPs are tightly
coupled to those of the polymer centers-of-mass (COM).
Finally, the addition of a large number of ring concatenation
defects does not significantly modify NP dynamics.

II. METHODS

Simulations of the NP–polymer solutions were performed
using an implementation of the hybrid MD–MPCD algorithm
[62–64] in LAMMPS (ver. 22Aug18) [65]. Model parame-
ters and physical quantities from the simulations were
non-dimensionalized using fundamental units σ, m, ε, and
τ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mσ2=ε
p

for length, mass, energy, and time, respectively.
In the following, we will omit these units for brevity. Details
of the model systems and MD–MPCD simulations closely
follow those of our recent studies of NP transport in solutions
of flexible and semiflexible linear polymer chains [25,26].

Nanoparticles were modeled as smooth spheres with
diameter σNP ¼ 5, and polymers were described using a
Kremer–Grest-like model [66] with monomer diameter
σP ¼ 1. Excluded volume interactions were included via the
shifted Weeks–Chandler–Andersen potential [67],

UsWCA(rij) ¼ 4 σ ij

rij�Δij

� �12
� σ ij

rij�Δij

� �6
� �

þ 1, rij � rcij,

0, rij . rcij,

8<
:

(1)

where rij is the distance between the centers of particles i and
j. Parameter choices {σ ij, Δij} ¼ {σNP, 0}, {σP, 0}, and
{σP, (σNP � σP)=2} were used for NP–NP, polymer (P)
monomer–monomer, and NP–monomer interactions, respec-
tively. A cutoff distance of rcij ¼ 21=6σ ij was used to make all
interactions purely repulsive.

Spring-like bonds between adjacent monomers were
modeled using the finitely extensible nonlinear elastic
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(FENE) potential [68],

UFENE(rij) ¼ � 1
2 kr0

2 ln 1� r2ij
r02

h i
, rij , r0,

1, rij � r0,

(
(2)

where k ¼ 30 is the spring constant and r0 ¼ 1:5 is the
maximum bond extension length. A bending potential was
applied to introduce polymer stiffness [30,31,69–73]

Ubend(Θijk) ¼ κ(1� cosΘijk), (3)

where Θijk is the angle formed by three adjacent monomers i,
j, and k (Θijk ¼ 0 when the monomers are colinear), and κ
controls the potential strength and hence polymer stiffness.
Following seminal studies comparing the behavior of linear
and ring polymer melts [30,31], the simulations were per-
formed using κ ¼ 1:5 to model highly flexible polymers.

All simulations were performed in a periodic, cubic simu-
lation box with edge length Lbox ¼ 64 (Fig. 1). We set the
number of monomers per polymer Nm to 70 and 42 for the
ring and linear polymers, respectively, which yields approxi-
mately the same radius of gyration Rg,0 � 5:0 at infinite dilu-
tion. This Rg,0 is comparable to the diameters of the NPs
used in our simulations. The number of linear polymers Nc

was varied from 100 to 3000, achieving reduced concentra-
tions c=c* ranging from 0.2 to 6.0, where c* ¼ 3Nm=(4πR3

g,0)
is the overlap concentration. Similarly, the number of ring
polymers was varied from 100 to 2000, spanning concentra-
tions c=c* from 0.2 to 4.0. In addition to studying defect-free
ring polymer solutions, we also explored NP dynamics in
solutions of concatenated rings in which nlinked ¼ 2, 3, or 4
ring polymers were linked in chain-like configurations. The
fraction of linked rings f was varied from 0.1 to 0.5, which
exceed the maximum concentration and number of concate-
nation impurities predicted in the typical synthesis of cyclic
polymers [74].

All simulations were performed at a reduced temperature
T ¼ 1, using a velocity-Verlet scheme with a time step of
0.005 to integrate the equations of motion for the NPs and
polymers. The systems were first equilibrated by running
Langevin dynamics for a period of 2� 105 time units, apply-
ing LAMMPS “damp” parameters of 3.0 and 0.9 (units of
time) for the NPs and monomers, respectively. This duration
was found to be sufficient to ensure equilibration at all condi-
tions examined and is approximately 20� longer than the
end-to-end polymer relaxation time for linear chains at the
highest concentration studied (c=c* ¼ 6:0).

Following equilibration, the NP–polymer solutions were
simulated for an additional period of 3� 105 time units
using a hybrid MD–MPCD scheme [25,26] to incorporate
solvent-mediated HI. The MD–MPCD scheme (thermostat,
solvent parameters, collision and coupling schemes, etc.) is
identical to that reported in [25], and details will be omitted
here for brevity. The employed parametrization results in an
MPCD solvent with Schmidt number Sc � 12:0 and
dynamic viscosity ηs � 4:0. Three independent MD–MPCD
simulations (each with 20 NPs) were run for each solution

and statistical quantities were computed by averaging over
the resulting 60 NP trajectories.

III. RESULTS AND DISCUSSION

A. NP dynamics in linear and ring polymers

From the MD–MPCD simulations, we calculated mean-
squared displacements (MSDs, hΔr2i) of the individual
monomers, of the polymer COM, and of the NPs for both
the ring and linear polymer solutions (Fig. 2). From these
MSDs, we observe important qualitative behaviors about
polymer dynamics and NP transport. Similar to the behavior
of linear polymers, the segmental dynamics of the rings are
Zimm-like at low polymer concentrations, as indicated by the
t2=3 scaling of the monomer MSDs at early times [Fig. 2(a)].
The eventual crossover to t1=2 scaling at higher c indicates
that Rouse dynamics are recovered as HI are screened.
Additionally, the MSDS of the polymer COM and NPs both

FIG. 1. Nanoparticles (large red spheres) in solutions of ring polymers
(chains of small spheres) at reduced concentrations c=c* of 0.2 (top) and 1.5
(bottom). Snapshots rendered using Visual Molecular Dynamics 1.9.3 [75].
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exhibit subdiffusive dynamics (hΔr2i � tα with α , 1) at
early times before crossing over to terminal diffusive behav-
ior (hΔr2i � t) on longer time scales [Figs. 2(b) and 2(c)].
No significant qualitative differences are observed between
the MSDs computed in solutions of ring and linear polymers
[Figs. 2(d)–2(f )]. This finding is similar to that from previ-
ous Langevin dynamics simulations [57], which showed that
the dynamics in systems of ring and weakly entangled linear
polymers are similar on length scales shorter than the entan-
glement length of the linear polymers.

The magnitudes of the MSDs of the monomers, polymer
COM, and NPs in both systems decrease as the reduced con-
centration c=c* increases, reflecting slower overall dynamics
in more concentrated solutions. Note that for a given c=c*,
the dynamics in the ring-polymer solution are slower than
those in the linear-polymer solution due to the higher
monomer concentration c required to achieve ring overlap.
Despite having the same Rg,0, the rings contain more

monomers per polymer than their linear counterparts, and
hence yield solutions with higher monomer concentrations at
the same c=c*. The higher monomer concentrations frustrate
relaxation, leading to slower dynamics in the ring-polymer
solutions. When this difference is accounted for by compar-
ing the ring-polymer and linear-polymer solutions at the
same monomer concentration c, however, the monomer and
NP dynamics in both solutions are nearly indistinguishable
(Fig. 3). These findings are in line with recent MD–MPCD
simulations [41] that reported similar zero-shear viscosities for
(semi)dilute solutions of fully flexible ring polymers, linear
polymers, and their mixtures at the same monomer concentra-
tion c. A direct comparison of the MSDs (Fig. 3) reveals
subtle differences between the dynamics of the polymer COM
at the lower c examined, where the MSD of the linear
polymer COM is slightly larger than that of the ring polymer.
This result is in agreement with earlier simulations of linear
and ring polymers in dilute solutions, which showed that the

FIG. 2. Mean-squared displacements hΔr2i as functions of lag time Δt in solutions of ring polymers for (a) monomers in the polymer COM reference frame,
(b) polymer COM, and (c) NPs. Dashed and solid reference lines in (a) represent Zimm (� t2=3) and Rouse dynamics (� t1=2), respectively. Dashed and solid
reference lines in (b) and (c) indicate diffusive (� t) and subdiffusive (� tα, α , 1) behavior, respectively. (d)–(f ) Same as (a)–(c), respectively, but for solu-
tions of linear polymers.
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diffusivity of a linear polymer was slightly greater (ca. 20%)
than that of a ring polymer of the same Rg [58].

The presence of a subdiffusive regime in the NP MSDs
suggests that the NP dynamics are coupled to those of the
polymer. PCT [16] assumes that nearby polymer segments
present an infinite energy barrier to NP diffusion. As a result,
NPs are not able to escape the local cage created by sur-
rounding polymers until the polymer chains relax. According
to this picture, the terminal diffusivities of NPs depend on
the relaxation of the polymer matrix and scale as a power-law
function of the NP diameter to polymer matrix mesh size
ratio: D=D0 � (σNP=ξ)

�2, where ξ is the polymer mesh size
and D0 is the diffusivity in the background solvent. To test
this prediction, we computed D0 from simulations of NPs in
the MPCD solvent. The mesh size ξ is usually taken as the
blob size from scaling theory [76] or from the monomer con-
centration correlation length [76–78]. As discussed in [79],
however, the former approach only gives an order of

magnitude estimate ξ, preventing precise comparisons between
systems with different chain architectures. Furthermore, the
latter approach breaks down at high monomer concentrations,
predicting an unphysical increase in the mesh size with c for
c≳ 0:3 (the upper end of the monomer concentration range
examined here).

Thus, as suggested in [79], we instead computed ξ from
the geometric pore size distribution defined by Gelb and
Gubbins [80]. The local pore size h(r) at point r is equal to
the diameter of the largest sphere that can cover the point
without overlapping with the matrix. This definition yields
the total pore volume encompassed by the Connolly (reen-
trant) surface [79–81], and it has been widely adopted in the
study of porous materials. Importantly, it provides an unam-
biguous geometric definition of pore size consistent with
intuition for ordered materials (e.g., regular polymer net-
works [79]), while also being applicable to amorphous matri-
ces [80,82]. We calculated h(r) for polymer solutions
without NPs using the algorithm described in [79,83] and
defined the mesh size ξ as the spatial average of this func-
tion. In calculating the pore size, points within a distance of
0.5 of a monomer center were considered overlapping with
the matrix and hence as part of its excluded volume. With
this definition of ξ, we can quantitatively compare the
dynamic behavior of NPs in solutions of linear and ring poly-
mers using PCT.

In our previous study [25], we found that the PCT scaling
prediction for D=D0 is obeyed in solutions of flexible linear
chains for σNP=ξ≳ 1. For the solutions of flexible rings and
linear polymers studied here, we observe a similar crossover
of D=D0 to the predicted PCT scaling for σNP=ξ≳ 1, inde-
pendent of polymer architecture (Fig. 4). The collapse of the
D=D0 values onto a single curve also reveals that, for a given
size ratio σNP=ξ, the values of the long-time diffusivities are
similar in the linear and ring polymer solutions. Thus, the
NP dynamics in polymer solutions are nearly agnostic to the
topological difference between ring and linear polymers of
these sizes. Instead, NP dynamics depend strongly on the
segmental relaxations of polymer chains, controlled by the
mesh size ξ.

Because all of the calculations are performed using NPs
of the same size, the ratio σNP=ξ is varied across different
simulations by changing ξ through the polymer concentration
[Fig. 4(c)]. Normalizing the dynamics by the size ratio σNP=ξ
appears to account for the competing effects of faster seg-
mental dynamics [48] but larger Nm of the ring polymers.
The ring-polymer and linear-polymer solutions considered
here have the same monomer concentration for a given
σNP=ξ (Fig. 4). Under such conditions, the ring polymers are
expected to relax faster than linear polymers with the same
number of monomers Nm due to the absence of free chain
ends [35]. The relaxation time, however, is also a function of
the chain contour length, and in our simulations the ring
polymers contain more monomers than the linear chains
(Nm is 70 and 42 for the ring and linear polymers, respectively).
As the MSDs suggest (Fig. 3), however, these two competing
effects (i.e., polymer architecture and chain length) largely
offset each other, resulting in comparable segmental relaxa-
tion times and ultimately similar NP diffusivities in solutions

FIG. 3. Comparison of mean-squared displacement hΔr2i in solutions of
ring and linear polymers (solid and dotted lines, respectively) with the same
monomer concentrations c for (a) monomers in the polymer COM reference
frame, (b) polymer COM, and (c) NPs.
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of rings or linear polymers with similar monomer concentra-
tions and mesh sizes. This similarity between NP dynamics
in ring and linear polymers is consistent with the PCT
assumption that NPs feel only a local viscosity equal to that
of a solution of effective polymer chains with a characteristic
radius Reff ¼ σNP=2 [16]. Because the ring and linear poly-
mers are both larger than the NPs in our simulations, the
observed NP dynamics are insensitive to polymer topology.

PCT also predicts that the subdiffusive exponent for the
NPs (αNP) should abruptly decrease from 1 to 0.5 at
σNP=ξ ¼ 1 due to complete coupling of the NPs with the
polymer segmental relaxations. Indeed, experiments show

that an exponent of 0.5 is measured when NPs are chemically
bonded to a polymer network [84]. Moreover, our simula-
tions (not shown) also reveal that the NP dynamics are
purely diffusive in solutions of free (unpolymerized) mono-
mers over similar ranges of c, with NP diffusion coefficients
systematically larger than in the corresponding polymer
solutions. Thus, the NP subdiffusive dynamics arise from
coupling with polymer segmental relaxations, leading to an
exponent of 0.5 when complete coupling occurs. In accord
with our previous simulation studies [25,26] and experiments
[15], however, we observe that the short-time NP dynamics
in both the ring-polymer and linear-polymer solutions
deviate from PCT predictions (Fig. 4). Rather than abruptly
changing, the subdiffusive exponents gradually decay as the
size ratio σNP=ξ increases. Moreover, as with the long-time
diffusivities, the close numerical agreement between αNP in
the ring and linear polymer solutions suggests that the sub-
diffusive dynamics are insensitive to differences between the
two polymer architectures (i.e., free chain ends) for the chain
sizes and range of σNP=ξ examined in this study.

We also analyzed the subdiffusive exponents of the
polymer COM (αP) and compared them to those of the NPs
(αNP) as a function of c=c* (Fig. 5). Both αP and αNP exhibit
a similar concentration dependence, suggesting a tight cou-
pling between the subdiffusive dynamics of the NPs and

FIG. 4. (a) Normalized NP diffusivity D=D0 in solutions of ring (circles)
and linear (diamonds) polymers as a function of size ratio σNP=ξ. The solid
line is the predicted scaling from PCT [16], and the dashed line indicates the
diffusivity of NPs in a pure solvent (D0). (b) Subdiffusive exponents αNP of
NPs as functions of size ratio σNP=ξ in solutions of ring (circles) and linear
(diamonds) polymers. The dashed lines are the prediction from PCT [16]. (c)
Mesh size ξ as a function of monomer concentration c for ring (circles) and
linear (diamonds) polymer solutions. Uncertainties in ξ are the standard devi-
ation of the pore size distribution at each concentration. Inset to (c) shows
the pore size distributions for the ring and linear polymer solutions (solid
and dotted lines, respectively) at three representative monomer concentra-
tions; the mesh size is the first moment of the pore size distribution, i.e.,
ξ ;

Ð
hP(h)dh.

FIG. 5. (a) and (b) Subdiffusive exponents for the NPs (αNP, closed
symbols) and polymer COM (αP, open symbols) in solutions of (a) ring
(circles) and (b) linear (diamonds) polymers, as functions of the reduced
polymer concentration c=c*. (c) αNP as a function of αP. The solid line indi-
cates αNP ¼ αP.
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polymer COM, which is consistent with our previous find-
ings for solutions of flexible linear polymers [25]. Moreover,
the observation that αNP ≃ αP [Fig. 5(c)] indicates that the
degree of coupling of NP dynamics to those of the polymer
COM on short time scales is similar in both systems and
remarkably insensitive to differences in the two polymer
architectures.

By contrast, in our analogous study of semiflexible linear
chains, we observed a decoupling of αNP and αP as the chain
stiffness was increased and the polymers became increasingly
rod-shaped [26]. The segmental dynamics of the linear poly-
mers dramatically slowed down and the polymer COM diffu-
sion became increasingly anisotropic on the time scales
relevant to the subdiffusive motion of the NPs, altering the
way in which polymers and NPs dynamically couple on
short times. This contrast of NP dynamics in solutions of
semiflexible chains and solutions of ring polymers suggests
that relaxations controlled by polymer flexibility may more
strongly affect NP dynamics than those controlled by free
chain ends.

B. Effect of ring concatenation

Ring polymers can also form concatenated structures in
which one or more rings interlock, imposing permanent topo-
logical constraints that may influence their properties
[51,52,76,85,86]. Indeed, interlocked ring structures are
found in natural polymers such as mitochondrial DNA
[86,87] and emerge as impurities during the production of
synthetic ring polymers [88]. Additionally, strategies have
been recently developed to purposefully synthesize high
molecular weight concatenated chains, known as poly[n]cate-
nanes, that consist of tens of interlocking rings [85]. Rouse
mode analysis of isolated poly[n]catenane shows that concat-
enation leads to a slowdown of relaxations over short length
scales, resembling the effects of entanglement on linear poly-
mers [89]. Relaxations over longer length scales, however,
remain largely unperturbed and similar to those of unen-
tangled linear polymers [89]. In ring polymer melts, concate-
nation leads to changes in the structure on short and
intermediate length scales associated with local density inho-
mogeneities along the polymer contour [51] and a significant
slowing down of the segmental dynamics on short length
scales [52], similar to that observed in dilute systems [89].
Although the structure and dynamics of dilute solutions and
concentrated melts of concatenated rings have been previ-
ously investigated, their behavior in the semidilute regime
remains incompletely understood. Furthermore, it is unclear
how ring concatenation will affect the NP–polymer coupling,
due to the potential slowing down of the polymer dynamics.

Consequently, we examined the effect of ring concatena-
tion on the short- and long-time dynamics of polymers and
NPs at an intermediate monomer concentration of c ¼ 0:2.
As the fraction of concatenated rings in the system f is
increased, the MSDs of the monomers in the ring COM
reference frame decrease slightly [Fig. 6(a)] but exhibit no
discernible dependence on nlinked (not shown). Similarly, the
short-time subdiffusive exponent αP of the ring COM
decreases slightly with increasing f [see Figs. 6(b) and 7].

Interestingly, this behavior is independent of the number of
linked rings in each chain nlinked. These observations suggest
that over the range of parameters studied here, concatenation
results in an almost negligible suppression of the polymer
short-time dynamics in semidilute solutions. By contrast, the
MSD for the ring COM at long times (Fig. 6), and hence the
long-time diffusivity DP=D0,P (Fig. 7), decreases as f and
nlinked increase, reflecting the constrained motion of the indi-
vidual polymers and increased hydrodynamic radius of the
concatenated rings [52].

The behavior of the short-time NP subdiffusive exponent
αNP closely follows that of αP, indicating that the motions of
the NPs and ring COM remain tightly coupled on short time
scales, independent of f and nlinked. Moreover, the long-time

FIG. 6. Mean-squared displacements hΔr2i as functions of lag time Δt for
(a) monomers in the polymer COM reference frame, (b) polymer COM, and
(c) NPs in solutions of ring polymers containing various fractions f of con-
catenated rings with a monomer concentration of c ¼ 0:2. The concatenated
rings are linked in chain-like structures consisting of nlinked ¼ 3 rings per
chain. Dashed and solid reference lines in (a) represent Zimm (�t2=3) and
Rouse dynamics (�t1=2), respectively. Dashed lines and solid reference lines
in (b) and (c) indicate diffusive (�t) and subdiffusive (�tα, α , 1) behavior,
respectively.
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NP diffusivity D=D0 remains nearly constant as f and nlinked
are varied. This result is consistent with PCT, which predicts
that the NP’s terminal diffusive motions are controlled pre-
dominately by local polymer segmental relaxations (Fig. 6),
which appear largely unaffected by concatenation. Hence, for
the conditions examined here, we do not find that the con-
straints imposed by ring interlocking strongly influence seg-
mental relaxations or NP dynamics.

Note that we have investigated the dynamics of mixtures
of concatenated and nonconcatenated rings, averaging over
all rings in the solution to characterize segmental relaxations.
It is possible that changes in the segmental dynamics may
become more pronounced in solutions with larger fractions
of concatenated rings, higher densities, and/or longer concat-
enated chains, as suggested by previous simulations of melts
[52], and thereby more significantly affect NP transport.
Although this topic merits additional investigation in future
studies, a necessary first step will be understanding the
effects of concatenation on the structure and dynamics of

bulk semidilute ring solutions, which to our knowledge,
remains largely unexplored.

IV. CONCLUSIONS

Using hybrid MD–MPCD simulations, we investigated
the diffusion of NPs in semi-dilute solutions of ring and
linear polymers. For these two architectures, we found that
the dynamics of the monomers, the polymer COM, and the
NPs are nearly identical when solutions at the same
monomer concentration are compared. On long time scales,
the normalized diffusivities of NPs in ring-polymer and
linear-polymer solutions follow the predictions of PCT [16].
On short time scales, the subdiffusive exponents of the NPs
closely track those of the polymer COM in both ring-
polymer and linear-polymer solutions, insensitive to the
differences in the two polymer architectures. As with predic-
tions from any theoretical or computational study, however,
experiments are needed to validate these findings and in par-
ticular show that they hold in systems with polymers that are
significantly larger than those than can be easily explored in
simulation. Whether PCT predictions hold for other polymer
architectures (e.g., stars and dendrimers), systems with topo-
logical constraints such as knots, or mixtures of linear chains
and rings, which are reported to exhibit distinct dynamical
properties [40], also remains an open question that will
require further investigation. Finally, we showed that increas-
ing the fraction of concatenated rings leads to a slight
decrease in the subdiffusive exponents of NPs and polymer
COM, which closely track each other, but the long-time dif-
fusivity remains nearly constant. In the context of PCT,
which predicts that NP diffusive motions couple to segmental
relaxations, the latter finding is surprising, given that recent
studies have shown that concatenation slows these relaxations
in melts [52]. Understanding of the effects of concatenation
on the dynamics of bulk ring polymer solutions remains
limited, however, and will require future study to fully ratio-
nalize this result.
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