Watersheds & Water Quality

Curriculum to encourage the stewardship of our watersheds.

Supporting materials available here: http://www.uri.edu/cels/ceoc/EducationResources.html

Lesson Plan 1: The Watershed Model

Summary: This lesson is designed to help students understand the importance of water and learn the parts of the water cycle. We will introduce the concepts of runoff/storm water pollution and illustrate examples of the sources of storm water pollution. When the activity is completed, students should be able to brainstorm ways to reduce human impact on water pollution.

Materials for the lesson: The Enviroscape[®] Watershed Model, water cycle diagram, water, water pitcher, 3 spray bottles for rainmakers, pollution sources (chocolate sprinkles=dog poop/cow waste, colored sprinkles=fertilizers, grass clippings=from lawn, food coloring and water= pesticides, paper towel=litter, hand soap=car wash soap, instant coffee= motor oil, sand=road salt and sand)

Tips for teaching the lesson: The Enviroscape[®] Watershed Model is available free, on loan from the URI Outreach Center by emailing <u>outreach@uri.edu</u> or calling (401)874-2900. This lesson plan was adapted from the accompanying Enviroscape[®] Curriculum.

Name: Watersheds and the Water Cycle	Topic: The Water Cycle, Nonpoint Source Pollution, Runoff	
Subject: Earth Science, Life Science	Grade Level: K-12	
Objective(s): To give students an understanding of the importance of water and what everyday practices can pollute our water sources.		
State Standard(s): ESS1 (K-4) INQ –2 Use results from an experiment to draw conclusions about how water interacts with earth materials (e.g., percolation, erosion).		

ESS1 (K-4) - 4b Using or building models to simulate the effects of how wind and water shape and reshape the land (e.g., erosion, sedimentation, deposition, glaciation).

ESS1 (5-8) SAE–2 Explain the processes that cause the cycling of water into and out of the atmosphere and their connections to our planet's weather patterns.

ESS1 (5-8) SAE -2: 2a Diagramming, labeling and explaining the processes of the water cycle including evaporation, precipitation, run-off, condensation, transpiration, and groundwater.

LS2 (5-8) SAE-7 Given an ecosystem, trace how matter cycles among and between organisms and the physical environment (includes water, oxygen, food web, decomposition, recycling but not carbon cycle or nitrogen cycle). ET1.2 (5-6):2b Researching and analyzing the effects on humankind and the environment that a particular technology has had over a period of time (e.g., landfill, dam on a river, desalinization plant).

LS2 (5-6)-7a Students demonstrate an understanding of recycling in an ecosystem by explaining the processes of precipitation, evaporation and condensation as parts of the water cycle.

LS2 (7-8) –5a Students demonstrate an understanding of equilibrium in an ecosystem by identifying which biotic (e.g., bacteria, fungi, plants, animals) and abiotic (e.g., weather, climate, light, water, temperature, soil composition, catastrophic events) factors affect a given ecosystem.

LS2 (9-11) - 3 Using data from a specific ecosystem, explain relationships or make predictions about how environmental disturbance (human impact or natural events) affects the flow of energy or cycling of matter in an ecosystem.

Time	Action	Assessment	Materials
	Water Cycle Activity: Hold up water pitcher	Does anyone know how old this	Water, water pitcher,
2 min.	and ask introduction questions to the	water is? Where do you think the	Enviroscape®
	students.	water from our sinks come from?	Watershed Model
	Show the students the diagram of the	Does Rhode Island get a lot of	Water Cycle Diagram,
2 min.	water cycle and highlight the different	precipitation or a little? (Average	Enviroscape®
	parts. Introduce the Enviroscape [®] model as	of 46 inches/year in RI).	Watershed Model
	part of Rhode Island (i.e., Narragansett Bay		

	or your local water body)		
2 min.	Explain the process of precipitation and have three students demonstrate rainfall by spraying the Enviroscapes model. (You can have the other students pat their knees to simulate the sound of rainfall).	Where is the water going? Is it moving anywhere specific? What is precipitation?	Spray bottles, water
2 min.	Explain the other processes of the water cycle: evaporation, transpiration and condensation. All of these processes can be demonstrated/reviewed with your water cycle diagram.	Has anyone ever seen condensation? Where have you seen any of these stages?	Water cycle diagram
5 min.	Runoff Activity: In a natural setting, the rain will fall on forests and soil. Have a student demonstrate this by pouring some of the water from the pitcher onto the soil or grass. Ask them to observe where the water goes. It is absorbed into the ground and forms groundwater.	Where did the water go? Where would the water go if it was poured on the sidewalk or on the road?	Soil, water
1 min.	Have a student pour water onto a paved surface. Have the students point out the hard surfaces on the model that wouldn't allow water to soak through (roofs, streets, patios, etc.). As this water travels over the roof tops, streets and driveways, it mixes with what's there and picks up all sorts of	Where does the water go? Does it mix with anything else on the surface of the model? What do you think happens to the water that enters the storm drains or gutters? (Enters the storm drain and drains to the nearest body of	Water

	pollution on its way to the storm drain. We	water).	
	call this storm water pollution.		
5 min.	Storm water Pollution Activity:	What types of things do you see	Sprinkles (animal
	Explain that there are some houses in the	in the model of Rhode Island?	waste)
	neighborhood that have dogs and they	(houses, farms, dogs, roads, cars,	
	never clean up after them. Have a student	construction sites, golf courses,	
	sprinkle the animal waste near the dog	rivers to Narragansett Bay)	
	figure. Also, the farmer lets his cows wade		
	in the river near the farm. Have students		
	add animal waste to the farm and the river.		
5 min.	Explain that "Benny" always throws his	Why shouldn't we litter?	Paper towels
	candy wrappers and soda bottles on the		
	ground. Have a student put crumpled up		
	paper towel on the street. The people in		
	their cars also throw their trash out the		
	windows. Have a student put paper towels		
	in the ditch near the road.		
5 min.	"Mrs. Pots" has a lawn and she uses a lot of	What happens when you use too	Colored sprinkles
	fertilizer on it to try and make the grass	much fertilizer?	(fertilizer)
	greener. Have students sprinkle fertilizer on		
	the lawns near the houses. The golf course		
	and the farm use too much fertilizer.		
	Sprinkle <i>fertilizer</i> there.		
5 min.	Explain when "Benny" mows the lawn he		Grass clippings
	leaves the grass clippings on the street and		
	in the driveway. Have a student sprinkle		

	grass clippings near the lawns.		
5 min.	"Mrs. Pots" has a rose garden at home and she uses to many <i>pesticides</i> to get rid of the insects that eats her flowers. Have a student squirt some pesticides on the lawns near the house. The farmer and the golf course use pesticides too. Have the students sprinkle pesticides on those areas as well.		Food coloring and water (pesticides)
5 min.	Mrs. Pots washes her car in the street and all the suds from the car wash soap wash right into the storm drain. Have a student pump the <i>car wash soap</i> onto the car.	Where does the soapy water and suds go when you wash your car in the street?	Hand soap (car wash soap)
5 min.	Mrs. Pots also changes her oil in her car. She dumps the extra oil directly down the storm drain. Have a student squirt some <i>oil</i> into the storm drain (tube in the model). Wally World has a lot of cars in their parking lot with leaking oil and automotive fluid. Have a student squirt some <i>oil</i> onto the parking lot near the "factory."	Should we dump anything into the storm drain? Why or why not?	Instant coffee (motor oil)
5 min.	Road salt is another source of storm water pollution. Have a student pour <i>sand</i> on all of the roads.	Has anyone noticed all the road salt used in the winter? What do you think happens to it after the winter is over?	Sand (road salt)

5 min.	Mrs. Potts has a septic system and hasn't	Does anyone have a septic	Instant coffee
	taken care of it and it overflowed. Have a	system?	(sludge)
	student squirt some <i>motor oil/sewage</i>		
	<i>sludge</i> on the lawn of the house.		
5 min.	A storm is coming! Have three students use	What do you notice is happening	Spray bottles, water
	the squirt bottles and make it rain on the	to the landscape? Where is	
	model.	everything going?	

Lesson Plan 1b: What's the Solution?

Time	Action	Assessment	Material
	What are some ways to prevent	our water from becoming polluted? Remind	
1 min	the students of each source and	come up with a change in behavior on land	
	that will lead to cleaner water q	uality.	
	Remind students of examples:		
1 min	Scoop your dog's poop and throw it in the trash.		
	Don't be a litter bug! Throw you	Ir trash in the recycling bin, compost bin or	
1 min	trash can.		
	Farmer Rob could put a fence ar	round his cows so they can't get into the	
1 min	river. Place the fence in front of	the river on the farm. He can compost the	
		educing the need for fertilizers.	

1 min	Tell your parents to reduce the amount of fertilizers and pesticides used on your lawn and garden. Adding clover to your lawn seed mixture reduces the need for fertilizer; and the process of integrated pest management allows you to use less chemicals to get rid of insect pests. Sweep up any spills.	
1 min	Sweep grass clippings back on to the lawn. They'll act as a natural fertilizer that way!	
1 min	Tell your parents to wash their car at a commercial car wash (where they must dispose of soapy water properly and use less water).	
1 min	Tell your parents to make sure your car isn't leaking any oil. If they change their own oil, recycle the used oil.	
1 min	Conserve water as much as possible. Collect water in rain barrels. Don't waste and use less water in your daily activities like watering the lawn.	

Lesson Plan 2: Water Filtration

Summary: In this lesson, students are tasked with designing their own water filters out of common materials. This activity stresses the importance of preventing pollution rather than remediating, as well as giving students an idea about filtration techniques and the engineering career path.

Materials for the lesson: Scissors, box cutters, empty soda bottles, rocks, gravel, coffee filters, sand, grass, string, measuring cups, micropipettes, water quality test kits, and premade storm water. Storm water can be made from glitter, sprinkles, food coloring, instant coffee, etc.

Tips for teaching the lesson: Tell the students that they have been hired by a water company to convert polluted stormwater into clean, potable water. *Make sure the students know that although they filtered this water, it should not be consumed.* You can cut the top quarter off the soda bottles ahead of time. This lesson plan was adapted from TeachEngineering.org.

Name: Water Filtration	Topic: Watersheds and Water Quality	
Subject: Science	Grade Level: 3-8	
Objective(s): Understanding how filtration works, designing creative filters with the bottles, understanding the		
effects of water pollution, problem solving, and teamwork.		
State Standard(s): ESS1 (K-4) INQ –2 Use results from an experiment to draw conclusions about how water		
interacts with earth materials (e.g., percolation, erosion, frost).		
PS1 (K-4) INQ −1 Collect and organize data about physical properties in order to classify objects or draw		
conclusions about objects and their characteristic properties (e.g., temperature, color, size, shape, weight,		

Although this information in this document has been funded in part by the U.S. Environmental Protection Agency under assistance agreement number 96157901 to the New England Environmental Education Alliance, it may not necessarily reflect the views of the Agency and no official endorsement should be inferred.

texture, flexibility).

M(*G*&*M*)–6–7 Measures and uses units of measures appropriately and consistently, and makes conversions within systems when solving problem

ET1.2 (5-8) Describe and demonstrate the effects of technological systems on humankind in terms of a national scale.

ESS1 (K-4) 2a Conducting tests on how different soils retain water (e.g., how fast does the water drain through?). *PS1 (K-4) -1:* 1c Observing and describing physical changes (e.g., freezing, thawing, torn piece of paper). *ET1.2 (5-6):2b* Researching and analyzing the effects on humankind and the environment that a particular technology has had over a period of time (e.g., landfill, dam on a river, desalinization plant).

Time	Action	Assessment	Materials
	Using scissors or box cutters, cut the top		Scissors, box cutter, soda
3-5 min.	off of the soda bottles so that there is		bottles
	about ¾ of the bottle useable for materials		
	(this can be pre-prepared)		
	Have a table set aside with materials such		Rocks, gravel, coffee
3-5 min.	as sand, rocks, coffee filters, tissue paper,		filter, sand, grass, etc
	and various other found items (this can		
	also be pre-prepared)		
	Break students up into teams and have		Measuring cup, sand,
5-8 min.	them gather the following materials: ½ cup		rocks, gravel, string,
	of sand, ½ cup of rocks/gravel, string,		coffee filters, plastic
	coffee filters, and plastic bottle pieces		bottle pieces
	Have the students place the top of the	What is a funnel? What is a	Bottle pieces, coffee
10 min.	water bottle, which was cut off, into the	basin? What materials are	filters
	body of the bottle to act as a funnel. Then	constant in each group's	
	have the students place a coffee filter in	filter?	

	the "funnel". (The body of the bottle will be the basin that catches the filtered water)		
10 min.	Once the filter is in place, have the students work in groups to create the most effective filter by adding layers of the various materials such as sand, gravel, grass, etc. This will become their completed filter, and after this step they will be ready to experiment.	What type of materials do you think will work best? Which materials will be less effective? What makes these materials different? What will you use as your first layer?	Sand, rocks, gravel, grass, etc
10 min.	After the filters are completed, have the students test their filters with "polluted storm water." How effective was your group's filter in cleaning the water?	What materials and particle sizes worked the best? What would you change if you wanted to do this again? How important is clean water? What are some methods of preventing water from becoming polluted?	"Polluted storm water" made from a combination of water, glitter, sprinkles, food coloring, instant coffee, etc.

Acknowledgements

Grateful acknowledgement of the following for their insight, expertise, and support in creating this curriculum:

Christian (CJ) Sanchez Vanessa Venturini of the URI Outreach Center.