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Cycles in biological populations have been shown to arise from enemy–victim sys-1

tems, delayed density dependence, and maternal effects. In an initial effort to model2

the year-to-year dynamics of natural populations of entomopathogenic nematodes3

and their insect hosts, we find that a simple, nonlinear, mechanistic model pro-4

duces large amplitude, period two population cycles. The cycles are generated by5
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seasonal dynamics within semi-isolated populations independently of inter-annual 1

feedback in host population numbers, which differs from previously studied mech- 2

anisms. The microparasites compete for a fixed number of host insect larvae. Many 3

nematodes at the beginning of the year quickly eliminate the pool of small hosts, 4

and few nematodes are produced for the subsequent year. Conversely, initially 5

small nematode populations do not over-exploit the host population, so the sur- 6

viving hosts grow to be large and produce many nematodes that survive to the 7

following year. 8

c© 2003 Published by Elsevier Ltd on behalf of Society for Mathematical Biology. 9

1. INTRODUCTION 10

Recent advances in the theory of nonlinear dynamics provide tools for viewing11

the complex behavior of biological populations (Hastingset al., 1993; Hanski and 12

Korpimaki, 1995; Higgins et al., 1997; Grenfell et al., 1998; Blasiuset al., 1999; 13

Kendallet al., 1999; Stenseth, 1999; Finkenstadt and Grenfell, 2000; Turchin and 14

Ellner, 2000; Bjørnstad and Grenfell, 2001). Connections between the observed15

dynamics of natural populations (Higgins et al., 1997) and ecological theory are 16

developing rapidly, particularly in the areas of human epidemiology (Earnet al., 17

2000) and the dynamics of small mammals (Stenseth, 1999). Cyclic behavior is 18

perhaps the most well studied aspect of enemy–victim interactions, but the spe-19

cific mechanisms producing these cycles have been the subject of debate (Kendall 20

et al., 1999). We model a common but little studied enemy–victim system where21

microparasite population cycles are driven by competition for the limited supply of22

host larvae within a single season. 23

Entomopathogenic nematodes are common, widespread enemies of soil insects24

(Hominick, 2002). Natural populations are extremely patchy in space (Stuart and 25

Gaugler, 1994) and can cause extremely high mortalities to natural populations of26

hosts (Strong, 1999), suggesting local over-exploitation of hosts (Strong, 2002). 27

Local populations of these enemies wax and wane over runs of 3–5 years (D.R.S.28

and E.L.P., unpublished). Immature, soil dwelling, ‘infective juveniles’ of the ento-29

mopathogenic nematode (Heterorhabditis marelatus) search in the soil for host 30

ghost moth (Hepialus californicus) caterpillars that feed upon the taproot of bush31

lupine (Lupinus arboreus) (Stronget al., 1996). They enter and kill the insect host, 32

reproduce inside, and emerge into the soil in a pulse when the cadaver’s resources33

are exhausted. Small, young hosts yield few infective juveniles, while large old34

caterpillars yield upward of a million (E.L.P., unpublished data). This means that35

hosts escaping infection early in the season can grow into a much more produc-36

tive resource for late season infection by the nematode. Infective juveniles cycle37

back into the non-reproductive, non-feeding population in the soil when they exit38

the cadaver. The cycle can repeat several times in the wet soil of a winter grow-39

ing season. The environment of this interaction is the few liters of soil around the40

taproot of a lupine rhizosphere. Several meters separate most taproots from one41
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another in the grassland matrix where lupines grow. Both nematodes and caterpil-1

lars remain near the taproot, rates of dispersal are low, and populations are virtually2

restricted to single rhizospheres within a growing season. In dry summer soil the3

nematodes are quiescent, and host attack rates decrease to virtually nil.4

The nematode is less frequent in space than the host ghost moth, and rhizospheres5

without the enemy produce most of the ghost moth recruits (Stronget al., 1996).6

Ghost moths are very strong flyers, and can lay eggs many hundreds of meters7

away from their natal rhizosphere (Wagner, 1985). Their great powers of disper-8

sal supplies rhizospheres with host recruits independently of their local nematode9

densities.10

To understand the dynamics of natural populations of these potent natural ene-11

mies, we developed the simplest model consistent with their biology: a continuous12

time mechanistic model describing the within-year dynamics ofH. marelatus with13

ghost moth caterpillars in single lupine rhizospheres. The within-year model is14

then used to generate a discrete time model of between-year dynamics (Briggs and15

Godfray, 1996; Roberts and Heesterbeck, 1998; Gamarra and Sole, 2002) for nat-16

ural populations that exist in a highly seasonal environment.Fentonet al. (2000)17

modeled entomopathogenic nematode dynamics for biological control of glass-18

house insect pests with an approach featuring aseasonal dynamics and uniformly19

sized hosts, finding instability. In a second paper, they focused upon transient20

dynamics appropriate to short-term aseasonal biological control of host pests, and21

included host stage structure and a constant nematode development period (Fenton22

et al., 2001). Using parameters derived from field and laboratory data, we model23

long-term seasonal dynamics of natural populations of nematodes with univoltine24

hosts, and include effects of host size and host immigration. While our model is25

based on the interactions between a particular microparasite and its host, it should26

be broadly applicable to organisms with seasonally limited resources.27

2. MODEL28

We modeled the population dynamics of nematodes and their hosts within a sin-29

gle rhizosphere. The infective juveniles search randomly through the wet, winter30

soil of the rhizosphere to find and infect hosts at a rate proportional to the product31

of the nematode and host densities (Stronget al., 1999). In nature, most hosts are32

killed by a single hermaphroditic infective juvenile; thus, we model single infec-33

tions of hosts. Infection causes the death of the host within hours, removes a nema-34

tode from the soil-dwelling population, and adds an infected host cadaver.35

Caterpillars hatch almost simultaneously and grow at similar rates; the host36

cohort is comprised of similar-sized caterpillars. A time-dependent (within the37

season) number�(t) of infective juvenile nematodes emerge simultaneously after38

a fixed period of time,τ , from the host cadaver. Early in the growing season, hosts39

are small and produce few infective juveniles. By the end of the season, hosts are40
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large and can produce as many as a million infective juveniles. We denote the den-1

sity of free-living, soil-dwelling nematodes byN and the density of hosts byH . 2

Nematodes emerging from a cadaver at timet came from an infection eventτ time 3

units earlier; emergence from cadavers increases the nematode density in the soil4

at the rateβH (t − τ)N(t − τ)�(t − τ), whereβ is infectivity, the rate at which 5

nematodes find and infect hosts. The dynamics of the hosts are described by two6

terms: death from nematodes, and density-independent deaths at a ratekH . The 7

density of soil-dwelling nematodes decrease owing to entrance into hosts and to8

density-independent deaths of nematodes at a ratekN . Density of soil-dwelling 9

nematodes increases owing to emergence from hosts. The model for wet, growing10

season dynamics becomes 11

d H (t)

dt
= −βH (t)N(t) − kH H (t)

d N(t)

dt
= −βH (t)N(t) − kN N(t) + βH (t − τ)N(t − τ)�(t − τ),

(1)

12

which we solve over the periodt = 0 to T , whereT is the (fixed) length of the 13

wet season. During the dry season, when the nematodes are quiescent and do14

not infect hosts, we assume that nematodes experience only density-independent15

mortality. Nematodes that are inside host cadavers at the end of the dry season16

can remain in the cadaver for extended periods of time, where mortality rates are17

lower than in the soil (Kaya and Gaugler, 1993). Because of this, over-summer 18

survival probabilities are higher for these nematodes. We assume that all of the19

nematodes have either emerged from hosts or died by the end of the dry season.20

A solution of equation (1) yields the density of nematodes outsideNk(T ) of host 21

cadavers at the end of wet season. The density of nematodes inside of hosts at22

the end of the wet season isNk
i (T ) = ∫ T

T −τ
βH (σ )N(σ )�(σ )dσ . The dry-season 23

submodel then yields the density of the nematodes at the beginning of the next wet24

season,Nk+1(0) = λo Nk(T ) + λi Nk
i (T ), whereλo andλi are, respectively, the 25

survival probabilities of nematodes that began the dry season inside and outside26

of hosts. Returning to the wet season submodel [equations (1)], we study year-to- 27

year dynamics by taking as initial conditions the resulting number of nematodes28

after the dry seasonNk+1(0) and the assumed fixed number of host eggs per bush,29

H (0). We assume that hosts emerge simultaneously so the initial interval for the30

hosts required by the delay term is uniformly zero. Because the only delay term is31

a proportional to the hosts, the initial nematode interval is not needed. 32

3. METHODS 33

We numerically integrated the wet-season delay differential equations using34

Euler’s method, calculated the dry-season dynamics, and recorded the number of35
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Table 1. Estimates of infectivity,β, in different sized arenas from published sources and
our data, measured in (rhizosphere volume/day= 20× π502 cm3/day).

Soil Meanβ

Nematode species Host species vol. (cc) (rhiz. vol/day) Reference

Heterorhabditis spp. G. mellonella 25 1.25× 10−5 Westerman(1998)
Heterorhabditis spp. Otiorhynchus

sulcatus
25 2.91× 10−6 Westerman(1998)

H. bacteriophora G. mellonella 50 1.26× 10−6 Campbellet al. (1999)
Heterorhabditis spp. G. mellonella 15 1.39× 10−4 Koppenhöfer et al. (1996)
H. marelatus G. mellonella 10 2.10× 10−6 Strong (unpublished data)
H. marelatus G. mellonella 100 7.33× 10−6 Strong (unpublished data)
H. marelatus G. mellonella 1000 2.50× 10−6 Strong (unpublished data)

hosts killed during each wet season. We tested the stability of the numerical method1

by decreasing the time step size. To understand the full range of the dynamics, we2

computed a bifurcation diagram numerically, by varying the infectivity,β, iterating3

the return map for 1000 generations to eliminate transients, and then plotting the4

next 100 points to describe the attractor as a function of the parameters. The com-5

plexity of the year-to-year map makes any analytic treatment of bifurcation impos-6

sible, but we numerically generated the time one return map from the continuous,7

within-year dynamics in the regions of parameter space where the dynamics are8

qualitatively different. We used several different initial conditions to assure that9

all attractors had been found. We usedβ as the bifurcation parameter, because the10

qualitative dynamics are most sensitive to this parameter (see Discussion).11

To focus on the most relevant dynamical behavior, we estimated infectivity,β,12

from laboratory experiments (Table 1). We exactly solved equations (1), for β13

in terms of the initial density of nematodesN0, the number of successful infect-14

ing nematodesI , the time in days of the experimentT , and Ve/Vr , the ratio of15

the experimental volume to the rhizosphere volume(Ve ≈ 20 × π502 cm3). We16

solved the equations for short periods too brief for either nematode reproduction17

or significant nematode mortality,kN = 0 andI = N0 − N . Nematode mortality18

is low in the pasteurized soil of experiments (Koppenhöfer et al., 1996). Although19

multiple infections are quite rare in nature, multiple infections are common in the20

laboratory experiments for estimation ofβ; thus, the number of hosts available for21

infection, H , is constant. The resulting equation for infectivity,β, is22

β = 1

H T
· ln

(
N0

N0 − I

)
· Ve

Vr
. (2)

23

Our estimates based on equation (2) and previous estimates ofβ are presented24

with the appropriate units inTable 1. However, we believe these are overesti-25

mates of natural values of this parameter (see the Discussion). Nematode mortality26

kN , and host productivity growth rater are taken from the literatureStrong(2002),27
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Wagner (1985). The maximum productivity of nematodes from hosts,�max, 1

equaled the mean productivity of host larvae near pupation. To determine the influ-2

ence of within-season growth of hosts on the dynamics, we compared unvarying� 3

with a saturating function in which productivity of nematodes increased as hosts4
grew in size, i.e.�(t) = min(Cert ,�max). This function closely matches data 5

on host growth (Wagner, 1985). To test the robustness of our results, several solu-6
tions were calculated with small variations in the parameters. A saturating type II7

functional response for nematode attack was used as well, but did not qualitatively8

change results. 9

4. RESULTS 10

The qualitative result of our model is a series of large amplitude, period-two11

cycles of the nematode population, yielding high and very low numbers for a large12

range of parameter values (Fig. 1). The wide range over which cycles occur crit- 13

ically depends on the assumption of host growth during the season. Were hosts14

not to grow in size (i.e., constant�) the high-low cycles would be restricted to a 15

much smaller range of parameters. The cycles will persist for the low immigration16

rates [corresponding to results for equilibria of difference equations inKarlin and 17

McGregor(1972)] that we have observed within seasons in the field. Host mortal-18

ity in the model tracks the two-cycle nematode population dynamics, with almost19

100% mortality for rhizospheres in which the initial nematode population is high20

at the beginning of the growing season and much lower mortality for rhizospheres21

in which the nematode population is initially low. 22

For very low values of nematode infectivityβ, the nematodes become extinct. 23

As β increases there is a nematode population steady state that quickly undergoes24

a series period doubling bifurcation, leading to chaos (Fig. 2). These initial bifur- 25

cations are explained by classic work dating back toMay and Oster(1976). They 26

showed that these dynamics are ‘generic to any curve with a hump whose steepness27

can be parametrically tuned’. Integrating the within year dynamics leads to a year-28

to-year map for the nematodes that has a single hump. The parameterβ plays the 29

role of the reproduction parameter in the Ricker and logistic maps by controling the30

steepness (seeFigs. 3and4). The complex dynamics quickly lock in on a period 31

two cycle, because the hump in the discrete map moves to nematode population32

numbers below one. Asβ increases further the system returns to an equilibrium.33

This equilibrium persists, but approaches zero. 34

5. DISCUSSION 35

Competition for hosts is the indirect mechanism of density dependence leading36

to cycles in nematode numbers in our model. Because hosts grow larger during the37

season, density dependence is stronger; elimination of small, relatively unproduc-38

tive hosts early in the season reduces the availability of large, highly productive39



UNCO
RRECTE

D P
RO

O
F

YBULM: 400

ARTICLE  IN  PRESS

Microparasite Population Cycles 7

2 4 6 8 10 12 2 4 6 8 10 12

2 4 6 8 10 12 2 4 6 8 10 12

100

102

104

100

102

104
%

 H
os

t M
or

ta
lit

y
%

 H
os

t M
or

ta
lit

y

N
em

at
od

es
N

em
at

od
es

(a)

(c)

0

20

40

60

80

100

0

20

40

60

80

100

β  x 10−7 Rhiz. vol /day β  x 10−7 Rhiz. vol /day

β  x 10−7 Rhiz. vol /day β  x 10−7 Rhiz. vol /day

(b)

(d)

Figure 1. Model results showing dependence of nematode population and annual host
mortality on nematode infectivity,β, and host growth. Panels (a) and (b) show nematode
population at the start of the wet season, and total annual host mortality with host size
included. Panels (c) and (d) are analogous, but with no host size effect. For both sim-
ulations host mortalitykH = 0.0001/days, nematode mortalitykN = 0.063/days, and
nematode generation timeτ = 35 days. The length of the wet season was 160 days, and
dry-season survivorship for soil-dwelling nematodes was 10−6 and 10−3 for nematodes
inside cadavers. In (a) and (b) maximal host productivity was�max = 800 000 nematodes
per host,r = 0.09/days,C = 10000, and in (c) and (d) host productivity was held constant
at� = 800 000. Notice that the cycles exist for a much smaller range of parameters.

hosts late in the season (Briggs et al., 1999). Timing of infections plays a role1

in the density dependence, because the earlier an infection occurs, the longer the2

infective juveniles produced from the infection are exposed to high mortality in3

the soil. This is why cycles can occur when there is no host growth or nearly4

100% host mortality every year. Cycles found in previous models for hosts with5

non-overlapping generations depend on an inter-annual feedback between host and6

enemy populations (Mills and Getz, 1996). The cycles we find in the model are7

different, because host recruitment in the following year is independent of local8

interaction between enemy and victim. In our model we have assumed the time9

for nematodes to emerge from an infected host,τ , is constant. However, this time10

delay is shorter for smaller hosts (E.L.P., unpublished data). A large nematode pop-11

ulation early in the wet season will thus more quickly reduce the host population,12
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(a)

(c)

(b)

(d)

Figure 2. Detail of model results showing dependence of nematode population and annual
host mortality on nematode infectivity(β) and host growth for very small values of infec-
tivity. Panels (a) and (b) show nematode population at the start of the wet season, and total
annual host mortality with host size included. Panels (c) and (d) are analogous, but with
no host size effect. Parameters are the same as inFig. 1.

leading to a greater likelihood of cycles. These dynamics should apply to many1
enemy–victim systems in which subsidies are important to dynamics, such as those2

in which the feedback of predation to prey reproduction occurs on multiple scales;3

hosts are locally depleted while new hosts arrive from a larger population that is4
not exposed to the enemy (Polis and Strong, 1996). 5

Our model produces microparasite cycles over a range of values of infectivity,β, 6

that is slightly lower than our and other estimates of this parameter. However, we7

believe withFentonet al. (2000) that previous estimates are too high for natural 8

settings. First, the natural host ghost moths are not as vulnerable to the nema-9

todes as the wax worms (Galleria mellonella) used in most estimates ofβ (Strong 10

et al., 1996). Second, experiments have been conducted in small enclosed are-11

nas of homogeneous soil that concentrate the waste gasses produced by hosts that12

nematodes use to find hosts. Consequently, more nematodes infect hosts, lead-13

ing to artificially high estimates ofβ. Our preliminary work outside of containers 14

suggests that realistic field estimates ofβ will prove to be lower than current labo- 15

ratory estimates. Additionally, mathematical results suggest that stochasticity and16
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Figure 3. Map that takes the nematode population size at the start of the wet season to the
nematode population size at the start of the wet season the following year, with varying
host size. Maps are plotted on a log–log scale for clarity; therefore, the origin is excluded.
Panel (a) shows the chaotic dynamics in nematode population withβ = 8×10−8. Panel (b)
shows the period two dynamics of map whenβ = 4.5×10−7. The chaotic dynamics are no
longer present because the hump has moved to the range where the nematode population
is less than one. Panel (c) shows the coexistence of a stable equilibrium and a stable two
cycle (solid line); the unstable cycle is indicated with a dashed line,β = 4.9×10−7. These
dynamics exist for a very narrow region parameter space when theNk+1(0) = Nk (0) line
crosses through the region of the map where the slope quickly changes from being greater
in absolute value than 1 to being less than 1 in absolute value. Panel (d) shows the stable
equilibrium dynamics withβ = 6 × 10−7.

a lack of spatial homogeneity extend the range of parameters over which cycles1

occur [e.g.Billings and Schwartz(2002)].2

Entomopathogenic nematodes persist in nature, while published models find their3

dynamics unstable. We present the simplest mechanistic model consistent with4

their biology in an attempt to understand the dynamics of the interaction with hosts5

of these widespread, important, but little known natural enemies. The extreme6

cycles that we found in the model appear in previous modeling of these enemies,7

which addressed their use in biological control of mushroom pests (Fentonet al.,8

2000). These cycles bode instability, and suggest that there may be high rates of9

local extinction in nature. The model cycles have directed our attention to mea-10
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Figure 4. Map that takes the nematode population size at the start of the wet season to the
nematode population size at the start of the wet season the following year, with no host size
effect. Maps are plotted on a log–log scale for clarity; therefore, the origin is excluded.
Panel (a) shows the chaotic dynamics in nematode population withβ = 3.5× 10−8. Panel
(b) shows the period two dynamics of map whenβ = 1.5×10−7. The chaotic dynamics are
no longer present because the hump has moved to the range where the nematode population
is less than 1. Panel (c) shows the coexistence of a stable equilibrium and a stable two cycle
(solid line); the unstable cycle is indicated with a dashed line,β = 1.9 × 10−7. These
dynamics exist for a very narrow region parameter space when theNk+1(0) = Nk (0)

line crosses through the region of the map where the slope quickly transitions from being
greater in absolute value than 1 to being less than 1 in absolute value. Panel (d) shows the
stable equilibrium dynamics withβ = 3 × 10−7.

suring time series of infective juvenile densities in the soil. We have documented1
colonization of new lupine rhizospheres, and suggest the reasonable hypothesis2

that low rates of nematode immigration counter local extinctions, as first suggested3

for host–parasitoid interactions byNichlson and Bailey(1935) and as in classical 4

metapopulation theory [e.g.Hastings and Harrison(1994), Hanski(1999)]. 5
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