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Abstract Spread dynamics of biological invasions

are influenced by both the availability and spatial

arrangement of suitable habitat. As such, invasive

spread can be considered to occur across a network of

nodes, representing patches of suitable habitat, with

linkages representing the potential for movement

between habitat patches. While static network models

can provide valuable insight into the potential frame-

work of nodes and linkages across which spread could

occur, they offer little information on the actual

spatiotemporal dynamics of range expansion pro-

cesses. Here, we explore the development and appli-

cation of dynamic network models (DNMs) to model

the spread of invasive species. DNMs accommodate

temporal dynamics in the utilization of nodes and the

connections between them and can flexibly perform

simulations at the spatial scales of observational data.

As case studies, we develop DNMs to simulate the

spread of a generalist forest pathogen and the hemlock

woolly adelgid (Adelges tsugae Annand). We high-

light the utility of DNMs for identifying habitat

patches that contribute most to spread across the

landscape and for visualizing emergent spread dynam-

ics. While currently underutilized in ecology as

compared to static network models, DNMs are poten-

tially applicable to numerous research and manage-

ment questions relevant to biological invasions and the

more general phenomena of range expansion.

Keywords Adelges tsugae � Forest � Graph

theory � Habitat � Hemlock woolly adelgid �
Landscape � Model � Risk assessment

Introduction

For decades ecologists have conceptualized ecological

systems as networks, with food web structure being one

of the earliest and best-known examples (Pimm et al.

1991). More recently, landscape ecologists have used

spatially explicit networks to quantify landscape con-

nectivity and to identify potential pathways for dispers-

ing organisms (e.g., Minor and Urban 2008; Urban et al.

2009; Lookingbill et al. 2010; Fletcher et al. 2011). The

broadening application of networks in ecology has

paralleled their increasing use in other disciplines such

as sociology, public health, telecommunications, trans-

portation, and biogeography (Shavitt and Singer 2007;

Butts 2009; Cumming et al. 2010; Araújo et al. 2011).
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Regardless of discipline, many applications of net-

work theory rely on static networks to represent

dynamic systems (Banks et al. 2010). Static network

models emphasize the effects of network structure on

stability and connectivity (i.e., where connections occur

and their importance) rather than the temporal dynamics

related to when connections arise or disappear and their

probability of doing so. In landscape ecology, for

example, static networks are often used to represent

interpatch connectivity as a function of distance (Bunn

et al. 2000; Ferrari et al. 2007; Minor and Urban 2007;

Lookingbill et al. 2010). While static networks are

widely used and often useful, many questions in

invasion biology concern processes that are dynamic

in both space and time. When an introduced species

spreads across a landscape of suitable habitat patches,

for example, a static network can be developed using

information on the species’ dispersal ability to deter-

mine the underlying network of habitat patches and

potential interpatch connections (Ferrari and Looking-

bill 2009). Although such static networks can identify

possible spread pathways and inform questions regard-

ing network structure, they provide little insight

regarding how interpatch connections are likely to

evolve as the invasion proceeds. From a management

perspective, knowing when an invader is most likely to

arrive in a new location, and which patches may

contribute most to spread, are likely to be more useful

than a simple delineation of invasion-prone locations

based on habitat suitability or interpatch distances alone.

An alternate framework for modeling range expan-

sion involves dynamic network models (DNMs),

which have seen broad application in other disciplines.

DNMs share several features with their static coun-

terparts; for instance, both consider connections

between interacting entities and can rely on a prede-

fined potential network that identifies links and nodes.

Unlike static networks, however, DNMs allow con-

nections to change through time by temporally map-

ping when each node and link become active in the

simulated dynamic process. The emergent dynamic

network may only constitute a subset of the total

potential static network and can be highly dependent

on initial conditions of the ecological process of

interest (Ferrari and Lookingbill 2009). When applied

to biological invasions, DNMs may provide a new

suite of analytical techniques for answering questions

regarding spread dynamics and for intuitively visual-

izing range expansion to provide information which

may prove useful in developing and applying control

measures (e.g., Sharov et al. 2002) and which may not

be readily obtainable from more established methods

of modeling spread.

We describe the application of DNMs to the

problem of modeling range expansion, an inherently

dynamic ecological process. We focus on the spread of

invasive species generally and forest pests in partic-

ular, although the approach is general and applicable

to a wide array of dynamic ecological processes. To

introduce the approach, we first develop a DNM for a

hypothetical forest pest and then simulate its spread

across a landscape of forest patches. We then develop

a DNM for the spread of hemlock woolly adelgid

(‘HWA’, Adelges tsugae; Hemiptera: Adelgidae), an

introduced pest of eastern hemlock (Tsuga canaden-

sis) and Carolina hemlock (Tsuga caroliniana) in the

eastern United States (Orwig 2002). We use these case

studies to examine the dynamics of invasive spread

and to demonstrate the utility of DNMs for quantifying

and visualizing these dynamics.

Methods

Network representations of landscapes typically dis-

criminate ecological resources, often as pixels of

specific habitat types in gridded, digital maps, from

unsuitable background areas. Collections of suitable

pixels are aggregated into patches that are defined as

‘‘nodes’’ in network parlance. For invasive species,

nodes might represent patches of disturbed habitat, or,

for forest pests, forested patches containing host tree

species. Patterns of potential connectivity among

nodes are identified as ‘‘links’’. While such connec-

tions are commonly referred to as ‘‘edges’’ in network

science, we prefer the term link to avoid confusion

with other common uses of ‘‘edge’’ in ecology and

invasion biology (e.g., the edge of the advancing

population of a range-expanding species). For a static

network, links are typically a function of distance

alone and the resulting link patterns form the basis of a

pairwise patch adjacency matrix A. Under a static

network paradigm, the matrix A is constant in time

(e.g., Keitt et al. 1997), with entries that are either

binary (0/1; not connected/connected) or weighted

(0–1 corresponding to connection strength). The

matrix A is the fundamental basis of static network

models.
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The spread of a forest obligate invasive species

across a habitat network can be cast in an epidemi-

ological context (Mollison 1977) that identifies nodes

as forest patches (depending on the scale of analysis,

nodes could also be individual trees in a stand or

geopolitical units such as counties) that are assigned a

status of either Susceptible (S) or Infected (I). This

approach is conceptually similar to epidemiological

models advocated for human diseases (e.g., Watts and

Strogatz 1998; Mack et al. 2000; Vazquez 2006),

invasive species (Gilligan and van den Bosch 2008)

and, in particular, pathogens (Brooks et al. 2008) and

forest pests (Meentemeyer et al. 2011). Each I node

contains a population capable of increasing with time,

and has the potential to emit propagules that can

spread the infection to S nodes. Borrowing from social

network analysis (Leenders 1995; Snijders 2005), we

chose a Markovian framework for the DNM. The R

programming language (R Development Core Team

2011) was used for all simulations.

Markov analysis addresses transitions between

states (e.g., from S to I) and requires conditions at

time t ? 1 be dependent on conditions at time t, a

plausible precondition for spread of an invasive

species. Addressing spatial spread, the vector (Eq. 1)

represents the number of propagules leaving I nodes at

time t. The matrix T contains pairwise probabilities

(sij) of propagule movement from nodes i to nodes j.

The vector represents the number of propagules

reaching nodes at time t ? 1 and can be used to

evaluate the timing of spread between nodes (i.e., node

status change S to I), calculated as

w~tþ1 ¼ m~tT ð1Þ
In essence, Eq. 1 links a within-node population

growth process (m~t) with a between-node dispersal

process (T) to model spread; more complex formula-

tions can be accommodated. Any DNM used to

simulate range expansion relies on such an underlying

model of within node population growth and between

node dispersal across the habitat network. Here, we

model these processes using a simple cellular autom-

aton model to simulate spread of a hypothetical forest

pest and a more complex stochastic spread model to

simulate the spread of HWA. To build the DNM,

successful transfers of propagules between nodes

(w~tþ1) and the timing of these transfers are recorded.

When mapped in a time series, the time-dependent

linkages between nodes reveal dynamic population

expansion as an evolving, emergent network of habitat

connections. By running many stochastic simulations,

the probability of links emerging at different times can

be quantified.

Model development

As an initial demonstration, we used the DNM

framework to model range expansion of a hypothetical

forest-obligate invasive species across a landscape of

forest patches. We used the 1,318 ha Antietam

National Battlefield Park (ANTI), located in central

Maryland, USA as an example landscape (Fig. 1),

with forest classes from the National Land Cover

Dataset (Homer et al. 2004) used to identify 50 forest

patches at 30 m resolution. All other cells were

considered ‘non-forest’.

Dynamic network model for ANTI

To formulate the landscape and associated spread

dynamics as a DNM, we took the following steps: (1)

to define the spatial structure of the network, we

considered each forest patch to be a node, resulting in

50 nodes; (2) using inter-node distances, we defined

potential links among the 50 nodes in a 50 9 50

adjacency matrix A (i.e., the static network); and (3)

we generated the transition probability matrix T,

entries in which estimate the likelihood a link in the

adjacency matrix A would be ‘‘realized’’ in a dynamic

simulation.

To determine the potential links in A, we used a

negative exponential probability density function,

commonly used for dispersal estimation (e.g., Minor

and Urban 2007), to calculate the probability Pij a

propagule will move a distance dij between nodes i and

j, or

Pij ¼ e�/dij ; ð2Þ

where the coefficient / determines the rate of decay of

the probability with distance. Using LANDGRAPHS

(Urban 2003), dij = 720 m was found to be the

smallest inter-patch Euclidean distance for which

each of the 50 nodes was connected to at least one

other node. For our simulations, we set the probability

Pij (Eq. 2) to 0.05 for a tail distance of 720 m, and

calculated the necessary decay coefficient / to meet
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this condition. Every i–j node pair with dij B 720 m

therefore had a corresponding entry in A and T. As in

any theoretical simulation, different values for these

parameters would lead to different spread dynamics.

We estimated transition probabilities (sij) in T from

any source node i to any potential receiver node j as a

function of dij and the patch area of node j (Fj). For

tractability, we assumed nodes were circular as our

goal was to construct a straightforward DNM for

evaluation purposes, and the circular approximation

was sufficient for this purpose. The probability of any

propagule from node i landing in node j is therefore

sij ¼
1

2p

Z2p

0

Z1

0

e�/dij dr dh; for all r; h 2 Fj: ð3Þ

The dividend 2p forces 0 B sij B 1.0. Because no two

patches have identical area, sij = sji.

Infestation status (S or I) and spread were consid-

ered at both the patch (node) scale and for each forest

cell within nodes. We assumed node carrying capacity

equaled the number of cells in the respective forest

patch, and at any time each cell was assigned S or

I status. Only I cells can lead to within-node popula-

tion growth or to between-node dispersal. Any node

containing a single I cell was considered infected;

otherwise, the node contained all S cells and the entire

node was considered susceptible.

The number of infested cells in an I node was

assumed to start with one cell initially at the node

centroid and increase deterministically at each time

step to adjacent S cells within the node (using an

8-neighbor rule), assuming homogeneous forest struc-

ture within the node. At the end of the population

growth phase, we assumed each infested cell had a

20 % probability of contributing to a between-node

long-distance dispersal event. A random number l
was drawn for each of these events; if l B the transfer

probability then a successful transfer from node i to

j occurred. If node j had status S when the transfer was

made, the event was considered a founder event; the

status of the central cell in node j changed from S to I,

and status for node j changed from S to I as well. For

each founder event, we recorded the node pairs

involved in the transfer and the timing of the event

as a ‘‘realized link-list’’, which constituted the primary

output of the DNM.

Summarizing DNM output

We summarized output from the DNM by evaluating

realized link-lists and by mapping time series of

Fig. 1 An evolving

network resulting from

1,000 stochastic simulations

of a dynamic network model

for the invasion of a

hypothetical forest pest

spreading across Antietam

National Battlefield Park.

Black circles indicate node

centroids of forest patches

(dark grey shading). Link

symbolization is scaled

relative to probability of

occurrence by time t, with

darker, thicker lines

indicating greater

probabilities. The white

square in the northwest

corner of the map indicates

the initial location of the

simulated infestation
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realized links. Node utilization during the invasion

process was quantified using a variant of the centrality

measure ‘‘source strength’’ (Yook et al. 2001), defined

as:

Si ¼
XDi

k¼1

Zk ð4Þ

The subscript k ranges from 1 to the degree of node i

(Di, the number of neighboring nodes joined to node i).

The value of Zk is given as

Zk ¼
H

w
ð5Þ

where H is the number of occurrences of link k with

source node i and w is the number of stochastic

simulations. For our analyses, w equaled 1,000. If a

link was realized in all w replicate simulations,

Zk = 1.0, thus 0 B Si B Di. Degree and source

strength are measures of centrality, the extent to

which a node is connected within the network, a metric

often used for network analyses (Opsahl et al. 2010).

In the context of biological invasions, Si measures the

extent to which a node acts as an infection source for

other nodes; nodes with relatively high Si values

promote spread throughout the network.

Model application to hemlock woolly adelgid

For a real world application, we developed a DNM to

simulate and visualize the spread of the hemlock

woolly adelgid (HWA), a rapidly spreading invasive

pest of eastern and Carolina hemlock in the eastern

United States (McClure and Cheah 1999). Since its

introduction in Richmond, Virginia in 1951 (Stoetzel

2002), HWA has rapidly invaded eastern US forests,

causing widespread hemlock mortality from Maine to

Georgia (Orwig 2002). Spread is driven by passive

dispersal, with birds, deer and humans acting as the

primary dispersal agents (McClure 1990; Turner et al.

2011).

Any DNM used to simulate range expansion relies

on an underlying model of within node population

growth and between node dispersal across the habitat

network. To simulate spread of HWA in a DNM

framework, we used a modified version of an existing

spread model conceptually analogous to that described

for ANTI above, but which incorporated greater

complexity in terms of intra-node population dynamics

and between-node dispersal. The model, which is

described in detail in Fitzpatrick et al. (2012), couples a

stochastic population model that simulates reproduc-

tion and mortality of the different stages of HWA’s

lifecycle with stochastic dispersal functions that model

the movement of propagules between locations. Pop-

ulation and dispersal dynamics were parameterized

using multiyear field surveys of HWA reproduction

and survival rates in New England and multiple data

sets documenting the spread of HWA across different

regions of the eastern United States. When placed in a

DNM framework, the model produces a series of time-

dependent adjacency matrices. Analysis of these

matrices reveals critical dispersal pathways and iden-

tifies nodes that contribute most to spread across the

landscape. These key insights are valuable for under-

standing spread dynamics and potentially for manage-

ment, yet are not readily obtainable from similar

metapopulation or cell-based models of range expan-

sion, including the model of Fitzpatrick et al. (2012) or

from analysis of static graph adjacency structure.

The model simulates HWA population growth and

dispersal on an annual time step; spatiotemporal vari-

ability in habitat and climate is accommodated using

high-resolution raster maps (1 km 9 1 km) of hemlock

abundance and winter temperature respectively, which

constitute the primary controls on HWA spread (Evans

and Gregoire 2007; Morin et al. 2009; Fitzpatrick et al.

2010). For our purposes, the hemlock and temperature

maps used in Fitzpatrick et al. (2012) were aggregated to

the county level (see below). Hemlock abundance in

each county determines the probability that dispersing

HWA establish and also sets the upper limit to HWA

population growth once a county becomes infested.

Winter temperatures (December–January) change

annually following observed temperature fluctuations

during the period 1951–2008 and influence population

growth by causing HWA mortality.

To simulate relevant population dynamics of HWA,

multiyear field surveys of HWA reproduction and

survival rates in Massachusetts and Connecticut were

used to estimate probability distributions, which were

sampled to simulate stochastic reproduction and mor-

tality of different life stages of HWA. Parameters

included average number of new individuals produced

by each overwintering HWA and the associated mor-

tality rates of progrediens (the generation present in

spring and produced by overwintering sistens). For the
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sistens generation (present from early summer to late

spring and produced by progrediens), parameters

included the average number of sistens produced by

progrediens and the mortality rates of dispersing and

aestivating sistens. For details regarding the life cycle of

HWA see McClure (1989). To simulate stochastic

population growth, we sampled Poisson distributions

and multiplied these values by the existing population

size of either sistens or progrediens. Binomial distribu-

tions were used to simulate mortality of progrediens and

sistens, except for overwintering mortality of sistens,

for which we used a linear model developed by Paradis

et al. (2008) to relate winter temperature to overwin-

tering mortality of sistens. Lastly, we incorporated the

influence of density dependence on population dynam-

ics by allowing HWA density to increase to the carry

capacity set by hemlock abundance. See (Fitzpatrick

et al. 2012) for further details regarding the model.

Creating nodes for the DNM

Nodes for the HWA DNM were considered to be any

of the 1,168 counties in the eastern United States that

contain hemlock. Simulating spread at the county

level reflects the scale of the long-term observational

spread data for HWA, which are recorded as the date

of first observation in a county (Fitzpatrick et al.

2010). To quantify hemlock abundance in each

county, we calculated the mean basal area (BA) of

all 1 km 9 1 km cells from the hemlock abundance

map containing hemlock in each county. We also used

the hemlock abundance values to determine a basal-

area-weighted centroid of all hemlock cells, thereby

locating the node centroid closest to regions with

greatest hemlock abundance rather than at the county

centroid. Between-node distances were calculated as

the Euclidean distance between the basal-area-

weighted centroid of each county. In sum, the manner

in which we model population and dispersal dynamics

of HWA are the same as in Fitzpatrick et al. (2012),

but the implementation and landscape are different.

The dynamic network model for HWA

To determine the potential links in the node adjacency

matrix A (1,168 9 1,168), we applied a between-node

cutoff distance of 200 km, representing a 0.01 % tail

probability of transmission as calculated using the log-

normal probability density function that best described

the distribution of observed dispersal distances (Fitz-

patrick et al. 2012). For each county pair with

centroid–centroid distances\200 km, transfer proba-

bilities in T were calculated using numerical integra-

tion of the log-normal kernel similar to the approach

described above for forest patches at ANTI and

assuming counties were circles of the appropriate area.

One thousand stochastic simulations of the DNM

were initiated by seeding a population in Richmond,

VA, where HWA was first detected in 1951. For each

time step, the total number of HWA produced (Ni) in

each infested county (I nodes) was multiplied by a

random number b (0 \b B bmax) to estimate the

number of propagules subject to between-node long-

distance dispersal. To tune bmax, which determines the

upper limit to the proportion of HWA propagules

subject to between-node dispersal, we performed

sensitivity analyses. We determined the optimal value

for bmax was 7.5 9 10-4; values smaller than this led to

more than 50 % of model runs having no expansion

beyond Richmond, VA, and larger values yielded

accelerating rates of spread that exceeded those

observed for HWA (e.g., 10–20 km per year; Evans

and Gregoire 2007). The product Ni*b was multiplied

by all transition probabilities with node i as the source,

and each product was multiplied by the mean basal area

of each potential recipient node j to accommodate the

assumption that the probability of HWA landing and

establishing in a node is linearly proportional to the

amount of hemlock in that node. If the product was

greater than one for any node j previously having

S status, HWA was assumed to have established in

county j and the status of that node was changed to I. All

such realized links were recorded, allowing multiple

founder events to occur simultaneously. Simulations

were ceased when the northernmost county with

observed presence of HWA as of 2008 was infested.

Most simulations ceased by the mid-1990’s.

To summarize output from the HWA DNM, a

metric similar to source strength (Eq. 5) was

evaluated:

ct ¼

Pkt

i¼1

ni

w

� �

kt

ð6Þ

where kt is the number of realized links at time t, w is the

number of stochastic simulations, and ni is the number of
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times each of the kt links were realized out of w simula-

tions. The numerator of Eq. 6 is the sum of the

probabilities of links occurring at time t and the

denominator is the number of realized links as of time

t. If all realized links are predicted to occur in all

simulations at time t, ct = 1.0. While source strength

evaluates the characteristics of each node, ct is a measure

of the stochasticity of the emergent network in time.

Results

DNM for ANTI

The DNM for ANTI revealed an emerging, evolving

network that differed from the static network repre-

sentation. Links between nodes closest to the initial

infection had the highest probabilities of realization

early in the simulation, while probability of link

realization was generally low elsewhere (Fig. 1a). As

the invasion proceeded, link probabilities increased

for nodes more distant from the node where the

invasion was initiated (white square, Fig. 1), though

probabilities generally remained low for smaller,

isolated nodes (Fig. 1b). Source strength values from

the DNM were always less than node degree (Fig. 2),

indicating that none of the 50 nodes had all potential

links realized in all 1,000 simulations. Source strength

represents the extent to which the node tended to act as

a source or a sink. Most nodes tended to act as sinks

(zero or low source strength), with fewer than ten

nodes strongly acting as a source of infection to other

nodes. The strongest source nodes tended to be large

patches in close proximity to many adjacent patches,

while some smaller nodes acted as sources mainly if

they were near the initial source of the invasion.

The frequency at which links were realized across

the 1,000 simulations measures the extent to which

links are likely to be utilized in the spread process. Of

the 340 potential links possible in the static network,

154 were never realized in any of the 1,000 simula-

tions (Fig. 3), indicating clear differences between the

static network and the DNM. Fewer than 50 links were

realized in more than 50 % of the simulations.

DNM for HWA

The mean simulated maximum number of counties

infested in any 1 year was approximately 28 (between

1970 and 1980), compared to observed maxima of

*35 counties/year occurring in the early 1990s and

the mid 2000’s (Fig. 4a). The cumulative simulated

number of counties invaded per year (Fig. 4b) fol-

lowed a classic logistic growth pattern, characteristic

of a ‘Type 3’ invasion process (logistic growth)

identified by Shigesada et al. (1995) that begins with a

prolonged initial establishment, or ‘‘lag’’ phase fol-

lowed by rapid range expansion driven by long-

distance dispersal until most suitable habitats are

occupied and spread slows. Mean simulated and

observed rates of spread for post-lag years were

strongly related (r2 [ 0.94), though the simulated

values had a slope of 18.1 counties per year versus

12.0 counties per year for the observed data. The lag

phase was shorter in the simulations (approximately

10 years; 1951–1961) than in the observed invasion

(29 years; 1951–1980). After the lag-phase and before

Fig. 2 Nodes scaled to (black) degree (i.e., the number of

potential connections to neighboring nodes based on distance

alone) and (white) source strength, a measure of the extent to

which nodes act as a source of infection to other nodes across

1,000 stochastic simulations. Nodes represented by large white

circles tended to act as strong sources of secondary infection
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the maximum rate of spread was realized, both the

simulated and observed spread patterns indicate a

period of intermediate acceleration of HWA spread

(*1960–1966 simulated, *1985–1991 observed,

Fig. 4b). The post-lag acceleration of the invasion

front was associated with a moderate increase in the

number of new realized links followed by a rapid

increase in new realized links in the mid-1960’s

(Fig. 4c).

On average, 43 % of the 1,168 counties containing

hemlock had been infected by the end of the simula-

tion. This resulted in a transition probability matrix

T having 97,261 non-zero entries, of which only

15,561 (16 %) were realized in all 1,000 simulations.

When links were mapped as an evolving network

(Fig. 5), the lag phase is associated with low-proba-

bility spread (i.e., all links have low probability of

occurrence) to counties surrounding and predomi-

nantly west and north of Richmond, VA (Fig. 5a, b).

Early acceleration of spread rate corresponds to the

simulated arrival of HWA by 1966 to counties west

and north of Richmond, VA with relatively high

Fig. 3 Number of links versus frequency of occurrence for

1,000 stochastic simulations of a dynamic network model for the

invasion of a hypothetical forest pest spreading across Antietam

National Battlefield Park

Fig. 4 Comparisons of

observed and simulated

invasion patterns from 1,000

stochastic simulations of a

dynamic network model for

the spread of the hemlock

woolly adelgid in US

counties containing

hemlock. a Observed and

mean simulated number of

new counties invaded by

HWA per year;

b cumulative number of

observed and mean

simulated counties invaded

by HWA for the period

1951–2008; c mean

simulated number of

realized links per year; and

d gamma ratio (see text for

description). Dashed lines in

a and c represent ±1

standard deviation
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hemlock abundance (Fig. 5c). Once infested, these

counties acts as sources of infestation for surrounding

counties and initiate rapid and high-probability spread

throughout the network (Fig. 5d).

The gamma ratio (ct, Eq. 6) measures realized link

frequency relative to the total number of realized links.

The closer ct is to 1.0, the more consistently the DNM

predicts the timing of link utilization. For the HWA

DNM, ct declined rapidly with time, indicating a rapid

decrease in the temporal consistency of the model in

predicting realized links associated with spread of

HWA and increasing temporal stochasticity in the

simulated spread dynamics.

Discussion

While relatively new to ecology, DNMs hold great

promise for understanding biological invasions and

other spatially explicit processes. The DNM approach,

borrowing from a rich history of graph theory

applications, can leverage powerful visualization and

analytical approaches largely lacking in existing

metapopulation or cell-based modeling paradigms to

provide scientists, managers, and policy makers

visually intuitive output to inform decisions. For

example, by evaluating the probabilistic emergent

network as a series of time-dependent adjacency

matrices and mapping time sequences of the evolving

network, DNMs can identify locations likely to act as

an infection source and promote spread across the

landscape, as well as visualize the prominent pathways

of spread and their timing of utilization. Such insights

are not readily obtainable from analyses of the static

graph adjacency structure or from other dynamic

models of range expansion—such as that described

and implemented by Fitzpatrick et al. (2012). For

example, while Fitzpatrick et al. (2012) generated

estimates of the probability and timing of infestation

of HWA, their model is mute on which infestations

contributed most to spread and the timing of these

events. By allowing nodes to vary in habitat charac-

teristics, DNMs can also readily accommodate spatial

and temporal heterogeneities in habitat. Lastly, DNMs

provide a framework for risk assessment congruent

with the spatial scale of observation (e.g., individual,

Fig. 5 Time series of an

evolving network from the

initial stages of 1,000

stochastic simulations of a

dynamic network model for

the invasion of the hemlock

woolly adelgid. Hollow

circles indicate uninfested

US counties containing

hemlock. Black circles are

scaled to source strength and

indicate nodes simulated to

become infested by time t in

at least 1 simulation. Link

symbolization is scaled

relative to probability of

occurrence by time t, with

darker, thicker lines

indicating greater

probabilities as in Fig. 1.

The white square indicates

the initial location of the

infestation in Richmond,

VA in 1951
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patch, county, etc.), while retaining essential biolog-

ical features of the organism and spatial data associ-

ated with habitat resources.

Dynamic network models share features with

spatially explicit cell based models, but are distinct

in that DNMs, like static networks, aggregate infor-

mation from multiple cells into a much smaller

number of nodes and generate output in a network

format. In essence, a cell-based model can be consid-

ered a DNM operating on a regular, lattice network (a

homogeneous adjacency structure). The DNMs devel-

oped in this work are network models operating across

a heterogeneous landscape with potential complex

adjacency structure. When the operational unit of the

DNM is a collection of cells, the DNM operates on a

far smaller number of nodes relative to the number of

cells, with potential benefits in terms of computation

and interpretation. For example, Fitzpatrick et al.

(2012) simulated spread of HWA on a grid comprised

of millions of cells whereas the DNM implementation

considered 1,164 nodes.

Our findings also suggest that the results of static

graph analyses, which are based on an equilibrium

assumption, should be interpreted with caution in the

context of non-equilibrium processes such as range

expansion. Minor and Urban (2007) compared the

equilibrium output of a spatially explicit metapopula-

tion model to a static network model and found close

agreement among the methods and concluded that static

network models have great value in general conserva-

tion contexts. Our results suggest that the application of

static network models in non-equilibrium contexts may

identify landscape features (e.g., patches and potential

connections between them) that have little relevance for

dynamic population expansion. For example, our

application of a DNM to a hypothetical invader in

ANTI showed that node degree (i.e., the number of links

based on distance only; equivalent to a static network

model) is rarely equivalent to node utilization (Fig. 2).

The primary reason for this difference is that DNMs

consider initial conditions (e.g., location of introduc-

tion) and resultant temporal dynamics while static

network models do not. A DNM, like an actual

invasion, begins with a founder population in a specific

geographic location from which spread proceeds. Initial

conditions, along with spatiotemporal heterogeneity in

habitat, influences the resulting spread dynamics and

produces links with differences in the timing and

strength of utilization; findings not readily apparent

from a static network model. In a broader sense, our

work highlights meaningful regimes of applicability for

both static and dynamic approaches; static network

models may be most appropriate when the goal is to

estimate the potential of patches to contribute to spread

as a function of only their position within the network,

while DNMs can complement static network models by

evaluating the most likely utilization of patches during

range expansion.

A key challenge for forecasts of invasive spread, and

of range expansion more generally, is to move beyond

static habitat suitability maps by incorporating spatio-

temporal dynamics in order to estimate the probability

and timing of establishment of populations in specific

locations (Yemshanov et al. 2009; Gallien et al. 2010;

Meentemeyer et al. 2011; Fitzpatrick et al. 2012). A

major hurdle in this regard is that where and when an

invader is introduced can dramatically impact the

extent (Minor and Gardner 2011) and speed (Ferrari

and Lookingbill 2009) of the subsequent invasion.

DNMs offer a means to address this uncertainty. By

independently simulating each node in a landscape as

the starting point of a potential invasion, DNMs can be

used to determine, for each initial condition, how long

it takes an invasion to reach equilibrium and the

resulting areal extent of the invasion. Introductions to

nodes that result in rapid spread and a large areal extent

of the invasion pose the greatest risk of facilitating

population expansion across the newly invaded range.

Such information would be a valuable supplement to

existing risk assessment frameworks that are based

solely on static representations of habitat suitability

and/or connectivity.

In a similar fashion, DNMs can inform the

management of ongoing invasions by identifying

locations likely to act as strong sources of secondary

infection. In the HWA case study for example, the

placement of the stochastic spread model in a DNM

framework identified two counties that, once infested,

were consistently predicted to initiate rapid spread

throughout the network (Fig. 5c). When used in

isolation, the HWA spread model estimated only the

probability and timing of infestation (Fitzpatrick et al.

2012). In a management context, aggressively mon-

itoring or treating locations predicted to initiate rapid

spread across the landscape could represent a cost

effective means of slowing invasions.

One of the metrics we evaluated for the HWA DNM

was ct (Eq. 6), a measure of the consistency of a
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stochastic model to simulate realized links of an

emergent network in time. Values approaching zero

indicate high stochasticity of an invasion. While it is

generally understood that the early stages of the

invasion are the most stochastic and uncertain (Facon

and David 2006), we observed relatively few high-

probability pathways for HWA spread out of Rich-

mond, VA. As the number of realized links and

infected nodes increased with time, the value of ct

decreased, indicating that, while the invasion may

have proceeded along certain high-probability path-

ways (as indicated by the high probability links in

Fig. 5), the timing of the formation of most links

tended to be inconsistent between simulations.

Taken together, our results suggest that DNMs can

provide valuable insights and visualization capabilities

not readily offered by approaches typically used to

model the spread of invasive species and which may

differ in important ways form static network represen-

tations of spread potential. Although our DNMs

focused on quantifying the emergent dynamics of

biological invasions across a heterogeneous landscape,

this general formulation is relevant to any process of

range expansion. For example, similar DNMs can be

envisioned to estimate the response of species to

shifting habitat resources as a result of climate change

or to determine optimal reintroduction points for the

reestablishment of extirpated species. More broadly,

DNMs represent a reasonable and informative next

step of the standard graph theory paradigm in the

ecological sciences, and provide a novel framework for

the pursuit of an array of ecological questions.
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