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Abstract Invasive herbivores can cause widespread dieback of na€ıve native hosts in the invaded range. Some

consume leaves, some bore through wood, whereas others, such as piercing-sucking insects, alter

plant resource allocation through changes to source-sink dynamics and depletion of long-term

stores. Invasive sap-sucking herbivores that target cells critical to resource transport and storage may

have particularly large effects. Herbivory by two exotic hemipterans, hemlock woolly adelgid

(HWA), Adelges tsugae Annand (Adelgidae), and elongate hemlock scale (EHS), Fiorinia externa Fer-

ris (Diaspididae), have very different effects on eastern hemlock, Tsuga canadensis (L.) Carri�ere

(Pinaceae). Although these insects differ in both timing and feeding site on their hemlock host, the

reasons for their differential effects are poorly understood. Here, using potted seedlings in a common

garden, we examined the effects of these two herbivores on resource uptake and allocation immedi-

ately after an initial attack. We labeled the plants with a single pulse of 13CO2 and a supply of
15NH4

15NO3 every third day to obtain a whole-plant perspective on resource uptake and allocation.

After 10 weeks of controlled infestation, plants were measured and divided into tissue types (needles,

branches, main stem, and roots). In each tissue we quantified biomass, 13C, 15N, total carbon (C),

nitrogen (N), protein, and starch pools. Hemlock woolly adelgid feeding decreased new needle bio-

mass by 34%, increased 13C allocation to roots andmain stems by 130%, and increased 15N allocation

to old foliage by 18%. Hemlock woolly adelgid infestation also resulted in increased starch storage in

old branches over new needles, and marginally increased protein content plant-wide. Elongate hem-

lock scale infestation resulted in a different growth pattern, with a 27% increase in biomass allocation

to the main stem. Elongate hemlock scale also caused a 23% increase in N allocation to roots and

main stem. Increases in resource allocation to main stem and belowground may indicate herbivore-

induced changes to storage patterns, or compensatory increased fine root growth to facilitate nutrient

and water uptake. These resource allocation effects likely underlie the rapid and dramatic decline of

hemlock in response to HWA feeding, and the considerablymilder effects of EHS feeding.

Introduction

Herbivores have strong effects on the physiology, ecology,

and evolution of plants in both agricultural and natural

systems (Fritz & Simms, 1992; Baldwin & Preston, 1999;

Strauss & Agrawal, 1999). Non-native invasive herbivores

can have particularly large effects on na€ıve, poorly

defended resident hosts (Herms & Mattson, 1992; Gandhi

& Herms, 2010; Desurmont et al., 2011). In North Amer-

ica, for example, the emerald ash borer, Agrilus planipennis

Fairmaire, is causing widespread dieback of ash (Poland &

McCullough, 2006), and the Asian longhorn beetle, Ano-

plophora glabripennis (Motschulsky), is causing extensive

mortality of maples (Acer spp.), willows (Salix spp.), and

elms (Ulmus spp.) (Nowak et al., 2001; Smith et al.,

2002). In addition to these insects, invasive sap-sucking
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herbivores that feed on cells and tissues critical to resource

transport and storage can have devastating effects on plant

growth, reproduction, and survival (Meyer & Root, 1996;

Kaloshian &Walling, 2005;Walling, 2008).

Herbivores can directly limit resource availability in the

host if there is loss of photosynthetic area or fine root bio-

mass (Wise & Abrahamson, 2007). Insects can also have

indirect effects on plant growth and reproduction through

herbivore-induced changes to resource dynamics, both

locally and systemically (Strauss & Agrawal, 1999; Karban

& Baldwin, 2007; Orians et al., 2011; Schultz et al., 2013).

Many insects, for example, can co-opt plant resources for

their own benefit (G�omez et al., 2012; Rehill & Schultz,

2012).

In some cases, herbivore-induced changes in resource

allocation to storage tissues may provide some benefit to

the plant (e.g., induced sequestration, sensu Orians et al.,

2011). Frost & Hunter (2008), for example, found greater

allocation belowground following herbivory. Induced

sequestration of resources away from attacked sites is

hypothesized as an induced tolerance strategy against leaf

chewing and defoliating herbivores (Kaplan et al., 2008;

G�omez et al., 2010; Schultz et al., 2013; Korpita et al.,

2014), and likely favored in environments with high herbi-

vore densities (Heil, 2010). Reallocation of phloem-trans-

ported resources can also be a mechanism to provide

resources for the induction of plant defense traits (Schultz

et al., 2013). These shifts in allocation are expected to

come at the cost of reduced growth and reproduction and/

or increased susceptibility to environmental stress (Schultz

et al., 2013) due to plant functional trade-offs (Herms &

Mattson, 1992).

Overall, evergreen species may be particularly sensitive

to damage or to induced changes in resource dynamics

(Nyk€anen & Koricheva, 2004). Compared with deciduous

species, which store C and N in inaccessible tissues such as

stems and roots (Hoch et al., 2003), evergreen species rely

more heavily on foliar storage of C (Bryant et al., 1983;

but see Vanderklein & Reich, 2000). In addition, evergreen

species invest more N in leaf persistence than do decidu-

ous species (Takashima et al., 2004). Understory seedlings

are expected to be particularly sensitive to attack. Low light

availability limits C availability (Canham et al., 1994), and

the slow rate of decomposition, mineralization, and nitrifi-

cation in conifer-dominated systems can make N more

limiting (McClaugherty et al., 1985).

Eastern hemlock, Tsuga canadensis (L.) Carri�ere (Pi-

naceae), a conifer in eastern North America, is under

attack by several invasive species (G�omez et al., 2015).

One of these exotic herbivores, the hemlock woolly adelgid

(HWA), Adelges tsugae Annand (Hemiptera: Adelgidae),

is a specialist responsible for widespread mortality of

eastern hemlock in the eastern USA (Orwig et al., 2002).

Hemlock woolly adelgid has two generations per year and

feeds on parenchyma cells at the base of the needles. A sec-

ond common exotic hemipteran, the elongate hemlock

scale (EHS), Fiorinia externa Ferris (Diaspididae), only

causes mortality in severely stressed trees (McClure, 1980).

Elongate hemlock scale has one generation per year and

feeds on the mesophyll of needles themselves. Marked dif-

ferences in feeding site and phenology may contribute to

differing effects on resource allocation, and thus the sever-

ity in host damage.

Upon infestationwithHWA, the long-lived T. canaden-

sis suffers reduced photosynthesis, reduced growth,

increased needle loss, and branch fall, leading to rapid

mortality (Broeckling & Salom, 2003; Stadler et al., 2005;

Nuckolls et al., 2009; Gonda-King et al., 2014). This rapid

physiological response may indicate resource manipula-

tion by the insect, followed by depletion. In its native

range, HWA forms galls on spruce, its primary host (Havill

et al., 2007), suggesting that even though it does not form

galls in eastern hemlock it may retain some capacity to

alter host physiology. Galling species can upregulate pri-

mary metabolism by manipulating sink strength of the

attacked tissues (Larson & Whitham, 1991). In addition,

G�omez et al. (2012) observed higher free amino acid con-

centrations in HWA-infested tissues of T. canadensis com-

pared with tissues in noninfested trees, a result consistent

with resource manipulation. Moreover, in contrast to

HWA, amino acid concentrations in EHS-infested tissues

were not affected compared with control plants (G�omez

et al., 2012). This suggests that EHS may not affect

resource allocation. Hemlock woolly adelgid has two gen-

erations per year, with the first generation coinciding with

peak plant growth, whereas EHS has a single generation.

When EHS and HWA co-occur on T. canadensis, many of

the symptoms expected under HWA infestation are allevi-

ated (Miller-Pierce et al., 2010).

How HWA and EHS differ in their effects during early

stages of infestation is not well-studied and is likely an

important factor in determining their effects on host sur-

vival. Here, we examined the individual effects of these

two herbivores on resource uptake and whole-plant

resource allocation. More specifically, we measured bio-

mass growth, C and N concentration, distribution of C

and N stable-isotope labels, and storage (starch and pro-

tein concentration) in the first season of HWA and EHS

infection. We performed infestation treatments on 1-year-

old seedlings in a shaded plot, to differentiate the effects of

each insect from the physiology of healthy control plants.

We used the natural attack phenology rather than trying to

manipulate the two insects to synchronize their timing of

attack.
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We hypothesized that HWA disrupts the ability of

hemlocks to effectively uptake and invest C and N

sources to growth and storage. Reduced fine root pro-

duction and needle growth would contribute to this

effect. We also expected to observe signs of resource

depletion, manifested as decreases in starch storage and

in new growth. We hypothesized that HWA-infested

trees increase protein breakdown for N reallocation,

potentially contributing to previously observed increases

in the amino acid content of infested foliage. Given the

milder effects of EHS on hemlock growth and mortality,

we hypothesized that EHS herbivory would have minimal

effects on resource uptake and allocation compared with

HWA.

Materials and methods

Study system

Hemlock woolly adelgid was most likely first introduced

from southern Japan to the USA in the 1950s (Ward et al.,

2004; Havill et al., 2006), and has since spread throughout

the range of T. canadensis and T. caroliniana; from the

Carolinas and Tennessee in the south to near the northern

border of Massachusetts (Morin et al., 2009). In its native

range across Asia, HWA feeds on Tsuga and Picea species

in alternating generations; in its introduced range it relies

only on Tsuga hosts (McClure, 1989). Hemlock woolly

adelgid settles at the base of T. canadensis needles and

inserts its stylet bundle to extract water and nutrients from

the xylem ray parenchyma of the stem (Young et al.,

1995), likely impacting nutrient transport and storage

(van Bel, 1990). The spring generation of HWA emerges at

the end of April and immediately begins feeding before

bud-break; a second generation of HWA emerges mid-

summer.

Elongate hemlock scale is also native to Asia, and was

introduced to New York (USA) in 1908 (Sasscer, 1912). It

began to invade in the 1970s to encompass its current

range of 14 eastern states, largely overlapping with the

range of HWA (Lambdin et al., 2005). Elongate hemlock

scale is also widespread throughout the range of

T. canadensis (Preisser et al., 2008). It feeds on the under-

side of needles, sucking from the leaf mesophyll (McClure,

2002). In the northeastern USA, EHS emerges later in the

season (late June), close to the end of eastern hemlock’s

annual growth.

Eastern hemlock is common in forests throughout the

eastern USA and Canada. It is a shade-tolerant and late-

successional species that often occurs in dense stands (Or-

wig & Foster, 1998). Tsuga canadensis has virtually no nat-

ural resistance to HWA (McClure, 1995; Orwig & Foster,

1998; but see Preisser et al., 2011).

Experimental design

To assess whole-tree effects of herbivory, we used 1-year-

old T. canadensis seedlings from Evergreen Nursery (Stur-

geon Bay, WI, USA). Fifty-two seedlings were potted and

placed in a shaded garden plot on Tufts University campus

(42.41°N, 71.12°W) (Medford, MA, USA), within the cur-

rent ranges of all three species, and watered as needed.

Because HWA and EHS have different phenology of feed-

ing activity, we randomly split our trees into two experi-

ments to match the developmental timing of each insect.

Each insect experiment included a randomly selected con-

trol group of noninfested trees. Two randomly selected

trees from each control group were designated as unla-

beled controls to determine the natural abundance of 13C

and 15N before isotope application. One control tree in the

EHS experiment was added a posteriori to the natural

abundance subset for C analysis due to failure of 13C label-

ing. This resulted in the following allocation of seedlings

per treatment: 13 HWA-infested, 13 HWA-control (two

isotopically unlabeled), 13 EHS-infested, 12 EHS-control

(two 15N and 13C unlabeled, one 13C unlabeled).

Herbivory treatment

Each tree received insect-infested inoculant branches

according to standard protocols (Miller-Pierce et al.,

2010) allowing crawlers to colonize the entire trees. All

trees were bagged to prevent insect-contamination across

treatments and experiments. Both insects are sessile and

differ in the time window in which the mobile juvenile

instars are available; HWA in late April and EHS in late

June. To best incorporate natural differences in the phe-

nology of attack, we added the insect treatments on dates

of first crawler emergence for each species. In April 2012,

immediately before the first HWA emergence, inoculant

branches (8–10 cm) naturally infested with HWA were

collected in Medford, MA, USA (42.44°N, 71.12°W) and

attached to trees in the HWA group. In order to control

for the effects of applying foliage to the plants, noninfested

foliage from the same field site was attached to trees in the

control treatments. We reinoculated 2 weeks later to

assure dense HWA settlement. In late May, before EHS

emergence, naturally infested foliage was collected from

Hyde Park in Stafford, CT, USA (41.95°N, 72.31°W) and

applied to the EHS trees and their control group, respec-

tively. We performed two additional EHS inoculations in

June and July, until we observed EHS settling along the

new growth of the inoculated trees.

Isotope labeling

All plants received 50 ml 15NH4
15NO3 (50 p.p.m.) every

third day beginning mid-May, for a total of 8 weeks prior

to HWA harvest, and 19 weeks prior to EHS harvest
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(beginning with the May inoculation). Unlabeled control

seedlings received only water over this period. We saw no

evidence of a fertilization effect in the growth comparisons

between natural abundance (unlabeled) seedlings and

labeled control seedlings in either the HWA experiment

(Bonferroni-adjusted t-tests of tissue mass, with lowest P-

value for roots: t = 2.63, d.f. = 11, P = 0.14) or EHS

experiment (P = 1.0 for all). Six days before plant harvest,

we applied 13CO2 to each tree on a sunny morning to con-

duct a pulse-chase experiment in photosynthate. We

exposed one primary branch in the upper portion of each

tree to 13CO2 by placing the branch into a sealed plastic

sleeve and injecting 20% lactic acid solution into a 20-mg

vial of 99% 13C sodium bicarbonate, producing a 13CO2

pulse of up to 0.24 mol (as in Bledsoe &Orians, 2006).

Plant harvest

One day prior to harvest, we measured (1) branch growth,

as length of terminal current-year growth on three ran-

domly selected branches per seedling, and (2) insect infes-

tation density. During the harvest, we washed soil from

the roots, then separated the plant into seven tissue cate-

gories: roots (R), main stem (S), new growth [branch

(NB) and needle (NN) separated], previous years’ growth

[branch (OB) and needle (ON) separated], and the branch

directly exposed to 13CO2 (LG). We flash-froze a 5-g sub-

sample from each tissue category in liquid nitrogen (N),

lyophilized to constant mass and stored at�20 °C for fur-

ther chemical analysis. The remaining tissue was oven-

dried (75 °C) to constantmass and weighed.

Resource transport and allocation

Stable isotopes and C:N. Each tissue was ground to a fine

powder using a ball mill (Kleco, Visalia, CA, USA). A small

amount (1–5 mg) of each tissue sample was sent to the

University of California-Davis Stable Isotope Facility for
13C:12C and 15N:14N isotope ratio mass spectrometry as

well as measurement of total C and N concentration. The

isotopic composition of each sample was reported in d
notation as permil (parts per thousand), relative to

standards of known composition (peach leaves, nylon,

USGS-41 glutamic acid). In addition, we converted

absolute 13C and 15Nmeasurements to net values in excess

of natural abundance levels prior to statistical analysis.

Lower 13C values are observed and expected in

comparisons of spring to summer (HWA vs. EHS

experiments), as natural abundance 13C shifts toward

depletion in conifer needles over the course of the growth

season (J€aggi et al., 2002).

Starch and protein concentration. Starch was measured

using standard techniques (Haissig & Dickson, 1979). Ten

milligram of each tissue type was extracted in 80% ethanol

to remove ethanol-soluble compounds, and the resultant

pellets were analyzed for starch concentration, an

important storage compound in conifers (Webb, 1981).

The pellets were digested overnight in an

amyloglucosidase and sodium acetate solution at 55 °C
(Haissig & Dickson, 1979), and the resulting free sugars

were analyzed. We measured absorbance by the phenol-

sulfuric acid method (Dubois et al., 1956) at 487 nm

using a microtiter plate reader (Bio-Rad Laboratories,

Hercules, CA, USA).

Protein concentration in the different tissues was quan-

tified using a colorimetric method (Bradford & Williams,

1976). Ten milligram of ground tissue was extracted in

1.5 ml of NaOH 0.1 N. The extracts were incubated at

100 °C for 2 h and a dye-binding reagent (#500-0006;

Bio-Rad) was used to quantify protein based on sample

absorbance at 595 nm using bovine serum albumin as a

standard.

Statistical analysis

Due to deviations from normality and homoscedasticity

across all variables measured, we rank-transformed data

prior to analysis. We analyzed the transformed data using

linear mixed models implemented in R (nlme: Pinheiro

et al., 2007), including insect treatment as a fixed effect.

Because cellular physiology is highly differentiated by tis-

sue in the plant, we included tissue type as a fixed effect.

We also included the interaction term between tissue and

insect treatment in themodel. To eliminate pseudoreplica-

tion due to the analysis of six tissue types per tree, we

included individual tree identity as a random effect in the

mixed-effects model. Due to small sample size, we did not

include additional covariates in our analysis.

Results

Infestation level

Our artificial infestations resulted in 1.88 � 0.24 and

0.98 � 0.18 insects cm�1 new growth (mean � SE) for

HWA- and EHS-treated plants, respectively, at the times

of their respective harvest. In addition, EHS infested the

old foliage throughout the plant, so our measured plant-

wide densities were conservatively low.

Plant growth

After only 10 weeks of infestation from the initial inocula-

tion date, HWA already reduced average branch elonga-

tion (t-test: t = 2.45, d.f. = 20, P = 0.045) by

approximately one-third compared with control trees

(Figure 1A). Biomass allocation was significantly affected

by the interaction between HWA treatment and tissue type
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(Table 1, Figure 2A); HWA infestation most strongly

decreased biomass of new foliage (needles and branches),

simultaneously increasing relative biomass of old foliage.

In contrast, 10 weeks of EHS infestation from the last

inoculation date did not result in any change in branch

elongation (t-test: t = 0.96, d.f. = 20, P = 0.69), though

an interaction between EHS treatment and tissue type

significantly affected relative biomass allocation (Table 2,

Figures 1B and 2B). In contrast to the patterns observed in

HWA-infested trees, EHS-treated plants exhibited an

increase in the biomass of the main stem, with a concur-

rent decrease in the biomass of old needles.

Resource transport and allocation

Carbon and nitrogen uptake and allocation. Neither insect

had a net effect on total C or N, or on C:N ratio (Tables 1

and 2, Figure 3). Compared with the HWA experiment,

plants in the EHS experiment exhibited less C uptake

overall. Across the EHS experiment insect treatments,

d13C was more negative (indicating less uptake). An

interaction between HWA infestation and tissue type

significantly affected 13C and 15N translocation (Table 1,

Figure 4A and C). Hemlock woolly adelgid plants

translocated more 13C toward roots and main stems, and

more 15N toward old tissue (needles and branches) where

they were feeding, with a corresponding decrease in new

needles and the main stem. In contrast, the effects of EHS

on resource allocation were minimal. Elongate hemlock
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Figure 1 Mean (� SE) eastern hemlock growth (cm) in response

to herbivory by (A) hemlock woolly adelgid (HWA) and (B)

elongate hemlock scale (EHS). New branch growth is quantified

as length of new growth (elongation) for a subset of three longest

branches per tree (t-test: *P<0.05).

Table 1 Results of mixed model assessing the effects of hemlock woolly adelgid infestation on resource allocation and resource pools. We

examined tissue and herbivory effects and their interaction. All data were rank-transformed prior to analysis

Tissue Herbivory Tissue*herbivory

F5,110 P F1,22 P F5,110 P

d13C 39.3 <0.0001 0.923 0.35 3.17 0.010

d15N 89.9 <0.0001 0.198 0.66 2.63 0.028

Starch 1.30 0.27 0.526 0.48 5.14 0.0003

Protein 56.6 <0.0001 3.55 0.073 1.29 0.28

C:N 221 <0.0001 2.55 0.13 10.9 0.37

%C 31.7 <0.0001 2.81 0.11 0.731 0.60

%N 220 <0.0001 2.58 0.12 1.11 0.36

Biomass 110 <0.0001 0.0122 0.91 15.1 <0.0001
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Figure 2 Mean (� SE) biomass allocation (%) to new needles (NN), new branches (NB), old needles (ON), old branches (OB), main stem

(S), and roots (R) of eastern hemlock in response to herbivory by (A) hemlock woolly adelgid (HWA) and (B) elongate hemlock scale

(EHS).
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scale had no effect on 13C translocation (Table 2,

Figure 4B). For 15N, an interaction between EHS

infestation and tissue type had a marginally significant

effect on 15N translocation (Table 2, Figure 4D); EHS

increased translocation to the roots andmain stem.

Starch and protein concentrations. The interaction

between HWA treatment and tissue had a highly

significant effect on starch concentration (Table 1,

Figure 5A), but neither EHS infestation nor its interaction

effects significantly altered starch concentration (Table 2,

Figure 5B). Hemlock woolly adelgid induced an elevation

in starch concentrations in old branches, but a decrease in

starch concentrations in new needles. A marginally

significant elevation in protein concentration was

observed for HWA-infested plants (Table 1, Figure 5C),

Table 2 Results of mixedmodel assessing the effects of elongate hemlock scale (EHS) infestation on resource allocation and resource pools.

We examined tissue and herbivory effects and their interaction. All data were rank-transformed prior to analysis. New needles and new

branches compare control to locally EHS-infested tissues only

Tissue Herbivory Tissue*herbivory

Num d.f. Den d.f. F P Num d.f. Den d.f. F P Num d.f. Den d.f. F P

d13C 5 100 32.2 <0.0001 1 20 0.313 0.58 5 100 0.6719 0.65

d15N 5 105 115 <0.0001 1 21 0.255 0.62 5 105 2.1419 0.066

Starch 5 100 30.1 <0.0001 1 20 0.227 0.64 5 100 0.7558 0.58

Protein 5 105 6.70 <0.0001 1 21 0.215 0.65 5 105 1.406 0.23

C:N 5 106 214 <0.0001 1 20 0.0178 0.90 5 106 0.6803 0.64

%C 5 101 39.0 <0.0001 1 19 1.28 0.30 5 101 1.1953 0.30

%N 5 106 181 <0.0001 1 20 0.136 0.72 5 106 0.8789 0.50

Biomass 5 100 98.2 <0.0001 1 20 0.0261 0.87 5 100 2.6142 0.029
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Figure 3 Mean (� SE) percentage of C and N in new needles (NN), new branches (NB), old needles (ON), old branches(OB), main stem

(S), and roots (R) of eastern hemlock in response to herbivory by (A, C) hemlock woolly adelgid (HWA) and (B, D) elongate hemlock

scale (EHS). In EHS trees, new needles (NN) and new branches (NB) represent only locally infested tissues.
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but again we measured no effect of EHS infestation

(Table 2, Figure 5D).

Discussion

Exotic herbivores often have devastating effects on na€ıve

hosts. Hemlock woolly adelgid, in particular, is causing

widespread mortality in eastern hemlock. The timing of

the first generation of HWA attack coincides with the per-

iod of rapid shoot growth. The two exotic herbivores stud-

ied here have markedly different effects on growth and

resource uptake and allocation. Our results suggest that

even moderate HWA infestation causes shifts in resource

allocation during the first generation of attack. Elongate

hemlock scale, in contrast, attacks later in the season after

new growth has slowed. This likely explains the mild

effects of EHS herbivory on resource allocation. In addi-

tion, later in the growing season new shoots often retain

the vast majority of the C they receive, with less transloca-

tion to other tissues than in early summer (Webb, 1977;

Smith & Paul, 1988), potentially explaining the lack of any

measurable translocation in response to EHS. Thus, the

timing of the attack is likely a key to the contrasting impact

of these invasive herbivores. We also observed increased

resource allocation to old foliage where HWA was actively

feeding, as well as increased belowground resource trans-

port in response to both insects. In the course of this 10-

week experiment, we did not observe signs of resource

depletion in response to either insect.

Impact on growth and biomass allocation

Hemlock woolly adelgid infestation affected plant growth

and biomass allocation within 10 weeks of infestation.

Considering that infestation levels were moderate for

HWA (Preisser et al., 2008) and EHS (G�omez et al.,

2015), the rapidity of this effect is notable.

More specifically, HWA reduced branch elongation by

27% and resulted in a smaller percentage of mass allocated

to new needles and branches compared with control trees.

Simulated herbivory in conifers has been shown to inhibit

shoot growth; shoot length in Pinus spp. decreased up to

50% in response to complete defoliation (Honkanen et al.,

1994), and shoot length in Salix spp. decreased in response

to feeding by galling herbivores (Craig et al., 1986).
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Reductions in new growth not caused by direct consump-

tion likely indicate resource allocation to other tissues and

processes, such as storage or defense. Although our results

are consistent with the observation that HWA reduces tree

growth (McClure, 1991), premature needle abscission

(Soltis et al., 2014) could also contribute to the reduction

in young needle mass. Stadler et al. (2005) found that nee-

dle litterfall is greater beneath infested hemlocks.

In contrast, EHS infestation had no significant effect on

growth and only mild effects on biomass allocation. Elon-

gate hemlock scale emerges in June, when the plant has

produced most of the season’s new growth; this may

explain the lack of EHS effect on branch growth. Even so,

we did observe a change in biomass distribution: biomass

decreased in old needles, and increased in the stem. Elon-

gate hemlock scale widely infested old needles, whereas

insect density in new needles was patchier. This suggests

old growth is preferred by this insect, and is perhaps one of

the reasons why it thrives in adelgid-infested trees which

have relatively few young needles. Low biomass in old nee-

dles is likely due to premature abscission in these actively

infested old needles, a litterfall effect which may contribute

to elevated N levels measured beneath infested hemlock

stands (Stadler et al., 2005).

Impact on resource pools and allocation

Hemlock woolly adelgid altered translocation patterns of

photosynthate, as shown by our 13C pulse-labeling. Nota-

bly, HWA increased 13C translocation to the roots and

main stem of infested trees compared with control trees.

This pattern could imply resource sequestration as a

mechanism for induced tolerance: herbivore-induced

partitioning of metabolites to inaccessible storage tissues

(Orians et al., 2011). Alternatively, it is possible that the

increased photoassimilate translocation to roots is a phys-

iological consequence of the reduction in new needle pro-

duction and subsequent reduction of sink strength in this

tissue. In conifers, C allocation shifts toward the roots

and latewood stem following the completion of needle

elongation in summer (Gordon & Larson, 1968; Smith &

Paul, 1988). As summer progresses, the needle-to-stem

translocation of assimilates may be localized to starch-

storing cells as in Picea spp. (Langenfeld-Heyser, 1987),

or allocated to the production of thick-walled latewood

xylem as in Pinus spp., which correlates with current-sea-

son needle maturation (Gordon & Larson, 1968). Thus,

the increased C translocated to the main stem may be

partitioned to starch storage, or to latewood xylem for

cell growth. Regardless of the mechanism, this change is
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associated with reduced growth. We observed a tissue-

specific impact of HWA on starch concentration, decreas-

ing starch in new needles, and increasing starch in old

branches. Although starch may be partitioned to storage

in mature branches, conifers tend to have slightly lower

storage than deciduous trees in branches compared with

needles (Oren et al., 1988). The slight increase in starch

may be related to HWA-induced false ring formation

(abnormal cells resembling latewood xylem) in the

branches of infested trees (Gonda-King et al., 2012;

Domec et al., 2013). This thickening of early- and mid-

season cell walls may constitute a stronger C sink in

HWA-attacked seedlings, due to the accumulation of

C-rich cellulose and lignin in the cell wall.

It is also possible that 13C detected in the stem at the

time of sampling may have been en route toward the root.

This would act as a compensatory strategy for resource

starvation due to herbivory, contributing to the 13C

translocation already observed in the root. A previous

study of simulated herbivory in Pinus indicates increased

resource allocation belowground by increasing fine root

biomass, rather than sequestration to storage tissues (Mor-

eira et al., 2012).

Although we did not examine herbivory-related water

or nutrient stress in this study, long-term infestation may

lead to resource starvation. If trees become N-deficient,

they can respond by increasing C allocation to fine roots

(Dyckmans & Flessa, 2001). In addition, prioritizing car-

bohydrate storage, as indicated by the increased starch in

infested old branches of HWA-infested trees, can aid in

maintaining labile N pools and in producing root exudates

to improve nutrient cycling (Sala et al., 2012). However,

we note that infestation did not cause an increase in N

uptake in our study. Thus, further studies of root activity,

to differentiate large and fine root growth, and measure

root exudation and mycorrhizal colonization, would help

to clarify the implications of the observed photosynthate

export toward roots.

After one generation of HWA attack, there was a

remarkable decrease in starch in new needles as well. A

decrease in starch in new needles may indicate resource

starvation and decrease long-term growth potential (Sala

et al., 2012). In contrast, herbivory effects on N-based

pools were weak, with a marginally significant increase in

protein within new tissues (see also G�omez et al., 2012).

An increase in N pools may increase plant susceptibility to

subsequent generations of HWA attack, due to increased

palatability and tissue quality (McClure, 1992). We saw no

changes to total C or N allocation in response to either

insect. Resource pools and storage already accumulated in

these seedlings may buffer most bulk C and N effects of

our 10-week infestation season.

Nitrogen dynamics were also altered by infestation. The

effects of HWA and EHS on 15N translocation were tissue-

specific. Hemlock woolly adelgid-infested trees showed

increased translocation of 15N to old needles and old

branches, and a decrease to new needles and main stem.

This indicates that HWA feeding may create a sink for N

in the actively infested tissues (old needles and branches)

to support insect development. Recent findings of Rubino

et al. (2015) in older saplings with long infestation histo-

ries, however, suggest that HWA infestation may eventu-

ally increase 15N translocation to both old and new

needles. Future time-course studies may clarify the link

between resource allocation patterns of the first generation

and advanced infestation. Whole-plant N uptake was not

affected by HWA as hypothesized. Rather our results sug-

gest that the high amino acid composition previously

observed in locally infested tissues (G�omez et al., 2012)

may be due to changes in N distribution favoring alloca-

tion to the infested old branches. Given that protein con-

centrations did not change, our results do not indicate that

HWA can accelerate protein breakdown in the first season

of infestation. In EHS-infested trees, N translocation to

roots and stems increased. This is consistent with effects of

defoliation herbivory on oak seedlings, which increases N

allocation to taproots and stem, suggesting induced toler-

ance through increased storage (Frost & Hunter, 2008).

Hemlock woolly adelgid avoids EHS-infested tissue

(G�omez et al., 2014) and may be particularly sensitive to

N availability (Pontius et al., 2006), and our results pro-

vide further support to the idea that changing patterns of

nutritionmight explain these observations.
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