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Abstract. While the management of biological invasions is often characterized by a series
of single-species decisions, invasive species exist within larger food webs. These biotic
interactions can alter the impact of control/eradication programs and may cause suppression
efforts to inadvertently facilitate invasion spread and impact. We document the rapid
replacement of the invasive Bemisia Middle East–Asia Minor I (MEAM1) cryptic biotype by
the cryptic Mediterranean (MED) biotype throughout China and demonstrate that MED is
more tolerant of insecticides and a better vector of tomato yellow leaf curl virus (TYLCV)
than MEAM1. While MEAM1 usually excludes MED under natural conditions, insecticide
application reverses the MEAM1–MED competitive hierarchy and allows MED to exclude
MEAM1. The insecticide-mediated success of MED has led to TYLCV outbreaks throughout
China. Our work strongly supports the hypothesis that insecticide use in China reverses the
MEAM1–MED competitive hierarchy and allows MED to displace MEAM1 in managed
landscapes. By promoting the dominance of a Bemisia species that is a competent viral vector,
insecticides thus increase the spread and impact of TYLCV in heterogeneous agroecosystems.

Key words: agriculture; Bemisia tabaci; biological invasions; competitive displacement; insecticides;
Middle East–Asia Minor I (MEAM1); Mediterranean (MED); plant virus; tomato yellow leaf curl virus
(TYLCV).

INTRODUCTION

Rapid increases in the speed and volume of interna-

tional trade have led to biological invasions becoming

an increasingly serious problem worldwide. Invasions

that bring together previously disjunct taxa have the

potential to profoundly alter both natural and managed

ecosystems. Despite a large body of literature on

interactions between native and invasive species, there

has been less attention paid to the outcome and

consequences of invasive–invasive interactions (Simber-

loff and Von Holle 1999, Simberloff 2006). There are

several reasons why understanding such interactions,

and the factors affecting them, is important. First,

invasive–invasive interactions should grow more com-

mon as the number and density of these species

increases. Second, the rapid population growth rates of

many invasive species (Sakai et al. 2001) should increase

interspecific competition; a meta-analysis found that

competition was stronger between invasive herbivores

than between native species (Denno et al. 1995). Even in

the absence of competition, newly arrived exotic species

might also alter the spread and impact of other invasive

species, a phenomenon called invasional meltdown

(Simberloff and Von Holle 1999, Grosholz 2005,

Simberloff 2006).

Understanding the interaction between invasive spe-

cies, and the factors affecting it, is especially important

when the species have different impacts on a shared

resource. This can happen when resource depletion is

not the only (or even primary) means by which an

invasive herbivore impacts its host plant. For example,

the effect of herbivory on a host plant can be magnified

if the herbivore acts as a disease vector (Miles 1999,

Jones 2003) or facilitates the entry of secondary

pathogens (Wallin and Raffa 2001). Because organisms

often differ in their vector competence or feeding-related

damage (Dorschner et al. 1987), interactions between

exotic species with disparate impacts may alter the

ecological and economic costs of invasions.

The whitefly species Bemisia tabaci (Gennadius)

(Hemiptera: Aleyrodidae) is actually a complex of

genetically divergent but morphologically indistinguish-

able cryptic biotype (De Barro et al. 2011). The two

most invasive Bemisia biotypes are the Middle East–
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Asia Minor I (MEAM1) and the Mediterranean

(MED). During the past two decades, MEAM1 and

MED have invaded nearly 60 countries and caused

massive agricultural losses (De Barro et al. 2011).

Although their feeding itself is damaging, whiteflies also

vector over 100 begomoviruses that can have cata-

strophic impacts on plant growth and survival (Jones

2003). The whitefly-mediated introduction of tomato

yellow curl leaf virus (TYLCV) and other pathogens

into agricultural ecosystems often produces outbreaks

whose costs far exceed those of the whiteflies themselves

(Jones 2003). Although both biotypes are viral vectors,

the feeding behavior of MED makes it more likely than

MEAM1 to acquire and transmit TYLCV and other

viruses (Jiang et al. 2000, Pan et al. 2012); as a result,

MED appears to be a more competent viral vector than

MEAM1 (Pan et al. 2012).

Although MEAM1 and MED are both major pests of

agricultural crops, they vary in their mating behavior

and prefer different host plants (Crowder et al. 2010b,

2011, Elbaz et al. 2011, Tsueda and Tsuchida 2011).

They also differ in their susceptibility to insecticides,

with MED generally showing greater tolerance of

neonicotinoids and other insecticides (Crowder et al.

2010a, Jones et al. 2011). The outcome of MEAM1–

MED interactions can be affected by host plant and

abiotic factors such as temperature and humidity (Chu

et al. 2012b); in general, however, the greater ability of

MEAM1 than MED to mate with conspecifics in mixed

populations and greater effort devoted by MEAM1 to

reproduction leads to the competitive exclusion of MED

in laboratory experiments (Pascual and Callejas 2004,

Pascual 2006, Crowder et al. 2010a, b, Tsueda and

Tsuchida 2011).

After MEAM1 entered China in the mid-1990s, it

spread rapidly and caused serious crop losses while
displacing native Bemisia spp. (Liu et al. 2007). MEAM1

dominated Chinese agricultural systems until 2003, when
MED was first detected in Yunnan Province. The new

biotype spread quickly and by 2007 had supplanted
MEAM1 as the dominant whitefly in agricultural
systems in China (Chu et al. 2010, Pan et al. 2011).

The same pattern of initial invasion and dominance by
MEAM1, followed by the invasion and rapid replace-

ment of MEAM1 by MED, also occurred in Japan
(MEAM1 in 1989 and MED in 2004; Ohto 1990, Ueda

and Brown 2006) and South Korea (1998 and 2005,
respectively; Lee and De Barro 2000, Park et al. 2012).

The rapid exclusion of MEAM1 in these countries is at
odds with previous laboratory studies demonstrating the

competitive dominance of MEAM1 (Pascual and Call-
ejas 2004, Pascual 2006, Crowder et al. 2010a, Tsueda

and Tsuchida 2011). This apparent contradiction begs
the question: what factors explain the rapid displacement

of MEAM1 by MED throughout China?
We explore the factors affecting competition between

invasive herbivore species and link this interaction to an
increase in herbivore-vectored viral outbreaks. Specifi-

cally, we present the results of experimental work
demonstrating that insecticide application reverses a
naturally occurring competitive hierarchy and allows

MED to exclude MEAM1. We also document a rapid
increase in the domestic use of both neonicotinoid- and

pyrethroid-based insecticides between 2000 and 2011
(Fig. 1) and present the results of contemporaneous

landscape-level surveys documenting both the replace-
ment of MEAM1 by MED throughout China and the

tight association between TYLCV and MED. The
ascent of MED, a highly competent begomovirus vector,

has led to damaging outbreaks of TYLCV in China and
other Pacific Rim nations. This is the first research to

comprehensively address the hypothesized connection
between herbivore competition, insecticide resistance,

and viral outbreaks. Instead of reducing impacts, our
results suggest that heavy insecticide use for whitefly

suppression has exacerbated the spread of TYLCV in
heterogeneous agricultural landscapes.

METHODS

Bemisia field survey

Adult whiteflies were collected from agricultural fields

in 26 of 34 province-level adminstrative units in China
during 2003 (Appendix A), 2007 (Appendix B), 2009

(Appendix C), 2011 (Appendix D), and 2012 (Appendix
E). In the 2003–2011 surveys, ten adult whiteflies were

collected at each site, each individual from a different
individual host plant. Adult whiteflies were placed alive

into 95% ethanol and stored at �208C until DNA
extraction. In the 2003–2011 surveys, genomic DNA was
extracted from the ten individuals from each site; in the

2012 survey, the decreasing costs of genetic analysis
allowed us to collect and determine the biotype identity

FIG. 1. Domestic use of neonicotinoid (2000–2009) and
pyrethroid (2000–2011) insecticides in China. Data reflects total
pesticide use summed across all crop types. The 2006 data for
both insecticide classes and 2010 and 2012 data for neonico-
tinoids were unavailable at the time of request; all other data
provided courtesy of China Pesticide Information Network
(http://www.chinapesticide.gov.cn). Abbreviations are MED,
Mediterranean Bemisia biotype; and TYLCV, tomato yellow
leaf curl virus.
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of up to 30 individuals per site (Appendices A–E). DNA

was stored at�208C until analysis of the MT-CO1 gene

(Shatters et al. 2009) for biotype determination.

TYLCV-Bemisia field survey

In 2011, adult whiteflies were collected from healthy

(i.e., without the leaf curls symptomatic of TYLCV

infection) or TYLCV-infected (i.e., with leaf curling)

fields of tomato, Lycopersicon esculentum. Correspon-

dence between leaf-curling symptoms and TYLCV

infection was confirmed by screening sampled whiteflies

for TYLCV genes; TYLCV was always detected in

whiteflies collected from leaf-curling fields but never

detected in whiteflies on plants from fields where the

symptomatic leaf curling was absent. A total of 48 fields

from 26 province-level adminstrative units in China were

sampled (Appendix F). At each site, at least 100

whiteflies were collected from a cluster of ten plants (at

least 10 whiteflies/plant). Whiteflies were placed alive

into 95% ethanol and stored at �208C until DNA

extraction. If none of the ten plants exhibited the leaf-

curling symptomatic of TYLCV infection, the corre-

sponding collections were considered to be from healthy

plants; otherwise, they were classified as TYLCV-

infected. For each of the 48 collections, 10–20 individual

whiteflies were randomly selected for determination of

biotype and TYLCV presence. DNA extraction and

biotype determination were conducted as in the Bemisia

field surveys. TYLCV presence in each whitefly was

determined using two primers that amplified the AV2

gene, TYLCV-61 and TYLCV-473 (Ghanim et al. 2007).

Bemisia laboratory colonies and host plants

MEAM1 and MED laboratory populations were

collected on cabbage, Brassica oleracea (cv. Jingfeng

1), and poinsettia, Euphorbia pulcherrima, in Beijing,

China, in 2004 and 2009, respectively. Source popula-

tions of MEAM1 and MED were maintained in separate

whitefly-proof screen cages on tomato plants (cv.

Zhongza 9) in a glasshouse under natural light and

controlled temperature (268 6 28C) for four generations.

Fifteen adults per generation were randomly selected for

MT-CO1 sequencing to ensure the purity of each culture

(Shatters et al. 2009).

Because MEAM1 and MED are both highly polyph-

agous, we explored their interactions on multiple host

plants. Five crop species, each widely cultivated in

China, were used as host plants in the experiments:

tomato (cv. Zhongza 9), cabbage (cv. Jingfeng 1),

cucumber (Cucumis sativus, cv. Zhongnong 12), pepper

(Capsicum annuum, cv. Zhongjiao 6), and cotton

(Gossypium hirsutum, cv. DP99B). Seedlings were grown

to the five to seven true leaf stage in individual 1.5-L

pots with potting mix (peat moss, vermiculite, organic

fertilizer, and perlite; 10:10:10:1 ratio by volume). Plants

were grown under natural light and controlled temper-

atures (268 6 28C) in screen cages within a glasshouse.

Insecticides

We tested the impact of three insecticides on MEAM1
and MED: Thiamethoxam (Syngenta China, Beijing,

China), Spirotetramat (trade name Movento; Bayer
CropScience China, Hangzhou, Zhejiang Province,

China), and Bifenthrin (Ruidefeng Pesticide, Shenzhen,
Guangdong Province, China). Thiamethoxam, a neon-

icotinoid insecticide, was introduced in China in 2000
for the control of Bemisia on field and greenhouse crops

(Wu et al. 2003). Spirotetramat, a spirocyclic tetramic
acid derivative, is a systemic insecticide that targets

whiteflies and other phloem-feeding insects (Cheng et al.
2013); it was introduced in China in 2008. Bifenthrin is a

pyrethroid insecticide that has been widely used against
Bemisia and other crop pests in China since the mid-

1990s (Ma et al. 2007).

Insecticidal bioassays

The effect of Thiamethoxam, Bifenthrin, and Spirote-
tramat on Bemisia eggs was assessed using a slightly

modified version of the standard bioassay protocol
(Cahill et al. 1996). Fifteen mating pairs of MEAM1 or

MED whiteflies were transferred to separate cotton
seedlings (first true leaf stage, ;11.4 cm in height) for

egg laying, then removed after 24 h. After determining
egg density on each leaf, seedlings were dipped in

different serial dilutions of insecticide for 20 s and dried
naturally for 2 h. Because MEAM1 and MED differ in

their susceptibility to insecticides (Crowder et al. 2010a,
Jones et al. 2011), we used one set of serial dilutions for

MEAM1 (water only; 6.25, 12.5, 25, 50, 100, and 200
mg/L) and another for MED (water only; 100, 200, 400,

800, and 1600 mg/L). Seedlings were maintained in
water-filled 50-mL beakers and the number of nymphs

recorded. Hatching rate was calculated by dividing the
number of nymphs by the number of eggs. There were
four replicates for each species 3 insecticide concentra-

tion combination; water-only treatments were controls.
Bioassays were conducted in an incubator at 268 6 28C

and a 16 h light:8 h dark photoperiod.
Nymphal bioassays were conducted using standard

procedures (Li et al. 2012). After determining the per-
seedling density of late second-instar nymphs, seedlings

were sprayed with different insecticide concentrations.
MEAM1 nymphs were exposed to water only at 0.225,

0.45, 0.9, 1.8, 3.6, and 7.8 mg/L; MED nymphs were
exposed to water only at 3.6, 7.8, 15.6, and 31.2 mg/L.

After 6 days, the per-seedling density of fourth-instar
nymphs was determined and used to calculate the

mortality rate of third-instar nymphs. Replication and
control treatment were as in the egg bioassays.

Adult bioassays were conducted using standard
procedures (Feng et al. 2009). Twenty adult whiteflies

(;5 days posteclosion) in a glass tube were sprayed with
different insecticide concentrations. MEAM1 adults

were exposed to water only at 0.5, 1.5, 6, 24, and 96
mg/L; MED adults were exposed to water only at 1.5, 6,

24, 96, 384, 1536, and 6144 mg/L. Mortality was
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assessed after 48 h. There were four replicates for each

species 3 insecticide concentration combination; water-

only treatments were used as controls.

Host plant effects on MEAM1–MED competition

We conducted a laboratory experiment assessing

MEAM1–MED competition on five plant species:

cabbage, cotton, cucumber, pepper, and tomato. Each

0.6 3 0.4 3 0.8 m screened cage (or one replicate)

contained two plants of the same species. Each replicate

was inoculated with 20 male-female pairs of newly

emerged MEAM1 adults and 20 male-female pairs of

MED adults (80 total whiteflies). There were three

replicates per plant host for cabbage, cotton, pepper,

and tomato, and five replicates for cucumber. Briefly,

the sampling protocol and timing was as follows: two

days after the progeny of each Bemisia generation began

emerging, we collected 100 whiteflies per replicate,

identified each of them as either MEAM1 or MED,

and expressed the results as the proportion of MED

present in the 100-Bemisia sample.

Insecticide effects on MEAM1–MED competition

We conducted a laboratory experiment examining

how insecticides affect MEAM1–MED competition on

cucumber and tomato. Cage design was as in the host

plant experiment, with two plants per cage (or one

replicate). In the cucumber experiment, 20 male-female

pairs of newly emerged MEAM1 adults and 20 male-

female pairs of newly emerged MED adults (80 total

whiteflies) were added per replicate. We added whiteflies

to each replicate 7 d before applying the control and

insecticide treatments to allow them to establish

populations on the host plants. At the beginning of

the second whitefly generation, each replicate was

randomly assigned to one of the following four

treatments: water spray (control), Thiamethoxam spray,

Spirotetramat spray, or Bifenthrin spray (applied at

concentrations of 31.3, 20, and 96 mg/L, respectively).

These concentrations reflect recommended spraying

rates for B. tabaci management on cucumber and

tomato (available online).1 Insecticides and water were

applied by spraying each plant to run-off; each

treatment was replicated five times. The tomato

experiment was identical except that it contained only

two treatments, water spray and Thiamethoxam spray

(31.3 mg/L), with four replicates per treatment. Insec-

ticides and water were reapplied every 7 d after the

initial spraying. Briefly, the sampling protocol and

timing was as follows: two days after the progeny of

each Bemisia generation began emerging, we collected

100 whiteflies per replicate, identified each of them as

either MEAM1 or MED, and expressed the results as

the proportion of MED present in the 100-Bemisia

sample.

Sampling and identification of whiteflies in biotype

exclusion experiments

Whitefly samples for biotype determination were

taken 2 d after the progeny of each generation began

emerging. Each sample consisted of 100 randomly

selected whiteflies per cage, each of which was identified

as MEAM1 or MED via MT-CO1 analysis (Shatters et

al. 2009). After sampling, we removed one of the two

plants in each cage (and the whiteflies on it) and replaced

it with a whitefly-free plant to prevent overcrowding. In

the experiment evaluating the impact of insecticides,

each plant was sprayed with the appropriate treatment

(water or insecticide) before being placed in the cage.

Sampling ended when only one biotype was detected in

the sample; the experiment ended when all treatments

consisted of a single biotype.

Statistical analysis

For the TYLCV-Bemisia survey, a Fisher’s exact test

was used to compare the percentage of MEAM1 and

MED at sites with and without TYLCV-infected plants,

and the percentage of TYLCV-infected MEAM1 and

MED. We used logistic regression for binary data to

assess the effects of sample month, percentage of MED

individuals, and the percentage of TYLCV-infected

MEAM1 or MED individuals on the odds of tomato

plant infection by TYLCV. Because there was evidence

of a tight fit when the percentage of TYLCV-infected

MED was included in the model, regression parameters

were estimated using a Firth-adjusted maximum likeli-

hood method. As there was no evidence that month or

the percentage of MED individuals was significantly

associated with the odds of plant infection (drop-in-

deviance test, df ¼ 4, v2 ¼ 3.92, P ¼ 0.42), we removed

these two factors in a reduced logistic regression model

that investigated the effect of the percentage of TYLCV-

infected MEAM1 and MED individuals.

Bioassay data, including LC50 values (lethal concen-

tration; i.e., the pesticide concentration necessary to kill

50% of the population) and their 95% fiducial limits,

were calculated from probit regressions using POLO-PC

(LeOra Software, Berkeley, California, USA). Mortality

was corrected using Abbott’s formula for individual

probit analyses. Resistance to an insecticide was consid-

ered significantly different between biotypes if the 95%
fiducial limits associated with the LC50 values of each

biotype did not overlap. JMP v.9 (SAS, Cary, North

Carolina, USA) was used for all statistical analyses.

RESULTS

Changes in Bemisia species composition in China,

2003–2012

At the start of our surveys in 2003, MED was absent

from 17 provinces and occurred sporadically in or

around the flower markets of Yunnan, Henan, and

Beijing (Fig. 2A). By 2007, MED was present in 11/24

sampled provinces (46%; Fig. 2B); by 2009, MED was1 http://www.chinapesticide.gov.cn
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FIG. 2. Replacement of Middle East–Asia Minor I Bemisia biotype (MEAM1) by MED in China. Field surveys were carried
out in (A) 2003, (B) 2007, (C) 2009, 2011 (not shown), and (D) 2012. SeeMethods: Bemisia field survey for survey details. Values are
means 6 SE. In panels (A–D), green denotes unsurveyed regions; colors of sampled provinces denote differing percentages of MED
(as indicated by the index in panel E). (E) Summary data indicating the mean province-level proportion of MED in sampled
populations over time. The number of Bemisia adults, sites, and provinces sampled per survey is listed above each point.
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present in 14 of 19 sampled provinces (74%; Fig. 2C). At

the time of the 2012 survey (Fig. 2D), MED occurred in

25/26 provinces (96%) and had completely excluded

MEAM1 from 13 of them. At the province level, the

mean proportion of MED in sampled Bemisia popula-

tions increased from ,5% in 2003 to .80% in 2012

(Fig. 2E)

TYLCV-Bemisia field survey

Of the 48 Bemisia populations sampled in 2011, 25

collections from 11 provinces contained only MED,

three collections from three provinces contained only

MEAM1, and 20 collections contained both MEAM1

and MED (Appendix F). MED was dominant (.50% of

sampled individuals) in 14 of 20 mixed-biotype samples.

Across all collections, TYLCV was more commonly

detected in MED than MEAM1 (Fig. 3; Fisher’s exact

test, P , 0.001). MED was also more abundant at sites

with TYLCV-infected tomato plants (85% MED) than

at sites with healthy tomato plants (70% MED; Fisher’s

exact test, P , 0.001). Of 45 populations with MED in

2011, 28 of them (62%; also see Fig. 3) had at least one

TYLCV-positive MED individual; of 23 populations of

MEAM1 in 2011, nine of them had at least one TYLCV-

positive MEAM1 individual (39%; again, see Fig. 3).

The logistic regression model that included the effects

of month, percentage of MED individuals, and percent-

ages of TYLCV-infected MEAM1 and MED adequately

described the variation in tomato plant infection

(goodness of fit v2 ¼ 3.09, df ¼ 13, P ¼ 0.99; Akaikes’s

information criterion corrected for sample sizes, AICc,¼
29.0). Of the four factors, only the percentage of

TYLCV-infected MED was positively and significantly

associated with tomato plant infection (slope¼ 3.42, SE

¼ 1.66, v2 ¼ 6.81, P ¼ 0.009). The reduced logistic

regression model that only included the percentage of

TYLCV-infected MEAM1 and MED also had a good fit

but lower AICc (goodness of fit v2¼ 1.38, df¼ 17, P¼ 1;

AICc ¼ 10.3). This reduced model produced similar

results: plant infection was associated with TYLCV

infection of MED (slope¼ 5.25, SE¼ 2.14, v2¼ 12.96, P

¼0.003) but not with infection of MEAM1 (slope¼2.55,

SE¼ 2.60, v2 ¼ 0, P ¼ 1).

Insecticidal bioassays

The LC50 of MEAM1 eggs exposed to Thiamethoxam

was 6.6 times lower than of MED eggs. Nymphs of both

biotypes were far more susceptible than eggs to

Thiamethoxam; again, however, the LC50 of MEAM1

nymphs was 4.9 times lower than in MED. Resistance

increased in both MEAM1 and MED adults, but the

LC50 of MEAM1 remained substantially (3.1 times)

lower than it was for MED adults.

The same pattern occurred when both biotypes were

exposed to Spirotetramat and Bifenthrin. Eggs of

MEAM1 were ;25 times less resistant to Spirotetramat

than those of MED, while MEAM1 nymphs and adults

were 6.5 times and 7 times less resistant, respectively.

Bifenthrin, a contact insecticide used primarily against

adult whiteflies, was not toxic to MEAM1 or MED eggs,

and was similarly toxic to MEAM1 and MED nymphs;

MEAM1 adults were, however, 3.7 times less resistant

than MED adults.

Host plant effects on MEAM1-MED competition

MEAM1 competitively excluded MED from four of

five host plants, taking between four (on cabbage) and

nine (on cucumber) generations to eliminate MED (Fig.

4). The only exception to this occurred on pepper, where

MED excluded MEAM1 in two generations.

Insecticide effects on MEAM1-MED competition

In the absence of insecticide, MEAM1 excluded MED

by the ninth generation on cucumber plants. Insecticide

application reversed this outcome, allowing MED to

exclude MEAM1 within five generations (Fig. 5A). This

result held true on tomato, where MEAM1 excluded

MED within six generations in the absence of Thiame-

thoxam but MED excluded MEAM1 when the insecti-

cide was used (Fig. 5B).

DISCUSSION

Our research provides strong support for the hypoth-

esis that insecticide use in China (Fig. 1) reverses the

competitive hierarchy between MEAM1 and MED,

allowing highly resistant MED to displace moderately

resistant MEAM1 in managed landscapes throughout

the country (Fig. 2). By promoting the dominance of a

FIG. 3. Observed frequencies of tomato yellow leaf curl
virus (TYLCV) infection in MEAM1 and MED in China in
2009 and 2011. See Methods: TTLCV-Bemisia field survey for
survey details; the 2009 data was previously published in Pan et
al. (2012) and is provided solely for the purpose of comparison.
The left axis shows the percentage of sampled MEAM1 (open
circles) and MED (solid circles) per population infected with
TYLCV. The right axis (bars on the graph) shows the
percentage of MEAM1 and MED populations infected with
TYLCV.
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Bemisia biotype that is a superior viral vector (Fig. 3),

insecticide use facilitated the spread of TYLCV in

heterogeneous agricultural landscapes. Increased chem-

ical control of Bemisia and other pests (i.e., the use of

pyrethroid insecticides rose 72% between 2009 and 2011;

Fig. 1) thus appears to enhance rather than reduce the

likelihood and severity of future Bemisia-mediated viral

outbreaks.

The application of three different insecticides (neon-

icotinoid, pyrethroid, and tetramic acid) reversed the

normal competitive hierarchy (Fig. 4) and allowed

MED to exclude MEAM1 on both tomato (Fig. 5A)

and cucumber (Fig. 5b). All MED life-history stages

were more resistant than MEAM1 to these insecticides

(Table 1). Other researchers working with Chinese

MEAM1 and MED have found similar differences in

resistance: one study found that a Jiangsu MED

population was 1900 times more resistant to imidaclo-

prid and 1200 times more resistant to Thiamethoxam

than MEAM1 (Wang et al. 2010).

Our finding that MED is replacing MEAM1, and that

this switch is related to pesticide application, is

consistent with observations from other parts of the

world. In Israel, for example, MED became dominant in

mixed-field populations treated with pyriproxyfen and

neonicotinoids (Horowitz et al. 2005). The ability of

insecticides to mediate the MEAM1–MED interaction

was initially described by Crowder et al. (2010a), who

used modeling and an experimental manipulation of

North American Bemisia to demonstrate the potential

for MED to competitively exclude MEAM1. The

present work, for the first time, provides empirical

evidences from both a 10-year field survey and

laboratory experiments to establish this framework,

identifies the unexpected consequences of this reversal,

and confirms that three insecticides, each recommended

for control of Bemisia and other plant sucking pests,

produce the same outcome.

The replacement of MEAM1 by MED in China (Fig.

2) and neighboring countries has been repeatedly linked

to TYLCV outbreaks. In China, for instance, MEAM1

was first detected in 1990, followed by MED in 2003,

and TYLCV in 2006 (Fig. 1; Hu et al. 2011, Pan et al.

2011). Our survey (Fig. 3) demonstrates the association

between TYLCV and MED in China. In addition, we

found a positive relationship between TYLCV infection

in tomato and the percentage of TYLCV-infected MED;

in contrast, there was no relationship between plant

health and the percentage of TYLCV-infected MEAM1.

In sum, our findings are in accord with previous surveys

(Pan et al. 2012, Park et al. 2012) and experimental work

(Jiang et al. 2000, Liu et al. 2013a) indicating that

vector-plant transmission of TYLCV in Asia is predom-

inantly associated with MED.

While the displacement of an established exotic

species by another invader has been previously docu-

mented (Reitz and Trumble 2002), the unintended

economic consequences of this insecticide-driven dis-

FIG. 4. Changes in the proportion of MEAM1 and MED
(as measured by percentage of MED in the population) on five
different host plants over time. Mixed cultures were reared on
cotton (Gossypium hirsutum), cucumber (Cucumis sativus),
cabbage (Brassica oleracea), tomato (Lycopersicon esculentum),
and pepper (Capsicum annuum). SeeMethods: Host plant effects
on MEAM1–MED competition for treatment details. Values are
mean 6 SE from three replicates (five replicates for C. sativus).

FIG. 5. Effect of insecticides on the proportion of MEAM1
and MED (as measured by percentage of MED in the
population) on (A) cucumber and (B) tomato. See Methods:
Insecticide effects on MEAM1–MED competition for treatment
details. Values are mean 6 SE from (A) four replicates and (B)
five replicates.
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placement for agriculture in China and other Pacific

Rim nations make this system unusual and perhaps

unique. Although information on the economic impact

of TYLCV in China is not publicly accessible, data from

other countries can provide a perspective on the possible

costs. Outbreaks of TYLCV in India, a country whose

farming infrastructure is similar to that of China, cause

yield losses ranging from 50–100% (Reddy et al. 2010).

By way of comparison, TYLCV outbreaks in the early

2000s that reduced tomato yields by 20% in North

America and Europe had a cost of more than US$300

million (Glick et al. 2009). Given the polyphagous

nature of Bemisia tabaci, the hundreds of viruses it can

vector, and the extensive agricultural sector in China,

the total economic cost of TYLCV and other viral

pathogens are likely higher, perhaps dramatically so.

Such impacts amply justify B. tabaci’s selection as one of

the world’s 100 worst invasive species.

Our results provide strong support for the hypothesis

that the insecticide-mediated competitive replacement of

MEAM1 by MED is linked to the spread of TYLCV. In

other countries, however, different outcomes have

occurred. In Israel, for instance, the MEAM1–MED

competitive hierarchy fluctuates, with MEAM1 being

relatively more abundant than MED in field crops and

MED more abundant than MEAM1 in glasshouses and

other protected environments where insecticides are

intensively used (Kontsedalov et al. 2012). A similar but

more extreme situation is observed in the United States,

where MED is only found in greenhouses in 23 states,

while MEAM1 is present in both field crops and

greenhouses (McKenzie et al. 2012). Why has the

MEAM1–MED interaction played out so differently in

China?

The most likely explanation for these divergent

outcomes involves the infrastructure and incentives in

place for pest management. Chinese farming is domi-

nated by the household responsibility system of small

family farms whose owners are often uneducated and

lack access to agricultural extension personnel. As a

TABLE 1. Bioassay results of MEAM1 and MED to insecticides commonly used for Bemisia
control in China.

Insecticide, stage, and biotype Slope LC50 (mg/L) 95% FL RR

Thiomethoxam
Egg

MEAM1 0.54 (0.073) 130a 73.2–230 6.6
MED 1.58 (0.125) 860b 670–1105 6.6

Nymph

MEAM1 1.19 (0.105) 1.0a 0.8–1.4 4.9
MED 1.89 (0.201) 5.2b 3.1–8.3 4.9

Adult

MEAM1 1.06 (0.112) 17.8 9.8–32.5 3.1
MED 0.60 (0.084) 54.9 19.2–157 3.1

Spirotetramat

Egg

MEAM1 1.63 (0.101) 0.18a 0.15–0.22 24.2
MED 0.47 (0.038) 4.34b 2.26–8.33 24.2

Nymph

MEAM1 0.73 (0.048) 0.00107a 0.000610–0.00186 7.0
MED 1.88 (0.101) 0.00751b 0.00620–0.00911 7.0

Adult

MEAM1 1.51 (0.209) 2450a 1628–3687 .6.5
MED . . . .16 000b . . . .6.5

Bifenthrin

Egg

MEAM1 . . . no effect . . . na
MED . . . no effect . . . na

Nymph

MEAM1 1.37 (0.080) 39.5 29.0–53.7 1.5
MED 1.59 (0.129) 58.2 46.7–72.6 1.5

Adult

MEAM1 1.89 (0.149) 63.2a 50.9–78.4 3.7
MED 1.88 (0.144) 233b 187–293 3.7

Notes: Slope is mean increase in mortality as chemical concentration increases (with SE in
parentheses); LC50 is concentration of chemical sufficient to cause 50% mortality in the target
population; 95% FL is 95% fiducial limit around the LC50; RR is resistance ratio (the ratio of the
LC50 of MED and MEAM1; na, not applicable). Within a stage, biotype LC50 values with different
lowercase letters are significantly different at P , 0.05. Ellipses indicate no data available.
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result, the vast majority of farmers rely on high-dose

chemical treatments for pest and weed management (Xu

et al. 2008). Although effective in controlling pest

species, many of these insecticides also alter local food

webs. Alarm at the impact of neonicotinoid insecticides

on pollinators, for instance, has led the European

Commission to approve a two-year ban on their

widespread use. These concerns notwithstanding, Chi-

nese farmers continue to increase use of neonicotinoids

and other synthetic insecticides, with unknown conse-

quences for the surrounding ecosystems. This reliance

has been exacerbated by China’s investment in chemical

production facilities in the early 2000s; the global

recession decreased exports and flooded the domestic

market with insecticides (Fig. 1; CCM 2012). The low

cost and high efficacy of these products further

encourages small farmers in China to spray their way

out of pest problems (Xu et al. 2008).

In contrast, crop production in the United States is

dominated by large-scale agricultural concerns acutely

aware of the danger posed by insecticide-resistant

Bemisia (Osborne 2013). The integrated pest manage-

ment strategy for Bemisia control in the United States

emphasizes nonchemical approaches and strict action

thresholds for chemical treatments in field crops (Ells-

worth and Martinez-Carrillo 2001). Organized and

sustained grower education facilitated the deployment

and adoption of this plan, which has lowered both

Bemisia-targeted insecticide use and whitefly problems

(Ellsworth and Martinez-Carrillo 2001). The emphasis

on managing for reduced insectide resistance may have

favored MEAM1 in field crops in the United States,

keeping MED relatively rare and confined to high-

pesticide areas like greenhouses (McKenzie et al. 2012).

These disparate approaches to pest management likely

explain why TYLCV has become a greater problem in

China than in the United States.

While we consider insecticide use to be the most likely

explanation of the rapid spread of MED and TYLCV in

China, other factors could influence success of this

species. For example, temporal changes in diversity of

agricultural landscape could have affected coexistence of

MEAM1 and MED. In Israel, MEAM1 and MED

dominated on different agricultural plant families,

although MED was the most abundant on a broader

range of host plants (Crowder et al. 2011). This wider

resource niche of MED could foster coexistence by

providing a refuge against MEAM1, which is superior at

reproductive interference competition (Crowder et al.

2011). By contrast, our host-plant experiment confirmed

previous research finding that MEAM1 was dominant

over MED on most, but not all, plant species (Fig. 4;

Iida et al. 2009, Tsueda and Tsuchida 2011, Liu et al.

2013b). Specifically, our results agree with work (Tsueda

and Tsuchida 2011) that found MEAM1 could not

develop on pepper but did better than MED on tomato,

cabbage, and cucumber. Reasons for the differences in

host-plant mediated competition between Israel and

China is currently unknown, but could be related to

geographical changes in the haplotypes of one or more

species (De Barro et al. 2011). Nevertheless, our results

indicate that a shift towards MED-preferred host plants

could favor this species (and TYLCV) over MEAM1,

although we are unaware of any such large-scale change

in cropping systems occurring during the last 10 years in

China.

Although MED has spread through agricultural

systems in China, it is unlikely to extirpate MEAM1.

Our competition experiments (Figs. 4 and 5), for

example, were carried out under warm (268 6 28C)

conditions with no climatic variation. MEAM1 and

MED respond differently to temperature variation,

however, with MED being more tolerant than MEAM1

of temperature extremes (Elbaz et al. 2011, Chu et al.

2012b). Although MED now dominates agricultural

systems, China contains a heterogeneous mix of

landscapes that vary in their abiotic, biotic, and

anthropogenic (i.e., insecticide use) conditions. Prior to

the entry of MED, MEAM1 displaced native whiteflies

from agricultural systems; these species persisted in

natural landscapes (Liu et al. 2007, Hu et al. 2011).

MEAM1 may persist in a similar manner in low-

insecticide systems or on vegetation growing near high-

pesticide fields; adopting IPM strategies to reduce

chemical use and favor susceptible organisms might

favor the resurgence of MEAM1 and increase their

likelihood of excluding MED (and, perhaps, their

viruses) from systems.

While our work provides a cogent explanation for the

recent upsurge of whitefly-vectored diseases in hetero-

geneous agricultural systems, other questions remain to

be answered. While TYLCV and MED are tightly linked

in China and other Pacific Rim nations (Pan et al. 2012,

Park et al. 2012), TYLCV in Israel is primarily

associated with MEAM1 (Gottlieb et al. 2010). These

differences are driven by the geographic differences in

the composition of Bemisia endosymbiont communities

(Gottlieb et al. 2010), and insecticide-driven shifts in

community structure may also alter vector competence.

Recent research has also identified five well-defined

MED haplotypes (Chu et al. 2012a) whose endosymbi-

ont communities may well differ. Exploring the interac-

tion between insecticide resistance and endosymbiont

communities may help develop management programs

aimed at reducing viral outbreaks.

One drawback of our work is that the comprehensive

nature of our approach (combining multiple surveys,

experiments, and assays) precluded a completely facto-

rial design. In other words, we did not have sufficient

resources to rear both Bemisia biotypes on all five host

plants prior to the experiment, repeat the insecticide

bioassays using whiteflies reared on all five host plants,

carry out the insecticide-mediated competition experi-

ment on all five host plants, etc. While we would have

preferred to test all host plants in all experiments, there

is no indication that any of these five plant species are,
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for instance, capable of altering the response of Bemisia

to insecticides. We thus believe it to be highly unlikely

that our results confound the effects of host plant and

insecticides in a way that invalidates our conclusion, an

interpretation supported by the fact that our laboratory

results are substantially consistent with data emerging

from our field surveys.

Our research demonstrates that insecticide use alters

the competitive interaction between two invasive white-

flies and is the likely driver of MED’s displacement of

MEAM1 throughout China. The ascent of MED, an

effective viral vector, has in turn been linked to

economically damaging agricultural disease outbreaks.

Our experiments and surveys strongly suggest that the

overuse of insecticides has, through food web interac-

tions, inadvertently exacerbated the problem it sought to

solve. This result is especially important since a

substantial fraction of agricultural land worldwide is

managed by small landholders rather than by large-scale

producers. As a consequence, phenomena observed in a

heterogeneous agricultural system like China may also

occur in several Asian states (e.g., Japan and Korea) and

other countries worldwide. Given the larger context of

increasing biological invasions worldwide and the

importance of species interactions in determining

community structure, policies of single-species manage-

ment that do not account for the larger food web may

produce similarly counterintuitive outcomes that pose a

major challenge to natural and managed systems alike.
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