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Abstract

Aim: Species distribution models are important tools used to study the distribution and abundance

of organisms relative to abiotic variables. Dynamic local interactions among species in a community

can affect abundance. The abundance of a single species may not be at equilibrium with the envi-

ronment for spreading invasive species and species that are range shifting because of climate

change.

Innovation: We develop methods for incorporating temporal processes into a spatial joint

species distribution model for presence/absence and ordinal abundance data. We model

non-equilibrium conditions via a temporal random effect and temporal dynamics with a vector-

autoregressive process allowing for intra- and interspecific dependence between co-occurring spe-

cies. The autoregressive term captures how the abundance of each species can enhance or inhibit

its own subsequent abundance or the subsequent abundance of other species in the community

and is well suited for a ‘community modules’ approach of strongly interacting species within a food

web. R code is provided for fitting multispecies models within a Bayesian framework for ordinal

data with any number of locations, time points, covariates and ordinal categories.

Main conclusions: We model ordinal abundance data of two invasive insects (hemlock woolly

adelgid and elongate hemlock scale) that share a host tree and were undergoing northwards range

expansion in the eastern U.S.A. during the period 1997–2011. Accounting for range expansion and

high inter-annual variability in abundance led to improved estimation of the species–environment

relationships. We would have erroneously concluded that winter temperatures did not affect scale

abundance had we not accounted for the range expansion of scale. The autoregressive component

revealed weak evidence for commensalism, in which adelgid may have predisposed hemlock stands

for subsequent infestation by scale. Residual spatial dependence indicated that an unmeasured

variable additionally affected scale abundance. Our robust modelling approach could provide simi-

lar insights for other community modules of co-occurring species.

K E YWORD S

biotic interactions, coregionalization, invasive species, Markov chain Monte Carlo, rank probability

scores, vector autoregression

1 | INTRODUCTION

Species distribution models are commonly used in basic and applied

ecological research to study the factors that define the distribution and

abundance of organisms. They are used to quantify species’ relation-

ships with abiotic conditions, to predict species’ response to land-use

and climatic change and to identify potential conservation areas

(Guisan & Zimmermann, 2000). Traditionally, species distribution mod-

els correlate static observations of the occurrence (presence and

absence) or abundance of a species with abiotic variables. Occurrence

and abundance of a species, however, can also change through time

and across space through colonization and may not be at equilibrium
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with the environment (Bolker & Pacala, 1997; Ives, Dennis, Cotting-

ham, & Carpenter, 2003). Non-equilibrium is expected for invasive spe-

cies and species affected by climate change (Elith, Kearney, & Phillips,

2010; Peterson, 2003). Additionally, dynamic local interactions among

species in a community can affect abundance and scale up to affect

distributions at broader spatial scales (Ara�ujo & Rozenfeld, 2014;

Gotelli, Graves, & Rahbek, 2010). Capturing these spatio-temporal eco-

logical processes requires the use of more robust modelling techniques

that account for temporal dynamics and joint dependencies among

co-occurring species (reviewed by Ehrl�en & Morris, 2015; Guisan &

Thuiller, 2005).

Joint dependencies among co-occurring species in a community

have been modelled in multivariate generalized linear model frame-

works (Clark, Gelfand, Woodall, & Zhu, 2014; Clark, Nemergut, Seyed-

nasrollah, Turner, & Zhang, 2017; Hui, Warton, Foster, & Dunstan,

2013; Kissling et al., 2012; Ovaskainen, Hottola, & Siitonen, 2010; Pol-

lock et al., 2014; Thorson, Scheuerell et al., 2015). In joint species distri-

bution models, residual dependence in occurrence or abundance can

arise from biotic interactions and as correlated responses to an

unmeasured covariate. These generalized linear modelling approaches

rely on the assumption that species are at equilibrium with their envi-

ronment because the models are static; they integrate data over a fixed

time interval, without modelling changes through time.

Incorporating a time series of observations can improve species

distribution models. For example, including vector autoregressive terms

in a joint species distribution model can identify the temporal effects of

biotic interactions, such as competition between co-occurring species

(Mutshinda, O’Hara, & Woiwod, 2009, 2011) or heterospecific attrac-

tion (Sebasti�an-Gonzal�ez, S�anchez-Zapata, Botella, & Ovaskainen,

2010). Using temporal autocorrelation to incorporate dynamic biotic

interactions into joint species distribution models is especially well

suited for a ‘community modules’ approach that focuses on smaller

subsets of strongly interacting species within a community (Gilman,

Urban, Tewksbury, Gilchrist, & Holt, 2010; Holt, 1997). Incorporating

these dynamic processes when time-series data are gathered over mul-

tiple years at biologically relevant intervals is an important step towards

incorporating demography and biotic interactions into distribution

models (Schurr et al., 2012). Additionally, temporal random effects

could be used to address violations of the assumption that species dis-

tributions and abundance are at equilibrium with abiotic factors. This is

important because violations of the assumption that species’ ranges are

at equilibrium can affect parameter estimation and interpretation of

model results (Elith et al., 2010).

In species distribution models, it is also important to account for

the spatial patterns often present in occurrence or abundance data col-

lected at multiple locations. Residual spatial patterns can arise from

ecological processes, such as movement or dispersal, source–sink

dynamics, aggregation or social structure, or in response to unmeas-

ured environmental covariates (Keitt, Bjornstad, Dixon, & Citron-

Pousty, 2002). Ignoring spatial patterns violates model assumptions

and potentially introduces bias in parameter estimates that describe

the species–environment relationship (Dormann et al., 2007; Keitt

et al., 2002). The ability of a species distribution model to predict

abundance at unobserved locations (Carroll, Johnson, Dunk, & Zielinski,

2010; Dray et al., 2012) or under climate-change scenarios (Crase,

Liedloff, Vesk, Fukuda, & Wintle, 2014; Record, Fitzpatrick, Finley,

Veloz, & Ellison, 2013) is often improved by using a spatially explicit

model structure where information can be shared across both species

and space (Ovaskainen, Roy, Fox, & Anderson, 2016; Thorson, Ianelli,

Munch, Ono, & Spencer, 2015).

Abundance data are likely to be more informative than binary

occurrence data for species distribution modelling, even if abundance is

measured coarsely (Howard, Stephens, Pearce-Higgins, Gregory, &

Willis, 2014). Abundance data are better indicators of the effects of a

species on an ecosystem, the probability of extinction of rare organisms

and the potential of one species to affect other species within a local

community through biotic interactions (Ehrl�en & Morris, 2015). How-

ever, additional challenges arise when abundance data are observed

imperfectly. Ordinal data are one type of abundance data with imper-

fect detection where abundance is recorded in ordered categories, and

binary occurrence data are a special case of ordinal data with only two

abundance categories (present and absent). Ordinal scales for abun-

dance data are commonly used in ecology when it is not possible or

practical to record count data, but information on abundance beyond

simple presence/absence is desired (examples in Table 1). Other ordinal

responses, such as severity or intensity of disturbance, disease or dam-

age, are also common.

Bayesian hierarchical models can effectively capture these depend-

encies and dynamics that are inherent in multivariate spatio-temporal

datasets, and Markov chain Monte Carlo methods make estimating the

complex posterior distributions of these models computationally feasi-

ble (Banerjee, Carlin, & Gelfand, 2014). We present a spatial joint spe-

cies distribution model for multivariate ordinal abundance data with

extensions that incorporate temporal random effects to address the

assumption that species are at equilibrium with the environment, and

vector autoregression to model temporal dynamics in abundance within

and among species. We provide an additional model extension that

accommodates replicated measurements at each location and time

point. Explicitly modelling replicated measures enables inference on the

variability in ordinal abundance within species and the covariance

between species at the level of the observational unit when replicated

measurements are made at each location and time point. We include

annotated R functions for fitting multispecies models within a Bayesian

framework for ordinal data with any number of abundance categories,

time points, spatial locations and covariates. The functions permit the

user to apply each individual model extension (i.e., temporal random

effects, temporal dynamics and replicated measurements) separately or

in combination. We developed custom Metropolis-within-Gibbs algo-

rithms for fitting the models, and we evaluate their efficiency and

accuracy.

We illustrate the model and each extension with a spatially explicit

time series of the ordinal abundance of two invasive insects [hemlock

woolly adelgid (Adelges tsugae) and elongate hemlock scale (Fiorinia

externa)] that share a host plant and were undergoing northwards range

expansion in the eastern U.S.A. during the period 1997–2011. We evalu-

ate how violation of the assumption of equilibrium with the environment
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can affect parameter estimation and demonstrate the types of ecological

inference that can be made about biotic interactions by quantifying

dependence between species through time and across space.

2 | METHODS

We begin with a multivariate generalized linear model with probit link

function (as described by Pollock et al., 2014) as a ‘baseline’ joint spe-

cies distribution model. We extend the link function to accommodate

ordinal abundance categories and add a spatial random effect to

account for residual spatial dependence (Section 2.1), making it a multi-

variate generalized linear mixed model. Then, we describe three model

extensions that can be applied individually or all together to incorpo-

rate non-equilibrium conditions (Section 2.2), temporal dynamics (Sec-

tion 2.3) and replicated observations (Section 2.4). We present the

general model for data observable for any number of species S, but

emphasize that these methods are intended for testing specific

hypotheses for a small number of strongly interacting species within a

community module. Annotated R code for fitting these models and

extensions is included as online supporting information.

2.1 | General description of a spatio-temporal joint

species distribution model

The multivariate generalized linear model with probit link function for

binary data (Pollock et al., 2014) forms the foundation of our model.

Let YðsÞ
i;t 2 f0;1; . . . ; L21g denote the observable ordinal abundance for

species s at plot i and time t. Here, L is the number of ordinal catego-

ries, and L52 for binary occurrence data because binary data are a

special case of ordinal data with only two categories (presence and

absence). Although responses other than ordinal abundance also apply

here (e.g., severity of disturbance, disease or damage; see Table 1), we

refer to the response variable as ‘abundance’ for the purposes of illus-

trating this approach.

TABLE 1 Some examples of ordinal data in ecology that could be analysed using this multivariate spatio-temporal distribution model

Example (reference) Data

Occurrence (binary)
Y5

(
0 absent

1 present

Vegetation cover class (Wikum & Shanholtzer, 1978)

Y5

1 <5%

2 5–25%

3 25–50%

4 50–75%

5 75–100%

8>>>>>>>><
>>>>>>>>:

Insect abundance (density) (G�omez et al., 2015)

Y5

0 0 individuals permetre

1 1–10 individuals permetre

2 11–100 individuals permetre

3 >100 individuals permetre

8>>>>><
>>>>>:

Ontogeny of fungal diseases of trees
(Garnas, Houston, Ayres, & Evans, 2012)

Y5

0 absent

1 sparse; few localized fruiting structures

2 light; scattered; moderate fruiting

3 moderate; many isolated infectionswith abundant fruiting bodies

4 heavy; large areas coveredwith fruiting bodies

8>>>>>>>><
>>>>>>>>:

Insect damage to leaves (Pocock & Evans, 2014)

Y5

0 no evidence of damage

1 just a couple damaged patches

2 more green than damaged

3 cannot decidewhether green or damaged dominates

4 damaged patches definitely covermore than half of the leaf

8>>>>>>>><
>>>>>>>>:

Wildfire severity class (Bigler, Kulakowski, & Veblen, 2005)

Y5

1 unburned

2 low; surface fire; overstorey largely not scorched

3 moderate; many canopy crowns scorched; some green crowns remain

4 high; all canopy trees killed

8>>>>><
>>>>>:

Aerial surveys of beetle-attacked trees (Franklin,
Wulder, Skakun, & Carroll, 2003)

Y5

1 <10 red2attacked trees per 502m2diameter plot

2 10–20 red2attacked trees per 502m2diameter plot

3 21–50 red2attacked trees per 502m2diameter plot

8>><
>>:

Seagrass standing biomass (g m22) (Mumby et al., 1997) Y 2 f1;2;3;4;5;6g, where 1 is the minimum and 6 is the maximum
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To extend the link function to accommodate ordinal abundance

categories, we assume that each ordinal response variable is the result

of thresholding an underlying latent, or true, abundance. We apply the

latent variable approach with probit link function, where the ordinal

response YðsÞ
i;t is the result of a truncation or thresholding process

applied to a latent Gaussian variable (Albert & Chib, 1993). Clark et al.

(2017) use a similar latent variable approach in their generalized joint

attribute model for modelling multiple variable types, including continu-

ous, ordinal, composition, zero-inflated and censored data.

The relationship between YðsÞ
i;t and the latent continuous response

ZðsÞ
i;t is

YðsÞ
i;t 5

0 ZðsÞ
i;t <kðsÞ1

1 kðsÞ1 � ZðsÞ
i;t <kðsÞ2

�

L21 kðsÞL21 � ZðsÞ
i;t

8>>>>>><
>>>>>>:

(1)

where kðsÞ5ðkðsÞ1 ; . . . ; kðsÞL21Þ is a species-specific vector of threshold param-

eters bounding each ordinal category such that kðsÞ1 50 and kðsÞl � kðsÞl11 for l

5 1, . . ., L22 and all s. Here, we assume that L is the same for all species;

however, this can be easily modified to allow for species-specific ordinal

categories. Combining response variables from different probability distri-

butions is also possible in this latent multivariate framework (Schliep &

Hoeting, 2013).

In the multivariate setting, latent abundance is modelled using a

multivariate normal distribution, with one dimension for each species s

51; . . . ; S in the study. The latent continuous responses for location

(i.e., plot) i and time t, denoted ðZð1Þ
i;t ; . . . ;Z

ðSÞ
i;t Þ0 , are conditionally inde-

pendent given Ki;t. That is, letting Zi;t5ðZð1Þ
i;t ; . . . ;Z

ðSÞ
i;t Þ0,

Zi;t�multivariate normal ðKi;t; ISÞ (2)

where Ki;t5ðKð1Þ
i;t ; . . . ;K

ðSÞ
i;t Þ0 is a multivariate latent process of abun-

dance for plot i and time t, and IS is an S 3 S identity matrix for param-

eter identifiability under the probit model.

The multivariate latent abundance is defined using fixed effect covari-

ates specific to each plot-year and spatially correlated errors. Fixed covari-

ates represent climate variables capturing the relationship between abiotic

conditions and abundance unique to each species (i.e., the abiotic niche,

or climate envelope). We specify latent abundance for t51; . . . ; T as

Ki;t5bXi;t1hi;t (3)

where b is an S 3 P matrix of species-specific coefficients describing the

species–environment relationship, and Xi;t is a vector containing an inter-

cept and P – 1 time- and plot-specific covariates where

b5

bð1Þ
0 ; bð1Þ

1 ; . . . ; bð1Þ
P21

�

bðSÞ
0 ; bðSÞ

1 ; . . . ; bðSÞ
P21

2
664

3
775 and Xi;t5ð1;Xi;t;1; . . . ;Xi;t;P21Þ0: (4)

The spatial random effect, hi;t, is modelled using a linear model of

coregionalization (Gelfand, Schmidt, Banerjee, & Sirmans, 2004) to cap-

ture the dependence between species and across space not accounted

for by the covariates. Letting A be an S 3 S lower triangular matrix, the

linear model of coregionalization is defined as

hi;t5A

Wð1Þ
i;t

�

WðSÞ
i;t

0
BB@

1
CCA

where each WðsÞ
t is an independent Gaussian process with spatial

covariance matrix RðsÞ. This model specification assumes that the ran-

dom effects, hi;t are independent in time. We discuss extension of the

model to include temporal random effects and temporal dynamics in

Sections 2.2 and 2.3, respectively. Here, AA0 can be interpreted as the

covariance of Ki;t. This implies that

Cov ðKi;t;Ki0 ;tÞ5A

Rð1Þ
i;i0 0

. .
.

0 RðSÞ
i;i0

2
66664

3
77775A0:

We use an exponential covariance function where the correlation

between WðsÞ
i;t andWðsÞ

i0 ;t is

Corr ðWðsÞ
i;t ;W

ðsÞ
i0 ;t Þ5RðsÞ

i;i0 5exp ð2di;i0/
ðsÞÞ; (5)

where di;i0 is the distance between plots i and i0 , and/ðsÞ is the spatial decay

parameter for process s. Note that when the number of columns of A is

less than the number of rows, this model is similar to a factor model

(Thorson et al., 2016; Warton et al., 2015). This reduced rank specification

of the multispecies model is beneficial as the number of species being con-

sidered increases (Taylor-Rodríguez, Kaufeld, Schliep, Clark, & Gelfand,

2016).

The spatial decay parameters /ðsÞ permit estimation of the effective

range, the distance at which the residual spatial correlation drops below

0.05, for each species. Note that /ðsÞ is not the spatial decay parameter for

species s unless all off-diagonal elements Al;1; . . .A1;s21 are zero. There-

fore, the effective range for each species will be a function of A and the

spatial decay parameters /5f/ð1Þ; . . . ;/ðSÞg (Banerjee et al., 2014, Chap-

ter 9). For a two-species model, the effective range for the average latent

abundance process of species 1 solves exp ð2d/ð1ÞÞ50:05, whereas the

range of the average latent abundance process of species 2 solves

A2
2;1exp ð2d/ð1ÞÞ1A2

2;2exp ð2d/ð2ÞÞ
A2
2;11A2

2;2

50:05: (6)

Each posterior sample of A; /ð1Þ and /ð2Þ enables a solution for a

corresponding d resulting in posterior samples of the range for both

species (Banerjee et al., 2014, Chapter 9). The magnitude of the effec-

tive range indicates whether ecological process such as dispersal,

response to unmeasured environmental covariates or interactions with

other species strongly affect the distribution and abundance of the

study species (Dormann et al., 2007; Keitt et al., 2002). A short effec-

tive range indicates that the model and chosen covariates are capturing

the variability in the process.

2.2 | Adding temporal random effects to account for

non-equilibrium

Species-specific temporal random effects can be added to this baseline

model to address the ways in which spreading invasive species or spe-

cies that are range shifting because of climate change can violate the
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assumption of equilibrium with the environment. The temporal random

effects also capture the inter-annual variability in overall abundance

across survey years for each species. To accomplish this, the model for

latent abundance in equation (3) becomes

Ki;t5at1bXi;t1hi;t (7)

where at5ðað1Þ
t ; . . . ;a

ðSÞ
t Þ0 denotes the species-specific random effects

for time t. For identifiability of the species-specific intercepts bðsÞ
0 , the

last year of the species-specific temporal random effects aðsÞ
T are set to

zero for all s. We assume that aðsÞ
t for all t and s are independent a pri-

ori as they are capturing the temporal variation in each species.

Although there are many possible model specifications for having

species-specific temporal random effects, this specification was chosen

for ease in comparing inference for the model versus the submodel

that does not contain temporal random effects.

The R function Multivariate.Ordinal.Spatial.Model within the

included annotated R code allows a user to fit this model for S species

with any number of locations, time points, covariates and ordered

abundance categories (along with the worked example described in

Section 2.5). The function allows the user to specify a model with or

without temporal random effects for comparison. Inference on the

model parameters and latent variables is obtained within the Bayesian

framework. Details regarding the prior distributions and Metropolis-

within-Gibbs Markov chain Monte Carlo (MCMC) sampling algorithm

are given in Supporting Information Appendices S1 and S2.

2.3 | Adding temporal dynamics

Next, we extend the spatial model with temporal random effects out-

lined in Section 2.2 to incorporate additionally the temporal depend-

ence within and among species via a vector autoregressive term that

allows inter- and intraspecific processes to affect abundance. This term

captures how the abundance of each species can enhance or inhibit its

own abundance or the abundance of other species in the community in

the next time step. This autoregressive approach is similar to dynamic

range models for univariate (Pagel & Schurr, 2012; Schurr et al., 2012)

or multivariate (Mutshinda et al., 2009, 2011; Thorson et al., 2016;

Thorson, Munch, & Swain, 2017) count data that explicitly include per-

capita population demographic models. Additionally, one could incorpo-

rate temporal dependence by specifying a spatio-temporal covariance

function for the random effects, hit (for examples of such functions,

see Cressie & Wikle, 2011).

Latent abundance is modelled using a lag 1 vector autoregressive

model. For t51, we specify latent abundance Ki;t analogous to Equa-

tion 7 for all i. Then, for t52; . . . ;T, we specify

Ki;t5at1bXi;t1qKi;t211hi;t: (8)

The vector autoregressive parameter q is an S 3 S matrix where

q5

q1;1 q1;2 . . . q1;S

q2;1 q2;2 . . . q2;S

� � . .
.

�

qS;1 qS;2 . . . qS;S

2
6666664

3
7777775
: (9)

Note that this matrix is not necessarily symmetrical; the effect of

species 1 on the abundance of species 2 in the subsequent time step

can be distinguished from the effect of species 2 on the abundance of

species 1 in the subsequent time step. As a vector autoregressive

model simplification, by setting all off diagonal elements of q to zero,

the temporal dynamics in the latent abundance process would be only

within species, not between species. The terms at; bXi;t and gi;t are as

defined in Sections 2.1 and 2.2.

2.4 | Adding replicated observations within a location

The final extension to the model allows for multiple observations, or

replicates, of a species’ abundance for a given location and time. For

example, cover class may be observed at several quadrats within a site,

occurrence may be recorded at several points along a transect, or a

species’ abundance may be observed on multiple trees within a forest

stand. In these examples, the quadrat, point and tree are the units of

observation, whereas the site, transect or forest stand are the units of

inference. Such ‘pseudoreplication’ is common in ecological data

(Hurlbert, 1984; Steel, Kennedy, Cunningham, & Stanovick, 2013) and

may be especially prevalent in observational data. Additionally, obser-

vational units may not be uniquely labelled (e.g., if quadrats are not

marked with a permanent pin, volunteers do not stop at the same exact

locations each time they walk a transect, or individual trees are not

given a permanent identification tag). In these cases, the same observa-

tional units are not resampled in each year of study. For data with repli-

cated observations, making inference on the variance within species

and covariance between species at the level of the observational unit

can provide insight into intra- and interspecific interactions at the local

scale.

To accomplish this, we relax the assumption of conditional inde-

pendence between ZðsÞ
i;t and Zðs0 Þ

i;t given average latent abundance and

allow for dependence between species at the level of the observational

unit. Let YðsÞ
i;t;j 2 f0;1; . . . ; L21g denote the ordinal abundance response

for the jth replicate observation of species s at plot i and time t. Let

Zi;t;j5ðZð1Þ
i;t;j ; . . . ; Z

ðSÞ
i;t;jÞ0 denote the vector of latent continuous responses

for observation j at plot i and time t. Now, for j51; . . . ; Ji;t, where Ji;t

denotes the number of observations for plot i and time t,

Zi;t;j �i:i:d:multivariate normal ðKi;t;XiÞ: (10)

Here, Ki;t5ðKð1Þ
i;t ; . . . ;K

ðSÞ
i;t Þ0 is the multivariate latent process of

abundance for plot i and time t as before, but now the identity matrix

in Equation 2 is replaced by Xi, an S 3 S covariance matrix capturing

the dependence between species for plot i at the level of the observa-

tional unit. Modelling Zi;t;j given Ki;t and Xi as i.i.d. assumes that for plot

i and time t, each Zi;t;j for j51; . . . ; Ji;t is replicate measure of some mul-

tivariate latent process of abundance.

The plot-specific covariances, Xi, for the multivariate continuous

latent measure of abundance cannot be time varying for identifiability of

kðsÞt and therefore represent the overall dependence among species across

all study years. For i51; . . . ; n; Xi �i:i:d: inverse2Wishart ðm11;2mdiag
1
dð1Þ

; . . . ; 1
dðSÞ

� �
Þ, and therefore 1

dðsÞ
represents the variability of ordinal abun-

dance categories on samples within a quadrat for species s.
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The function Multivariate.Ordinal.Spatial.ModelX included in the

annotated R code allows a user to fit this full model (with temporal ran-

dom effects, temporal dynamics and replicate observations) for S spe-

cies with any number of locations, time points and covariates and up to

four ordered abundance categories. The code permits the user to spec-

ify whether temporal random effects, temporal dynamics and/or repli-

cated observations should be included in the model. The user can

further specify whether to include both within-species and interspecific

temporal dynamics, or to set the interspecific ‘cross-dynamics’ to zero

and permit only within-species temporal dependence. Likewise, the

user can force the spatial processes to be independent for each species

by setting the off-diagonal elements of the A matrix to zero. The flexi-

bility to turn model components ‘on and off’ allows a researcher to

build a model specific to the study system and facilitates comparison of

competing submodels. This function uses C11 code in obtaining sam-

ples from the joint posterior distribution, increasing the computational

efficiency of the MCMC algorithm. We also include a worked example

of this full model using the data described in Section 2.5. We con-

ducted a simulation study for the full model by simulating three data-

sets using the estimates of the parameters obtained using the methods

described in Section 2.5, each with a different specification of the auto-

correlation parameter matrix, q. Details for this simulation are given in

Supporting Information Appendix S2.

2.5 | Example system: hemlock woolly adelgid and

elongate hemlock scale in New England, U.S.A.

We applied the above models to a spatially explicit time series of multi-

variate ordinal data on the abundance of two invasive insects, hemlock

woolly adelgid (Adelges tsugae) and elongate hemlock scale (Fiorinia

externa), that share the host tree eastern hemlock (Tsuga canadensis) in

the eastern U.S.A. Adelgid has caused widespread decline and mortality

of eastern hemlock across the eastern U.S.A. since its introduction

from Asia in the early 1950s and threatens to eliminate eastern hem-

lock across its range. Scale was introduced from Asia in 1908 and is

less harmful to hemlocks than adelgid. Both invasive insects were

undergoing northwards range expansion in the eastern U.S.A. during

the study period, 1997–2011 (G�omez et al., 2015).

Adelgid and scale abundances were visually assessed in 142 east-

ern hemlock stands across Massachusetts and Connecticut. Initial

assessment of stands occurred in 1997–1998 (Connecticut only;

Orwig, Foster, & Mausel, 2002) and 2002–2004 (Massachusetts only;

Orwig et al., 2012). All stands were subsequently assessed in 2005,

2007, 2009 and 2011 (G�omez et al., 2015, and references within).

Ordinal abundance was assigned to one of four ordered categories as

described by G�omez et al. (2015) and Table 1. In this example, YðsÞ
i;t;j

denoted the ordinal measure of abundance for stand i, tree j, in year t

of species s, where s51 for adelgid and s52 for scale. At the initial

sampling of stands, one abundance category representing the average

insect abundance category across all eastern hemlock trees in the stand

was recorded such that J51. For the remaining four years, J550 trees

unless 50 eastern hemlock trees could not be located in the stand. Indi-

vidual trees were not marked. Figure 1 shows the location of study

sites and the proportion of trees in each stand that were infested with

adelgid and scale in 2005–2011; the distance between stands ranged

from 0.5 to 165 km, with an interquartile range of 30–93 km.

We included mean winter temperature before the growing season

(from 1 December to 31 March) for each plot in each year (1997,

2003, 2005, 2007, 2009 and 2011) as the fixed covariate in the model

because it has been shown to affect the abundance of both species

strongly (McClure, 1989; Paradis, Elkinton, Hayhoe, & Buonaccorsi,

2008; Preisser, Elkinton, & Abell, 2008). Mean winter temperatures

were interpolated to the centroid of each eastern hemlock stand using

PRISM data at 4 km resolution (PRISM Climate Group & Oregon State

University, 2015). The covariate was centred within each year to ena-

ble comparison of the temporal random effects, at.

To illustrate the spatial model with temporal random effects

(described in Sections 2.1 and 2.2), we simplified the full dataset. First,

the repeated observations of ordinal abundance on individual hemlock

trees within stands were collapsed into a single value for each stand in

each year. We used the mode of observations within a stand. To

explore the value of using data on ordinal abundance (L54 categories)

versus binary occurrence (L52 categories), as well as to demonstrate

how these methods can be used for both occurrence and ordinal abun-

dance data, we assigned a single binary occurrence category (mode50

versus mode>0) for each species. The included R function Bivariate.

Ordinal.Spatial.Model fits models for these worked binary and ordinal

examples as well as for user-specified data.

We fitted the more complex model described in Sections 2.3 and

2.4 that contains dynamic temporal processes and replicated measure-

ments to the full dataset. The included R function Bivariate.Ordinal.

Spatial.ModelX fits the full extension model with temporal random

effect, temporal dynamics and replicated measurements for this

worked ordinal example as well as for user-specified data. We use this

full model to evaluate model fit and prediction, and for ecological infer-

ence. The model was run for 50,000 MCMC iterations. The first

10,000 samples were discarded as burn in, and Monte Carlo standard

errors for each parameter were computed. To evaluate the effect of

violating the equilibrium assumption, we compared these results with

those from a model that did not include temporal random effects (at)

describing average abundance in the study region for each species.

2.6 | Model fit and prediction

To assess model fit, we computed marginal rank probability scores

(RPS). Marginal RPS is a probabilistic method for assessing prediction

accuracy that describes the equality of predicted and actual data

(Gneiting, Balabdaoui, & Raftery, 2007). Using the posterior estimates,

we generated predictions of the ordinal response for each location, time

and species. Then, marginally for each species, RPS was computed as

1
3

X3
k50

ðFðsÞi;t ðkÞ2F̂
ðsÞ
i;t ðkÞÞ2;

where FðsÞi;t ðkÞ and F̂
ðsÞ
i;t ðkÞ are the empirical CDFs of the observed and

generated ordinal response data, respectively. For example, the empiri-

cal CDF for plot i, time t and species s is computed as
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FðsÞi;t ðkÞ5
1
Ji;t

XJi;t
j51

I½ZðsÞ
i;t;j

�k�:

Rank probability score is a particularly attractive method for

assessing model fit for ordinal response data with replicated observa-

tions because it enables comparison of the distributions as opposed to

individual observed and predicted ordinal values. Small values of mar-

ginal RPS indicate that the distribution of the data generated from the

fitted model closely resembles the distribution of the observed data for

that location, time and species. Perfect matching between predicted

and actual data would yield an RPS score of zero. Rank probability

score provides an alternative to information theoretical approaches to

model selection that focuses on predictive ability, and can be combined

with k-fold cross-validation to perform out-of-sample prediction

(Gneiting et al., 2007). The R function RPS included in the annotated R

code calculates RPS using samples from the posterior distribution.

A common goal of species distribution models is to predict the

occurrence or abundance of species at unobserved locations. To assess

prediction accuracy under the model, we conducted 10-fold cross-vali-

dation where we partitioned the locations into 10 disjoint sets. The

model was then fitted 10 times, each time using a different dataset as

the testing data and the remaining nine sets as the training data. We

computed the marginal RPS for all out-of-sample prediction locations

using the posterior predictive distributions of the 10-fold cross-valida-

tion runs.

3 | RESULTS

3.1 | Simulations

In both the ordinal (L54 categories) and binary (L52 categories) simu-

lations of the spatial joint species distribution model with temporal ran-

dom effects described in Sections 2.1 and 2.2, the model recovered the

true parameter values well, and no issues of convergence were

detected (Supporting Information Tables S1 and S2). A significant posi-

tive relationship between the latent abundance and the covariate

(mean winter temperature) resulted from both models. The credible

intervals of bð1Þ
0 and bð1Þ

1 for the model fitted to the binary data were

slightly above the true value (Supporting Information Table S2), which

is attributable to the lack of information in the binary data. This simula-

tion study adds to the growing body of evidence that using abundance

data in species distribution models is better than using data on

FIGURE 1 The proportion of observed trees on each stand that had one or more hemlock woolly adelgid (HWA, top) and elongate
hemlock scale (EHS, bottom) across each year. Eastings and northings on each axis are given in kilometres. Both species showed northward
range expansion during this time period. The right panel shows where the 142 surveyed hemlock stands are located across Connecticut and
Massachusetts, U.S.A
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occurrence, even if coarsely measured (Howard et al., 2014). Simula-

tions of the full model that additionally include temporal dynamics and

replicated observations, described in Sections 2.3 and 2.4, also recov-

ered the parameter values well, with no convergence issues (Support-

ing Information Table S3). In particular, the parameter values of the

autocorrelation matrix were recovered, indicating that the model can

distinguish different types of vector autoregressive structures. The

computation time for obtaining posterior samples from the spatial

model with temporal random effects described in the model in Sections

2.1 and 2.2 was c. 5,000 iterations per hour. The computation time for

obtaining posterior samples from the full extensions model that addi-

tionally includes temporal dynamics and replicated measures of each

observational unit (described in Sections 2.3 and 2.4) was c. 5,000 iter-

ations per day. These computing times were for n5142 spatial loca-

tions, T56 time points, and calibrated on an iMac with 4 GHz Intel

Core i7 CPU and 32 GB 1867 MHz DDR3 RAM.

3.2 | Inference for invasive insect example

Most of the posterior distributions of the parameters of the dynamic

spatio-temporal joint species distribution model fitted to the full

adelgid and scale dataset were significantly different from zero, accord-

ing to the 95% credible intervals (Figure 2). The b1 coefficients for both

species were significantly positive, indicating that abundance increased

with mean winter temperature for both species. The parameter A2;1 in

the lower triangular matrix of the linear model of coregionalization was

positive, indicating that the average latent spatial processes for the two

species exhibited some dependence. The posterior mean estimate of

the effective range for adelgid was 3.76 km, and the posterior mean

estimate for scale was 24.18 km (Figure 3).

The temporal random effects, aðsÞ
t , indicated high inter-annual variabili-

ty in adelgid abundance and generally increasing scale abundance over

time (Figure 4). The model without temporal random effects overestimated

the strength of the species–environment relationship between adelgid

FIGURE 2 Mean and 95% credible intervals of the posterior distributions of the parameters from the spatio-temporal joint species
distribution model for adelgid (species 1) and scale (species 2). Parameters describe the latent thresholding of ordinal abundance categories
(k), variability of abundance on individual trees within a hemlock stand for each species (d), the effect of the environment (mean winter
temperature) on the abundance of each species (b1), temporal autocorrelation within and between species (q), and spatial autocorrelation
within and shared between species (A)

SCHLIEP ET AL. | 149



abundance and mean winter temperature (b1 coefficient), compared with

the model with the temporal random effect, while underestimating the

same relationship for scale abundance (Figure 5). Importantly, the b1 coeffi-

cient for scale was significantly positive in themodel that included temporal

random effects to account for non-equilibrium, whereas the 95% credible

intervals included zero in the model without the temporal random effects.

The estimates and credible intervals for q1;1 and q2;2 indicated that adelgid

and scale have significant, positive within-species temporal autocorrelation.

Neither q1;2 nor q2;1 was significantly different from zero according to the

credible intervals, but the posterior mean estimate of the cross-species

autocorrelation parameter, q2;1, was 0.06, suggesting that high average

abundance of adelgid at time t – 1 may have led to an increase in average

abundance of scale at time t. Lastly, the estimates of 1=dð1Þ and 1=dð2Þ indi-

cated that, in general, the distribution of ordinal responses across trees in a

standwasmore variable for adelgid than for scale.

3.3 | Model validation

Root RPS scores did not indicate lack of model fit (Figure 6, top). For

each year and species, the median root RPS across all sites was between

0.02 and 0.04, and was typically lower for scale than for adelgid. An

exception occurred in 2009, the year of an unexplained dip in

landscape-level abundance of scale (Figure 4). Out-of-sample prediction

was also assessed using RPS (Figure 6, bottom). For adelgid, the years

with higher abundance on average (2007 and 2011; Figure 4) also had

higher predicted root RPS. Predicted root RPS for scale, in contrast, was

fairly constant over the 4 years. As a benchmark of comparison for out-

of-sample prediction of the model, we also computed RPS using the

empirical distribution of the observed data for each species (Figure 6,

bottom); that is, for each species, we computed the empirical density of

the ordinal response variable across all years and used it as our predic-

tive distribution. The median predicted root RPS from our model is less

than that obtained from the empirical distribution for each species and

year, indicating that the model explained some of the variability in the

response, although the gain is much greater for scale than adelgid.

4 | DISCUSSION

4.1 | Spatial dependence within and between species

We found positive spatial dependence between the latent abundance

of the hemlock woolly adelgid and elongate hemlock scale as indicated

by the posterior distribution of A2;1 (Figure 2). Therefore, even with the
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FIGURE 3 Posterior distributions of the effective range (in
kilometres) of residual spatial autocorrelation for adelgid (HWA)
and scale (EHS). Effective range indicates the distance at which
residual spatial autocorrelation drops below 0.05, after accounting
for weather-related covariates, temporal dynamics and dependence
between species. The greater effective range for scale suggests
that an additional, unmeasured factor affects its abundance

FIGURE 4 Boxplots of the posterior distribution of the time-varying random intercepts, bðsÞ
0 1aðsÞ

t , indicated high inter-annual variation in
abundance for adelgid (left) and generally increasing abundance of scale during the study (right) at the landscape scale
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other components in the model (i.e., temporal random effects, covari-

ates and temporal dynamics) there was remaining spatial structure in

average, stand-level latent abundance shared between the two species.

The parameter estimates of the spatial random effects also indicated

that the effective range varied between the two species. We do not

expect that an unmeasured covariate that acts at the regional scale

(e.g., a climate-related variable) strongly affected average adelgid abun-

dance because residual average latent abundance was not spatially cor-

related at distances > 4 km after accounting for mean winter

temperature, temporal processes and dependence among species (Fig-

ure 3). However, the moderate effective range of spatial correlation for

scale (c. 24 km) indicates that additional covariates, possibly weather

related, could affect the abundance of this species.

Computation time, although reasonable for this example system

with 142 locations, can quickly become prohibitive when a large num-

ber of sampling locations are observed. Possible dimension reduction

techniques using predictive processes (Banerjee, Gelfand, Finley, &

Sang, 2008) or Gaussian Markov random fields to approximate the

Gaussian field (Lindgren, Rue, & Lindstr€om, 2011) could be considered.

4.2 | Benefits of temporal random effects to account

for non-equilibrium

The species-specific temporal random effects, aðsÞ
t , permitted estima-

tion of the effect of abiotic conditions on the abundance of each insect

species while accounting for potential violations of the assumption that

species are at equilibrium distribution or abundance with the environ-

ment. Average latent abundance varied greatly from year to year for

both species (Figure 4), indicating that including temporal random

effects was appropriate. The estimates of the time-varying random

intercepts for adelgid generally show an alternating pattern of abun-

dance in the study region between adjacent years of observation. The

time-varying random intercepts for scale generally increased over the

study period (Figure 4). In 2009, however, average scale abundance

decreased in a way that was not accounted for by mean winter tem-

perature or autoregressive processes. This suggests that an unmeas-

ured regional-scale covariate, such as a summer heat wave or drought,

might have affected scale abundance in that year.

Failure to account for violations of the equilibrium assumption

with the temporal random effects would have led to different conclu-

sions about the effect of abiotic conditions on each species (Figure 5).

If we had not accounted for the northward range expansion and gen-

eral increase in overall scale over the course of the study, we would

have erroneously concluded that winter temperatures do not affect

scale abundance, despite numerous studies that have clearly docu-

mented the negative effects of cold winter temperatures on scale sur-

vival and abundance (e.g., McClure, 1989; Preisser et al., 2008).

Non-equilibrium dynamics were modelled using temporal random

effects for each species that were assumed independent a priori. Tem-

poral random effects explicitly capture the variability in abundance

across years in the study period and improve estimation of the spe-

cies–environment relationship. Although the temporal random effects

do not benefit forecasting abundance at future time periods, the model

is valuable for spatial prediction; that is, for predicting species abun-

dance at unobserved spatial locations within observed time periods.

Other autoregressive latent abundance random variable specifications

could be used to forecast abundance, and uncertainty, properly at both

observed and unobserved spatial locations.

4.3 | Intra- and interspecific temporal dynamics

We found weak evidence for interspecific temporal autocorrelation. The

posterior mean estimate of q2;1 was positive (although the 95% credible

interval contained zero), indicating that scale may be more abundant

FIGURE 5 Posterior probability of b coefficients representing the species–environment relationship for adelgid (left) and scale (right) in the
northeastern U.S.A., with versus without accounting for non-equilibrium of range-shifting species and inter-annual variation in abundance
with a species-specific temporal random effect, aðsÞ

t
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when adelgid abundance was high in the previous time step, but q1;2 was

clearly indistinguishable from zero (Figure 2). A positive posterior estimate

of q2;1 combined with an estimate of q1;2 that was indistinguishable from

zero would imply a commensalism, in which adelgid predisposed stands

to future infestation by scale, but not vice versa. Such a commensalism

could occur if adelgid manipulates host plant defensive chemistry (Pezet

et al., 2013) or the nitrogen content of foliage (G�omez, Orians, & Preisser,

2012; Soltis, G�omez, Gonda-King, Preisser, & Orians, 2015) in ways that

benefit scale. Of all the model terms that describe dependence between

species at different temporal or spatial scales, only q1;2 and q2;1 can indi-

cate directionality, because the q matrix is not necessarily symmetric. Sig-

nificant positive within-species temporal autocorrelation was captured by

the posterior estimates of q1;1 and q2;2, indicating that for both adelgid

and scale, stands with higher than average abundance tended also to

have higher than average abundance of that same species at the subse-

quent sampling occasion.

4.4 | Replicated observations within a location

The estimates of 1=dð1Þ and 1=dð2Þ indicated that, in general, the ordinal

abundance category on individual trees was more variable within a stand

for adelgid than for scale. Although the reason for this difference is not

known for certain, adelgid preferentially feeds on new hemlock shoots

and can deplete the available feeding sites on a tree, which could con-

tribute to this pattern (McClure, 1979, 1991). Having Xi unstructured

greatly increases the number of parameters in the model. Two possible

simplifications would be either to assume conditional independence of

Zð1Þ
i;t;j and Zð2Þ

i;t;j given Ki;t or to assume a global covariance matrix X.

4.5 | Generality and connection to other approaches

Temporal dynamics, spatial dependence and the influence of interac-

tions with other species are inherent in the distribution and abundance

FIGURE 6 Square root of the rank probability score for in-sample plots (top) and out-of-sample plots (bottom) for adelgid (left) and scale
(right). The median predicted root rank probability scores (RPS) obtained for each species and year when using the empirical distribution as
the predictive distribution are denoted by 3. The distance between the 3 and the median predicted root RPS represents the improvement
in prediction provided by the model versus the empirical distribution
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of species. We show that failure to account for range shifting or other

non-equilibrium of abundance with the environment can affect estima-

tion of the species–environment relationship, and demonstrate how

including temporal dependence between species can indicate biotic

interactions. Given that the model is defined generally for S species, as

the number of species increases, so does the number of parameters

that need estimating. In particular, the SðS21Þ=2 parameters of A and

the S2 parameters of q may be difficult to identify from the data as S

increases. Although our current model assumes fully regulated dynam-

ics, Thorson et al. (2017) propose investigating the number of regula-

tory relationships that are identifiable from the data in order to reduce

the dimension of q. Dimension reduction techniques, such as clustering

across species or ordination, could also be used for large S (Hui, 2016;

Ovaskainen et al., 2016; Thorson et al., 2016). These clustering techni-

ques are especially appropriate when the goal is to map species diver-

sity or to improve prediction for rare species by borrowing strength

from more common species in the community (Warton et al., 2015).

Clustering techniques are not used here because our goal was to test a

specific hypothesis about how fine-scale biotic interactions affect dis-

tribution and abundance for a smaller subset of strongly interacting

species within a community. Recently, Ovaskainen et al. (2017) pro-

posed a general hierarchical model for species communities that

directly models dependence between species’ environmental niches in

addition to species dependence at the level of the response variable.

As the realized niche of a species encompasses the range of conditions

in which a species can exist in the presence of interactions with other

species (Hutchinson, 1957), and the distribution of a species can be

interpreted as projecting the realized niche onto geographical space

(Wiens, 2011), incorporating such interactions among smaller subsets

of strongly interacting species into distribution models is generally

applicable to ecological systems (Gilman et al., 2010). The methods we

present can be adapted to a wide range of ecological data and sampling

schemes, providing a flexible approach for inferring ecological process

from pattern and making predictions for a specific conservation or

management aim.
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