# Preduce Safety



**Cornell University** 



# Module 3: Soil Amendments

# Learning Objectives

- Identify potential routes of contamination associated with soil amendments
- Explain soil amendment handling practices that may reduce risks
- Identify key strategies such as composting or application intervals to reduce risks
- Describe corrective actions that may be utilized if a soil amendment presents a risk
- Identify recordkeeping tools for monitoring and managing soil amendment handling, application, and proper use



# What Is A Soil Amendment?

- Soil amendments are any chemical, biological, or physical materials intentionally added to the soil to improve and support plant growth and development
- May reduce soil erosion and sediment runoff
- Many different types of soil amendments are available
- Soil amendments can present produce safety risks
- Assessing risks and implementing GAPs can reduce risks





# Soil Amendments & Food Safety Risks



- Biological soil amendments, especially those that include untreated (raw) manure, pose significant microbial risks
- Synthetic (chemical) soil amendments can also impact food safety, if not prepared and applied properly
- Risks should be assessed when selecting and applying all soil amendments on produce fields



# **Assessing Your Risks**

- What type of soil amendments do you use?
  - Raw manure, composted manure, chemical, etc.
- What crops receive soil amendments?
  - Fresh produce or agronomic crops
- When do you apply them?
  - Days to harvest, time of year
- How do you apply them?



- Incorporated, injected, surface applied
- How much and how often do you apply them?
  - Excessive application can lead to environmental impacts



# **Chemical Soil Amendments**

- Minimal risk of human pathogens
  - Cannot be considered 100% safe
  - Synthetic fertilizers, minerals
- Can pose chemical risk to humans



- Be sure workers are trained to apply properly and use personal protective equipment
- Follow all application instructions
- Proper labeling and storage



# Human Waste & Biosolids

- Human waste is prohibited for use on produce crops, unless it meets the EPA regulation for biosolids (40 CFR part 503)
- Untreated human waste may contain pathogens, heavy metals, or other contaminants
- May not be accepted by produce buyers
- Management of biosolids not discussed because use is infrequent in fresh produce production



# **Pre-Consumer Vegetative Waste**

- Should not be considered zero risk and may contain:
  - Chemical hazards
  - Physical hazards
  - Biological hazards
- Examples include:
  - Produce food preparation waste
  - Out of date vegetables
  - Food products removed from their packaging





# Non-Manure Based Soil Amendments of Animal Origin

 Should be processed to eliminate pathogens or must be considered untreated biological soil amendments of animal origin



# The Value of Manure

- Increases soil tilth, fertility, and water holding capacity
- Sound nutrient management and waste utilization for those with animal production or partnering with other farms who have animals
- Widely available and cost effective







# **Pathogens in Animal Manure**

- All manures can carry human pathogens
- Some animals tend to be reservoirs for certain pathogens
- Many things can affect animals shedding pathogens in their manure
  - Age
  - Rearing practices
  - Diet
  - Season
  - Environmental conditions





# **Untreated Soil Amendments**

- Untreated biological soil amendments of animal origin are considered high risk since they have not been treated to reduce or eliminate pathogens
- All of the following soil amendments would be considered untreated:
  - Raw manure
  - 'Aged' or 'stacked' manure
  - Untreated manure slurries
  - Untreated manure teas



- Agricultural teas with supplemental microbial nutrients
- Any soil amendment mixed with raw manure



# **Reducing Soil Amendment Risks**

- Selection
- Treatment
- Application Timing

- Application Methods
- Handling and Storage
- Recordkeeping





# **Composting as a Treatment**

- Composting is a <u>controlled</u> biological process that decomposes organic matter and reduces pathogens
- Temperature is the primary method of pathogen reduction for thermophilic composting; however, chemical and biological factors also contribute
- Only a composting process that has been scientifically validated ensures pathogen reduction
- Process monitoring and recordkeeping are critical to ensuring the compost is adequately treated



### **Properly Composted Manure**

### High temperatures are maintained by;

- Manipulating the compost pile inputs (feed stocks)
- Proper carbon to nitrogen ratios
  - Initial C:N ration of between 25:1 and 40:1
- Moisture percentage
- Aeration

### **Going the Extra Step**

- Cure compost
  - Leave finished compost in an undisturbed pile for at least 2 months.
- Remember
  - Keep curing or finished compost away from 'active' compost piles.
  - \*\***Best practice**: store, cover or apply finished compost immediately following curing stage.\*\*



# **Composted Manure**

(lower risk)

- Substantially reduces microbial pathogens
- Finished product will yield a valuable soil amendment, with few pathogens, if composted properly.
- Safety Considerations
  - Compost temperature not monitored
  - Failure to properly turn compost pile
  - Finished compost contaminated by nearby manure piles
  - Curing finished compost

# **Composting Options**

### Must use a scientifically valid process:

- Aerated static composting: aerobic, minimum 131°F (55°C) for 3 days, followed by curing with proper management to ensure elevated temperatures throughout all materials
- Turned composting: aerobic, minimum of 131°F (55°C) for 15 days, minimum 5 turnings, followed by curing
- 3. Other scientifically valid, controlled composting processes





### **Properly Composting Manure**

### Two popular methods

- 1. In-vessel or static aerated pile system
  - Temperatures must be maintained of at least 131 °F for 3 days



Aerated Bay Compost System. URI Peckham Farm, September 2010.



Forced aeration. A powered blower will force air through this pipe to the compost pile. A slotted wooden floor will cover the aeration pipe.

### **Properly Composting Manure**

- 2. Windrow composting system
  - Temperatures must be maintained of at least 131 °F for 15 days, during which time, the materials must be turned a minimum of five times.



### **Properly Composting Manure**



# **Reducing Risks During Application**

### Steps you should take to reduce risks:

- Preferentially apply soil amendments containing manure to crops not intended for fresh consumption
- Maximize the time between application and harvest
- Do not contact the edible portion of the crop during application.
- Do not side-dress with raw manure
- Minimize risks to adjacent produce crops if you are field spreading manure





# **Minimum Application Intervals**

 There are currently no application intervals for raw manure outlined in the FSMA Produce Safety Rule



- Untreated Soil Amendments
  - FDA is currently pursuing further research to support application intervals for raw manure
  - Raw manure must not be directly applied to the harvestable portion of the crop

### Treated Soil Amendments

Zero day application interval for compost treated by a scientifically validated process

Preduce Safety

# PSR vs RIGAP NOP recommended vs required



### **Fresh or Raw Manure**

### Application Recommendations - NOP

 Incorporate into the soil (after harvest period) before the ground freezes

### OR

- Incorporate into the soil
  - 120 days prior to harvest of product whose edible portion in direct soil contact OR
  - 90 days prior to harvest of product whose edible portion does **NOT** have direct soil contact

\*Avoid growing root and leafy crops in the year that manure is applied to a field

# **Handling Recommendations**

 Designate specific equipment and tools for handling soil amendments



- Develop SOPs to clean and sanitize equipment and tools that contact soil amendments and fresh produce
- Direct traffic (foot, equipment) around soil amendment storage or processing areas to reduce the risk of cross-contamination



# **Storage Area Recommendations**

- Minimize runoff, leaching, and wind drift to reduce contamination of crops, water sources, and handling areas by soil amendments
  - Cover piles
  - Build berms to prevent runoff



- Do not store in locations that are likely to experience runoff or areas that are close to water sources
- Keep raw manure and finished compost in separate areas to prevent cross-contamination
- Minimize animal access to compost piles



# **Worker Training**

# Workers who handle soil amendments, both treated and untreated, should:

- Understand SOPs for properly completing tasks which require managing raw manure or compost
- Make sure clothes, boots, and gloves are clean before handling produce
- Wash hands after handling







# **Recordkeeping: Soil Amendments**

# Soil amendments can introduce microbial risks, so you should document:

- Type and source of soil amendment
- Rates and dates of application
- Handling and sanitation practices used that reduce risks



There are a few records required for treated biological soil amendments of animal origin within the Produce Safety Rule

• Some details are outlined on the next few slides



### **Recordkeeping: On-Farm Composting**

Key factors in the composting process must be documented. These may include the following steps depending on the process used:

- Time
- Temperatures
- Turnings
- Other processing steps







# Recordkeeping: Soil Amendments Supplied by a Third Party

### **Documentation should be kept of:**

- The name and address of the supplier
- What soil amendments were purchased
- The date and amount purchased
- Lot information, if available



### **Documentation must be collected from the supplier:**

- To ensure the supplier has used scientifically validated treatment processes and monitoring during the production of the treated amendment (including compost)
- To ensure proper handling requirements have been met

**Preduce Safety** 

# **Corrective Action Plan**

- Outline steps that could be taken if soil amendments:
  - Pose a microbial risk to the crop
  - Were improperly treated
  - Accidentally contacted the edible portion of the crop
- Think of alternative market options
  - Processing markets that involve a "kill" step
- Document in your plan





# Summary

- Soil amendments can introduce produce safety risks, especially those that contain raw manure
- To reduce risks associated with soil amendments:
  - 1. Apply untreated manure to non-produce fields
  - 2. Treat raw manure using a scientifically validated, controlled process
  - 3. Extend the time between application of raw manure and harvest
- Make sure storage areas do not contaminate fields, water sources, or packing areas
- Train workers who handle and apply soil amendments
- Develop sanitation steps for tools and equipment
- Keep records of soil amendment applications and treatments

