
Nucleomorph genome of Hemiselmis andersenii
reveals complete intron loss and compaction
as a driver of protein structure and function
Christopher E. Lane*, Krystal van den Heuvel*, Catherine Kozera†, Bruce A. Curtis†, Byron J. Parsons†‡,
Sharen Bowman†§, and John M. Archibald*¶

*Canadian Institute for Advanced Research, Integrated Microbial Biodiversity Program, Department of Biochemistry and Molecular Biology, Dalhousie
University, Halifax, NS, Canada B3H 1X5; §Department of Process Engineering and Applied Science, Dalhousie University, Halifax, NS, Canada B3H 3J5;
and †Atlantic Genome Centre, Halifax, NS, Canada B3J 1S5

Edited by Jeffrey D. Palmer, Indiana University, Bloomington, IN, and approved October 29, 2007 (received for review August 6, 2007)

Nucleomorphs are the remnant nuclei of algal endosymbionts that
took up residence inside a nonphotosynthetic eukaryotic host. The
nucleomorphs of cryptophytes and chlorarachniophytes are de-
rived from red and green algal endosymbionts, respectively, and
represent a stunning example of convergent evolution: their ge-
nomes have independently been reduced and compacted to <1
megabase pairs (Mbp) in size (the smallest nuclear genomes
known) and to a similar three-chromosome architecture. The mo-
lecular processes underlying genome reduction and compaction in
eukaryotes are largely unknown, as is the impact of reduction/
compaction on protein structure and function. Here, we present
the complete 0.572-Mbp nucleomorph genome of the cryptophyte
Hemiselmis andersenii and show that it is completely devoid of
spliceosomal introns and genes for splicing RNAs—a case of com-
plete intron loss in a nuclear genome. Comparison of H. andersenii
proteins to those encoded in the slightly smaller (0.551-Mbp)
nucleomorph genome of another cryptophyte, Guillardia theta,
and to their homologs in the unicellular red alga Cyanidioschyzon
merolae reveal that (i) cryptophyte nucleomorph genomes encode
proteins that are significantly smaller than those in their free-living
algal ancestors, and (ii) the smaller, more compact G. theta nucleo-
morph genome encodes significantly smaller proteins than that of
H. andersenii. These results indicate that genome compaction can
eliminate both coding and noncoding DNA and, consequently,
drive the evolution of protein structure and function. Nucleomorph
proteins have the potential to reveal the minimal functional units
required for basic eukaryotic cellular processes.

endosymbiosis � genome evolution � genome reduction

Nuclear genome size in eukaryotes varies �200,000-fold (1).
Toward the lower end of this spectrum are the reduced

genomes of microorganisms that have become symbionts or
intracellular pathogens, such as apicomplexans (e.g., Plasmo-
dium, the causative agent of malaria) and microsporidian par-
asites (e.g., Encephalitozoon, an opportunistic pathogen of AIDS
patients). The nuclear genomes of these organisms are smaller
and more compact than those of their free-living relatives and
contain little in the way of repetitive DNA (2). Far and away the
most extreme examples of eukaryotic genome reduction are the
‘‘nucleomorph’’ genomes of cryptophytes and chlorarachnio-
phytes. Nucleomorphs are the relic nuclei of algal endosymbi-
onts that became permanent inhabitants of nonphotosynthetic
eukaryotic host cells (3–5). Through the combined effects of
genome compaction and intracellular gene transfer, the nucleo-
morph genomes of cryptophytes and chlorarachniophytes have
shrunk to a fraction of the size of the algal nuclear genomes from
which they are derived and, thus, represent a fascinating system
for studying the process of genome evolution.

The first nucleomorph genome to be sequenced was the
551-kilobase pair (kbp) genome of the model cryptophyte,
Guillardia theta (6). The G. theta genome contains 513 genes,

primarily with ‘‘housekeeping’’ functions such as transcription,
translation, and protein folding/degradation (6). Recently, the
nucleomorph genome of the chlorarachniophyte alga Bigelow-
iella natans was completely sequenced and, at 373 kbp (7), is even
smaller than that of G. theta. Like G. theta, the B. natans
nucleomorph genome is largely composed of genes whose func-
tion is to perform core eukaryotic cellular processes and to
maintain the expression of a small number of essential genes/
proteins involved in photosynthesis (3, 5, 7). A striking similarity
between the G. theta and B. natans nucleomorph genomes is that
both are composed of three chromosomes, each with subtelo-
meric ribosomal DNA (rDNA) cistrons (3, 5). This is intriguing,
considering the independent evolutionary history of these or-
ganisms: the algal endosymbiont that gave rise to the crypto-
phyte nucleomorph and plastid (chloroplast) is derived from an
ancestor of modern-day red algae, whereas in chlorarachnio-
phytes, the endosymbiont was a green alga (reviewed in refs 8,
9). The observed similarities in basic karyotype and genome
structure between the two nucleomorphs are, thus, the result of
convergent evolution, the biological significance of which is
unknown (3). Importantly, the gene content of the G. theta and
B. natans nucleomorph genomes, in particular the complement
of genes for plastid-targeted proteins, are very different from
one another, emphasizing the independent evolutionary trajec-
tories taken by the two genomes since their enslavement.

Beyond the cryptophyte G. theta and the chlorarachniophyte
B. natans, very little is known about nucleomorph genome
diversity within members of each lineage. Preliminary karyotype
diversity studies have revealed considerable size variation, with
estimated nucleomorph genome sizes ranging from �450 to 845
kbp in cryptophytes and �330–610 kbp in chlorarachniophytes
(4, 10–14). The presence of three chromosomes is thus far a
universal feature of nucleomorph genomes (3, 12, 14), as is the
existence of subtelomeric rDNA repeats. An interesting excep-
tion was recently discovered within members of the cryptophyte
genus Hemiselmis, where only three of the six nucleomorph
chromosome ends contain intact repeats, the other three con-
taining only the 5S rDNA locus (11). To better understand the
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sequence and structural diversity of nucleomorph genomes and,
more generally, the causes and consequences of genome reduc-
tion and compaction in eukaryotes, we have completely se-
quenced the nucleomorph genome of a newly described species,
Hemiselmis andersenii (15). Detailed comparison of the H.
andersenii genome to that of G. theta (6) provides the first
glimpse into the tempo and mode of nucleomorph genome
evolution and highlights the significant impact of genome com-
paction on gene and protein structure.

Results and Discussion
Chromosome and Genome Structure. H. andersenii CCMP644
nucleomorph DNA was isolated by using cesium chloride-
Hoechst dye density gradient centrifugation, cloned and shotgun
sequenced to �9� coverage. After the use of long-range PCR
to link contigs and fill remaining gaps, three chromosome-sized
contigs (207.5, 184.7, and 179.6 kbp) were produced, in agree-
ment with genome size estimates based on pulsed-field gel
electrophoresis (11). The complete H. andersenii genome is
571,872 bp in size (Figs. 1 and 2A) with an overall G�C content
of 25.2% (24.7% in single-copy regions, 39.0% in rDNA re-
peats). The H. andersenii nucleomorph chromosome ends are
highly unusual: telomeres are composed of a never-before-seen
(GA17)4 –7 repeat, in contrast to those in G. theta
(([AG]7AAG6A)11). Consistent with previous observations (11),
intact subtelomeric rDNA operons are present only on both ends
of chromosome I and one end of chromosome III (5S rDNA
exists in isolation on chromosome II and one end of chromosome
III; Fig. 1).

Loss of Introns and Splicing Machinery. The G. theta nucleomorph
genome possesses 17 small (42- to 52-bp) spliceosomal introns
with standard GT/AG boundaries, primarily in ribosomal pro-
tein genes and invariably located at their 5� ends (6). With the
exception of orf183 and orf263, all of the G. theta intron-
containing genes have homologs in H. andersenii. Unexpectedly,
none of these contain introns nor do any of the other predicted
genes (Fig. 1). Introns are widely considered to be a universal
feature of nuclear genomes (16) and are removed by the
spliceosome, a large, evolutionarily conserved ribonucleoprotein
complex consisting of five small nuclear (sn) RNAs and �50
proteins (17, 18). Although intron density varies greatly, even the
most reduced and compacted nuclear genomes examined thus
far retain at least a few introns. For example, the genomes of the
parasites Giardia lamblia (19) and Encephalitozoon cuniculi (20)
possess 4 and 13 introns, respectively, and encode snRNAs and
dozens of core spliceosomal protein components necessary for
their removal (19–21).

To gain further insight into the significance of intron loss in the
H. andersenii nucleomorph genome, we performed a detailed
analysis of 51 G. theta and/or H. andersenii nucleomorph genes
with predicted roles in RNA metabolism [supporting informa-
tion (SI) Fig. 4]. Nineteen of 51 genes have clear functions in
ribosome biogenesis (e.g., cbf5, nop56), 17 of which are present
in both genomes (U3 snoRNP and brx1 are missing in G. theta).
Both genomes encode an mRNA capping enzyme (mce), two
polyadenylate-binding proteins (pab1,2) and several DExD/H
box RNA helicases (e.g., has1, dbp4), which participate in a wide
range of RNA-related processes (22). In stark contrast, whereas
the G. theta genome encodes 13 proteins with known or pre-
dicted spliceosomal functions, most notably two U5 snRNP
subunits and the large, highly conserved and spliceosome-
specific protein prp8, all but four of these are absent in H.
andersenii (SI Fig. 4). The remaining four proteins are highly
divergent snrpD and D2 homologs with weak similarity to two of
the seven snRNP-associated protein genes in G. theta, cdc28, a
DExD/H box helicase whose yeast counterpart (prp2) functions
in spliceosome activation (23) and snu13, a protein that functions

in both the spliceosome and as part of the rRNA processing
machinery (24). Significantly, we were also unable to detect H.
andersenii genes for any of the five spliceosome-specific snRNAs
(U1, U2, U4, U5, and U6; SI Fig. 4), all of which are found in
G. theta (6). Collectively, these results provide strong evidence
for the hypothesis of complete loss of introns and splicing in the
H. andersenii nucleomorph. Nevertheless, it is formally possible
that the missing splicing factors in H. andersenii are, in fact,
nucleus-encoded and imported to the organelle posttranslation-
ally, as must be the case for many nucleomorph and plastid
proteins in cryptophytes (3), although it is not clear what their
present functions would be. The G. theta nuclear genome is being
completely sequenced (www.jgi.doe.gov/sequencing/why/
CSP2007/guillardia.html) and it will be possible to assemble a
complete ‘‘parts list’’ for the nucleomorph spliceosome in this
organism. Assuming that there is indeed no spliceosome in the
H. andersenii nucleomorph, comparing and contrasting the suite
of nucleomorph-localized proteins involved in RNA metabolism
in G. theta and H. andersenii should provide key insight into
eukaryotic nuclear proteins whose functions are restricted to
splicing and those that are multifunctional.

Genome Synteny and Recombination. A comparison of gene order
between the H. andersenii and G. theta nucleomorph genomes
reveals an exceptional degree of synteny. Ninety-four percent of
homologous genes (see below) reside within syntenic blocks (Fig.
2b), with a relatively small number of intra- and interchromo-
somal recombinations and inversions having scrambled the two
genomes since they diverged from one another. For example, a
significant fraction of H. andersenii chromosome I corresponds
to G. theta chromosome III, whereas chromosomes II and III of
H. andersenii share large blocks of synteny with G. theta chro-
mosome II (Fig. 2b). Several blocks of synteny are as large as 30
kbp in size and most differ only in organism-specific ORF
content (Fig. 1; below). In some cases, such as one end of
chromosome I, large portions of the chromosome share gene
content with a portion of a G. theta chromosome, but these
regions are broken into syntenic blocks that have been inverted
since the common ancestor of the two genomes.

Compared with prokaryotic and organellar genomes (25–27),
gene order in nuclear genomes is typically only conserved
between closely related species (28–30). An interesting excep-
tion occurs in microsporidian parasites where a recent genomic
investigation (31) revealed that their reduced and compacted
genomes are unexpectedly stable relative to the fungal genomes
from which they evolved, presumably because of a decrease in
recombination frequency. Our data suggest that the extreme
reduction and compaction that has occurred during cryptophyte
evolution has led to an even greater degree of genomic stability
in nucleomorphs, on par with that seen in reduced prokaryotes
and organellar genomes. Nonhomologous recombination events
are likely to disrupt coding sequences in gene-dense nucleo-
morph genomes, reducing the rate of viable genomic rearrange-
ments and resulting in the retention of large blocks of synteny
observed between distantly related cryptophytes. The amount of
time since H. andersenii and G. theta diverged from a common
ancestor is not known, but molecular phylogenies reveal that
they are not closely related (12, 32), their nucleus- and nucleo-
morph-encoded rDNAs being only �90% and �80% identical,
respectively.

The nucleomorph chromosomes of both Guillardia theta and
Bigellowiella natans encode substantial subtelomeric repeats,
characterized by the presence of rDNA cistrons (6, 7). These
repeats are presumably undergoing recombination/conversion at
rates high enough to maintain nearly identical sequence. Inter-
estingly, differences in gene content exist at the most internal
portions of the repeats in both genomes. The B. natans genome
encodes a complete copy of the heat shock protein gene dnaK
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on the internal side of one chromosome II repeat and truncated
pseudogene copies in the same location on the other five
chromosome ends (7). In G. theta, the repeats encode more
proteins and are more variable in content. The ubc4 gene resides
within five of the six G. theta repeats, and tfIID exists on three
of the chromosome ends. However, the region outside of ubc4 is
essentially identical on all ends (6). A similar pattern has been
shown to exist in two other cryptophytes, Hanusia phi and
Proteomonas sulcata (12).

In the case of the cryptophyte genus Hemiselmis, exploratory
Southern blot hybridizations (11) revealed that all members of
this genus appear to lack the majority of the rDNA cistron on
chromosome II. The complete nucleomorph genome presented
here confirms this for H. andersenii and demonstrates that this
situation also exists on one end of chromosome III (Fig. 1). The
immediately subtelomeric 5S rDNA is the only remnant of the
rDNA cistron on all three of these ends. Interestingly, rpl9 occurs
on both ends of chromosome II and is part of a large syntenic
block shared with G. theta on one of these ends. This suggests
that the original rDNA cistron was replaced by a portion of the
chromosome normally located internal to the repeat. The rpl9
locus was presumably then propagated to the opposite end of the

chromosome. Whether chromosome II or III was the first to lose
most of the rDNA cistron from one of its ends is unclear.

Subtelomeric rDNA cistrons appear to be widespread in
cryptophyte and chlorarachniophyte nucleomorph genomes (6,
12) and, curiously, are also found in the reduced nuclear
genomes of the microsporidian E. cuniculi (20) and the
diplomonad G. lamblia (33). It is possible that the elevated G�C
content of the rDNA loci in such genomes serves a role in the
maintenance of chromosome ends in genomes with a high
average A�T content. However, the lack of full rDNA cistrons
on half of the H. andersenii chromosome ends, combined with
their extraordinarily A�T-rich telomeric sequences, suggest that
this is unlikely. More plausibly, the presence of subtelomeric
rDNA cistrons is related to the high rates of recombination and
gene conversion that are typical for chromosome ends, para-
doxically, in a region of the genome often associated with
moderate levels of gene expression. The consequences of having
half of the ‘‘typical’’ nucleomorph complement of rDNA cistrons
in Hemiselmis is not immediately obvious, but the different
complement of multicopy protein genes associated with the
chromosome ends in nucleomorph genomes examined thus far
suggests that such genes are likely the beneficiaries of serendipity
rather than selection.

Analysis of Hemiselmis and Guillardia ORFs. The H. andersenii
nucleomorph genome possesses 472 predicted protein genes,
compared with 465 in G. theta (SI Fig. 4). We used two
interrelated criteria to infer gene homology between the two
genomes, standard DNA/protein sequence similarity and con-
sideration of synteny. Based on sequence similarity alone, �50%
(254 of 472) of the H. andersenii genes are present in G. theta and
have identifiable homologs in canonical nuclear genomes. Eigh-
teen H. andersenii genes with clear eukaryotic homologs are not
found in G. theta, whereas 16 ‘‘conserved’’ G. theta genes are
absent in H. andersenii (Fig. 1 and SI Fig. 4). Intriguingly, both
nucleomorphs harbor an identical set of 30 genes predicted to
encode plastid-targeted proteins. The retention of essential
genes for photosynthesis (and the machinery to express them) in
the nucleomorph has been touted as the raison d’être of these
enigmatic organelles (6). Clearly the complement of cryptophyte
nucleomorph-encoded plastid protein genes was established
very early in the evolution of this lineage, before the divergence
of G. theta and H. andersenii. The functional significance of this
observation, in terms of the migration of nucleomorph genes to
the host nucleus, is unknown.

The remaining H. andersenii ORFs can be classified as follows:
(i) ORFs that are demonstrably homologous between H.
andersenii and G. theta but that show no obvious similarity to
genes in other genomes (60 of 472 � 13%), (ii) ORFs showing
no homology to any gene in G. theta or elsewhere (110 of 472 �
23%), and (iii) H. andersenii ORFs with no detectable homology
to known genes but that reside within regions of syntenic
conservation (30 of 472 � 6.4%). Remarkably, pairwise com-
parisons of the H. andersenii and G. theta ORFs in the third
category (Fig. 2 c and d) reveal that they are almost always
similar in size and, despite sharing no obvious amino acid
sequence similarity, have similar pI values and number of
predicted transmembrane helices (if present). Given that pro-
teins encoded in nucleomorph genomes are often divergent in
sequence (3, 34–36), it appears likely that these genes share a
common origin but have rapidly diverged in sequence. Together
with the H. andersenii-specific unidentified ORFs, the ‘‘syntentic
ORFs’’ encode predicted proteins with highly biased amino acid
compositions, much more so than ORFs with demonstrable
homologs in other eukaryotes and/or in both nucleomorph
genomes. Remarkably, the proportion of phenylalanine and
asparagine residues (which are encoded by A�T-rich codons) in
many of the H. andersenii- and G. theta-specific proteins exceeds
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25%. Despite their unusual composition, these proteins are very
likely bona fide: 83 are �150 aa in length, 45 are �300 aa long,
and 8 H. andersenii ORFs with no sequence homology to known
proteins are �800 aa in length. It would appear that through the
combined effects of increased mutation rate and/or reduced
selective constraint, a significant fraction of cryptophyte nucleo-
morph-encoded proteins are evolving extraordinarily quickly, yet
for unknown reasons, are retained in both H. andersenii and G.
theta.

Protein Size Reduction. We next sought to test whether the process
of genome reduction/compaction has influenced the size of
nucleomorph-encoded proteins as well as their composition. We
compared the sizes of 198 proteins found in both H. andersenii
and G. theta with their homologs in the red alga C. merolae (37)
and the land plant Arabidopsis thaliana (38) (the genome of B.
natans (7) could not be analyzed because of the small number of
genes its green-algal-derived nucleomorph shares with crypto-
phytes). Ninety-two percent of these proteins were smaller in
nucleomorphs than in both C. merolae and A. thaliana (Fig. 3a
and SI Table 1). All pairwise size comparisons were significant
when paired t test and binomial test statistics (P � 0.0005) were
used. No functional bias was observed, because the trend was
apparent in proteins involved in a wide range of cellular pro-
cesses, including protein folding and degradation, transcription,
translation, and RNA metabolism.

To determine where nucleomorph protein shortening had
occurred, we examined 50 protein sequence alignments assem-
bled to include homologs from diverse eukaryotes. Although the
amino and carboxyl termini were almost always shorter than
their homologs in algae and other eukaryotes (SI Fig. 5 a and b),
numerous internal deletions were also apparent (SI Fig. 5 c–e).
Deletions were often localized to regions of the proteins that
were variable in length, presumably corresponding to surface
loops in protein structure. However, in many cases, the crypto-
phyte nucleomorph-encoded proteins were �100 aa shorter than
their homologs in other eukaryotes, suggesting that entire pro-
tein domains have been removed. A striking example is a
transcription factor involved in the regulation of heat shock
protein gene expression: in H. andersenii and G. theta (6, 34) the
HSF protein is 236 and 185 aa long, respectively, compared with
467 in C. merolae, 476 in A. thaliana (SI Table 1) and 833 in the
yeast Saccharomyces cerevisae. Although the amino-terminal
DNA-binding domain remains intact, the transactivation domain

at the carboxyl terminus has been deleted (data not shown),
suggesting a fundamentally different mode of action for this
transcription factor in the cryptophyte nucleomorph. Another
example is the largest subunit of RNA polymerase II (RPB1).
The C-terminal domain (CTD) of RPB1 in most eukaryotes
contains an evolutionarily conserved, tandemly arrayed hep-
tapeptide repeat that serves as a platform for interactions with
a variety of proteins involved in transcription (39). The nucleo-
morph-encoded RPB1 proteins are �300 aa shorter than those
in C. merolae and A. thaliana (SI Table 1) and completely lack
a CTD (C. merolae contains a CTD with atypical repeats). A host
of other transcription-related proteins are shorter as well (e.g.,
RPA1, RPA2, RPC1). The 76-aa ubiquitin monomer, which is
typically encoded as part of a polyubiquitin tract, has been lost
in G. theta but is retained in the H. andersenii nucleomorph
genome as a single stand-alone ORF, as in the reduced genomes
of G. lamblia (40) and E. cuniculi (20).

Unexpectedly, not only are the cryptophyte nucleomorph-
encoded proteins shorter than their homologs in other eu-
karyotes, the sizes of H. andersenii and G. theta proteins differ
significantly from one another. Eighty-one percent of 290 com-
parable homologs in the 0.572-Mbp H. andersenii genome are
larger than their counterparts in G. theta (Fig. 3a and SI Table
1), whose genome is smaller (0.551 Mbp) and more compact:
comparison of homologous gene spacers reveals a mean inter-
genic distance of 52 bp in the G. theta genome versus 97 bp in
H. andersenii (Fig. 3b). The difference in both protein and
intergenic spacer size is significant at P � 0.0005 when both
binomial and t test statistics were used. An interesting compar-
ison of the 2.9-Mbp genome of the microsporidian E. cuniculi to
the 12-Mbp S. cerevisiae genome revealed that 85% of its
proteins were smaller than their homologs in yeast (20). Based
on the assumption that in eukaryotes large proteins facilitate
complex regulatory networks (41), it was suggested (20) that this
discrepancy ref lects a decreased requirement for protein–
protein interactions in a highly simplified intracellular parasite
with fewer proteins and a simplified ‘‘interactome.’’ In the case
of nucleomorphs, the significantly different sizes of proteins in
H. andersenii and G. theta, whose genomes encode approxi-
mately the same number of proteins (and whose endosymbiont
compartments presumably import approximately the same num-
ber of nucleus-encoded proteins), suggest that genome compac-
tion can play a direct role in the process of protein shortening,
beyond simply providing the mechanism for the eventual elim-
ination of genes (or parts of genes) that are no longer essential.
We hypothesize that a deletion bias accounts for the smaller,
more compact nucleomorph genome of G. theta as well as its
smaller proteins. This can be tested by comparing the nucleo-
morph genomes of very closely related cryptophytes and, when
present, pseudogenes, as has been done to demonstrate the
existence of a deletion bias in species of Drosophila (42, 43), once
these data become available.

Methods
DNA Isolation, Genome Sequencing, and Genome Annotation. By
using density gradient-purified DNA as starting material (11),
nucleomorph DNA from H. andersenii CCMP644 was nebulized
and electrophoretically separated on a 1% agarose gel, cloned
into pUC19 vector, and shotgun sequenced to �9� coverage by
using ET terminator chemistry (GE Healthcare) and MegaBace
capillary DNA sequencers. Assembly and editing of the �16,500
end reads was performed by using Staden (44) and resulted in 28
nonoverlapping contigs. Contigs were mapped to specific chro-
mosomes by using Southern blot hybridization and the remaining
gaps were filled by using long-range PCR. PCR products were
cloned and sequenced as described (11). ORFs �40 aa in size
were identified in Artemis (45) and examined for their coding
potential by using BLASTX (46). tRNA genes were identified
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by using tRNA-scan (http://lowelab.ucsc.edu/tRNAscan-SE/).
Ribosomal RNA and snRNA genes were identified by using
BLASTN and by comparison to the G. theta nucleomorph
genome. The H. andersenii nucleomorph genome sequence has
been deposited in GenBank under the following accession
numbers: CP000881, CP000882, and CP000883.

Identification of Syntenic Regions. Portions of the genome were
considered syntenic if they shared identifiable ORFs in the same
order and orientation as G. theta. ORFs showing no detectible
homology to known ORFs were not considered interruptions of a
syntenic block, nor were tRNAs or genes present in only one of the
genomes. Only blocks that included three or more conserved genes
(or ORFs shared between the nucleomorphs) were described as
syntenic. Genes encoding rRNAs were not included.

Statistical Analysis. Protein length and intergenic spacer size was
compared between the two genomes by using two test statistics.

A paired t test was implemented by using the following equation:
t � mean(length difference)/[s/sqrt(n)] where s is the square root
of the sample variance. Infinite degrees of freedom were used
when calculating P values. A binomial test was also used with the
following formula: P(Z � � [phat � 1/2]/(0.5/sqrt(n))), where Z
has a normal distribution, and phat is the proportion of proteins
where the length is shorter in G. theta than H. andersenii or the
nucleomorph representative, in cases where a nucleomorph
genome was being compared with a nuclear genome.
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