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The phylogenetic distribution of chromalveolate
plastids favors independent tertiary origins
Red algal descended plastids are found in clearly polyphy-
letic taxa, each nested within lineages containing aplasti-
dic relatives (Figure 1). Moreover, photosynthetic taxa
frequently occur at derived positions, withmultiple hetero-
trophic groups branching ancestrally. The number of inde-
pendent losses required to account for this pattern is
unreasonable (see above); it is far more parsimonious to
presume several tertiary transfers (Figure 1).

It is clear that plastid evolution in eukaryotes has
resulted in a complex phylogenetic pattern with many con-
flicts among molecular data. Although the chromalveolate
model cannot be rejected formally, neither should it serve as
the a priori framework for interpreting plastid character
evolution, endosymbiotic gene transfers or other intrage-
nomic phylogenetic conflicts. We argue that an alternative
model of serial tertiary endosymbioses is more consistent
with available data, and should be taken into account in
phylogenomic investigations of eukaryotic diversity.
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Letters Response
Reply to Bodył, Stiller and Mackiewicz:
‘‘Chromalveolate plastids: direct descent or multiple
endosymbioses?’’
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Bodył, Stiller and Mackiewicz [1] have written in response
to our recent Opinion piece [2] in which we discussed
progress and problems in resolving the deepest branches
of the eukaryotic tree using phylogenomics. The focus of
our paper was the challenge of inferring accurate phylo-
genies from multigene data sets that include sequences
from organisms that have acquired plastids by secondary
(i.e. eukaryote-eukaryote) endosymbiosis and whose
nuclear genomes are a composite of genes from two (or
more) distinct nucleocytoplasmic lineages. We highlighted
the controversial eukaryotic supergroup ‘chromalveolates’
as a case in point and discussed changing views on the
evolution of photosynthesis in this diverse lineage in light
of recent large-scale phylogenomic studies. Bodył, Stiller
and Mackiewicz [1] take issue with the chromalveolate
hypothesis [3] and our views on the tempo and mode of
121

http://dx.doi.org/10.1016/j.tree.2008.11.003
mailto:clane@mail.uri.edu


Update Trends in Ecology and Evolution Vol.24 No.3
plastid gain and loss among chromalveolates which aim to
minimize secondary endosymbiotic events. They favor a
model of ‘serial plastid transfer,’ whereby red algal-derived
secondary plastids have been passed between ‘chromalveo-
late’ taxa on multiple occasions by tertiary endosymbiosis.

We agree with several of the points raised by Bodył,
Stiller and Mackiewicz [1]: the apparent conflicts between
molecular data sets brought to bear on the chromalveolate
hypothesis need to be taken seriously, and alternative
hypotheses for the spread of plastids among ‘chromalveo-
late’ lineages should not be discounted [4,5]. However, it
should be pointed out that the recent phylogenomic
analysis [6] cited by the authors as indicating ‘that Archae-
plastida is descended from the same ancestor as chromal-
veolate taxa’ [1] was not published at the timewewrote our
article. Indeed, we would caution against unconditional
acceptance of even the most strongly supported multigene
phylogenies, such as the 135-gene Burki et al. analysis [6].
To be sure, such trees provide an important framework for
assessing plastid gain/loss scenarios, but they are not
immune to phylogenetic artifacts (e.g. [7]) and might
strongly support erroneous relationships for the very
reasons we discussed [2].

Finally, Bodył, Stiller and Mackiewicz argue that
complete plastid loss is ‘exceedingly rare’ [1]. We agree,
but rather than view the recent data suggesting a plastid
relict in the alveolate Oxyhrris [8] and the discovery of a
remnant plastid in Perkinsus [9] as evidence against the
chromalveolate model, we consider such findings as pro-
viding data where it was previously missing. Cryptic
mitochondria [10,11] and plastids [12] have been discov-
ered time and time again in organisms once thought to
lack them: demonstrating the absence of an organelle is
extraordinarily difficult, but it only takes a single dis-
covery to fill in a key gap and push the origin of a
particular organelle further back in time. In the case
of dinoflagellates, Bodył has argued previously for the
recent tertiary endosymbiotic origin of the peridinin
plastid [5,13], but the above-mentioned discoveries in
Oxyhrris [8] and Perkinsus [9] now lead him to conclude
that the ancestor these organisms shared with dinofla-
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gellates was photosynthetic (Figure 1 in Ref. [1]). We
predict that further investigation, particularly of poorly
studied non-photosynthetic lineages within the alveo-
lates (e.g. colpodellids, gregarines) and heterokonts
(e.g. bicosoecids, labyrinthulids) will reveal additional
examples of previously undescribed plastid relics. With
each new piece of information, the process that gave rise
to plastids in both non-photosynthetic and photosyn-
thetic lineages will need to be reconsidered in the context
of the most comprehensive and rigorous multigene phy-
logenies we have available to us.
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