## THE UNIVERSITY OF RHODE ISLAND

**Department of Physics** 

### Quantum Information Science at URI

Vanita Srinivasa, Program Director Leonard Kahn, Physics Department Chair/Graduate Program Director



### **URI** Overview



- Flagship public research university of state of RI
- Main campus: Kingston, RI
- Enrollment: ~17,000 students, including > 2,000 graduate students
- Active graduate programs in all STEM disciplines at URI





### URI Department of Physics



- 18 graduate students
- 16 full-time faculty
- Active research programs in biophysics, nonlinear optics, condensed matter physics, statistical physics, and astrophysics
- Home to new Quantum Information
   Science (QIS) program
   7 faculty and growing
- New MS in Quantum Computing (starting in Fall 2021)





### Jobs in Quantum Information Science

Quantum industry: Majority hold degree in physics



From "Preparing for the quantum revolution - what is the role of higher education?", Michael F. J. Fox, Benjamin M. Zwickl, H. J. Lewandowski







### Quantum Workforce: Key Skills

#### **Quantum Information Science areas**

- Quantum computing
- Quantum networking and communication
- Quantum sensing and metrology

#### Physics skills

- Fundamental quantum mechanics: Superposition, entanglement, Schrödinger equation, Hamiltonian evolution
- Advanced quantum mechanics: Open system dynamics, physical noise models, decoherence, mechanisms underlying operation of quantum hardware

#### **General skills (Computer Science, Math)**

Quantum circuits and algorithms, error correction, statistics, data analysis





### Quantum Computing at URI

#### **MS degree in Quantum Computing**

- Builds on Physics Department strengths in quantum information science, optics, and nanophysics
- Interdisciplinary curriculum enables connections with Mathematics, Computer Science, Chemistry, and Engineering
- Prepares graduates to become productive members of quantum workforce
  - Engage in developing unique capabilities of quantum computing to realize transformative technologies and generate new knowledge
- Partnering/collaboration with industrial firms, national labs/institutes, and other universities to ensure that our graduates have the required foundation for employment or future studies in this rapidly advancing field
  - Support from Zapata Computing, Cambridge (Christopher Savoie, Founder and CEO)
  - Collaborative research projects with various institutions
  - Proximity to other QIS programs







### Required and Recommended Courses

#### **Physics**

- PHY451/570/670 Quantum Mechanics
- PHY455/580/680 Condensed Matter Physics
- PHY525/625 Statistical Physics
- PHY530 Electromagnetism
- PHY510/610 Mathematical Methods
- PHY591 Research Project

#### **Mathematics**

- MTH 418 Matrix Analysis
- MTH/CSC447 Discrete Math
- MTH472 Numerical Linear Algebra
- MTH 513 Linear Algebra
- MTH451 Probability and Statistics
- MTH462 Functions of a Complex Variable

#### **Quantum Computing**

- PHY575 Introductory Quantum Computing
- PHY576 Advanced Quantum Computing
- PHY577 Quantum Computing Internship





### MS QC Degree: Semester Roadmap

Five-year program: BS Physics/MS Quantum Computing

Two-year, non-thesis MS program with one summer internship credits

| Fall 4   |           |           | PHY525(3) | PHY510(3)/<br>610(3)    |           | MTH513(4) | 10 |
|----------|-----------|-----------|-----------|-------------------------|-----------|-----------|----|
| Spring 4 | PHY575(3) | PHY570(3) | PHY625(3) | PHY580(3)/<br>PHY680(3) | PHY530(3) |           | 9  |
| Summer   | PHY577(4) |           |           |                         |           |           | 4  |
| Fall 5   | PHY576(3) | PHY670(3) |           | PHY510(3)/<br>610(3)    | PHY591(3) | MTH462(3) | 9  |
| Spring 5 |           |           |           | PHY580(3)/<br>PHY680(3) | PHY591(3) | MTH451(3) | 6  |
| TOTAL    |           |           |           |                         |           |           | 38 |





### **Quantum Computing Courses**

#### **PHY575: Introductory Quantum Computing**

- Qubits and their physical realization
- Entanglement and Bell states
- Quantum gates and circuits
- Quantum algorithms: Searches, factoring, Fourier transforms
- Quantum information theory
- Introduction to physical implementations





### Quantum Computing Courses

#### **PHY576: Advanced Quantum Computing**

- Advanced quantum circuit theory
- Decoherence and density matrices
- Error correction
- Teleportation and dense coding
- Cryptography
- Quantum tomography
- Frontiers of physical realizations and quantum hardware





### Quantum Computing Courses

#### PHY577: Quantum Computing Internship

- Hands-on experience in quantum information science
- Students develop internship proposal with set of objectives and statement of work acceptable to the student, as well as the industry/government lab/academic supervisor and the university program director
- May obtain or foster quantum computing internships with any organization, including student's current employer
- Variety of projects possible





# Summary: Quantum Information Science at the University of Rhode Island

- QIS is an ever-evolving field and requires lifelong learning
- Flexibility of URI program: Tailor to student background and interests
- Our goal: Provide strong foundation for success in quantum workforce

#### For more information about our program, please contact:

Vanita Srinivasa – Program Director (vsriniv@uri.edu)

Leonard Kahn – Department Chair (lenkahn@uri.edu)

**To Apply**: https://gradcas.liaisoncas.org/apply/



